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The relative tail of longevity and the mean remaining lifetime  

Maxim Finkelstein 1 

James W. Vaupel 2  

Abstract 

Vaupel (1998) posed the provocative question, “When it comes to death, how do people 
and flies differ from Toyotas?” He suggested that as the force of natural selection 
diminishes with age, structural reliability concepts can be profitably used in mortality 
analysis. Vaupel (2003) went a step further, using simulations to investigate the impact 
of redundancy, repair capacity, and heterogeneity on the relative length of post-
reproductive life spans, called relative tails of longevity. His 2003 paper showed that 
structural redundancy and the possibility of repair decrease the relative tail of longevity, 
whereas greater heterogeneity increases it. Here, we consider the problem in much 
greater generality and prove these results analytically. Structures with repairable and 
non-repairable components are considered. Heterogeneity is described by a frailty-type 
model and different definitions of the tail of longevity are discussed.  
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1. Introduction  

The force of evolution peters out with age. Natural selection determines mortality 
trajectories of organisms at reproductive ages. But what happens afterwards? What 
mechanisms are responsible for survival at the post-reproductive ages? We do not 
observe a ‘wall of death’ at the age at which reproduction ceases; on the contrary, many 
species experience a remarkably long post-reproductive period with a deceleration, a 
leveling-off or even a decrease in the respective mortality rates. Vaupel (2003) 
addressed these questions and drew an analogy from structural reliability concepts. This 
analogy was used before (see, e.g., Gavrilov and Gavrilova, 2002); however, Vaupel for 
the first time linked it primarily with the post-reproductive period only. He used the 
following loose analogy for explaining the connection between longevity and the post-
reproductive age: “The speed and trajectory of a ball is governed by the pitcher’s 
strength and skill up to the moment the ball leaves the pitcher’s hand. Thereafter, the 
ball’s course is determined by the force of gravity acting on the momentum of the ball. 
Similarly, the course of life until the end of reproduction is determined by evolutionary 
forces. After reproduction ceases, the remaining trajectory of life is determined by 
forces of wear, tear, and repair acting on the momentum produced by the Darwinian 
forces operating earlier in life”. As the human organism is an extremely complex 
structure of billions of components, it follows from the structural reliability theory that 
the only way to survive for a relevant period of time in such a system is to be 
sufficiently redundant on different levels and to possess the capability of repair.  

Thus, the answer to Vaupel’s (1998) provocative question, “When it comes to 
death, how do people and flies differ from Toyotas?” can be interpreted in the following 
way: As the force of natural selection diminishes with age, structural reliability 
concepts can be profitably used in mortality analysis. It means that the design of the 
structure is more or less fixed at this stage and its evolution in time is governed by 
reliability laws. However, it does not mean that these concepts cannot be used for 
mortality modeling at earlier ages, but in this case they should be combined with the 
laws of natural selection. We hope that the corresponding models can be developed in 
the nearest future.  

Vaupel (2003) used simulations and empirical reasoning to investigate for some 
specific cases the impact of redundancy, repair capacity, and heterogeneity on the 
relative length of post-reproductive life spans, called relative tails of longevity. The 
results were as follows: Redundancy and the possibility of repair decrease the relative 
tail of longevity, whereas heterogeneity increases it. Some general considerations of 
reliability theory also support this claim: It is well known (Barlow and Proschan, 1975) 
that the survival curve of a structure with a higher level of redundancy stays longer at 
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larger values but then decreases more steeply than a survival curve of a structure with a 
lower level of redundancy.  

The relative tail of longevity is defined via the difference between the quantiles of 
the corresponding distributions (see Section 2). A comparison between them is not 
straightforward, as we compare the quantiles of different distributions. Moreover, an 
increase (decrease) in the distance between the quantiles does not mean automatically 
an increase (decrease) in the relative distance. 

A possible deceleration in mortality rates at old ages, which was already 
mentioned by Gompertz (1825) and Makeham (1867) and was first modeled via the 
concept of population heterogeneity by Beard (1959, 1971; see also Vaupel et al. (1979) 
for a more general frailty model) can help in understanding why heterogeneity increases 
the tail of longevity. Due to this deceleration, one can expect that the distance between 
two quantiles of the same  distribution is higher for populations with a higher level of 
heterogeneity (with the same baseline mortality rate). But a’ priori it is not clear at all 
whether this effect is maintained for the relative distance and for different distributions.  

Redundancy is a main tool in designing reliable technical structures. The idea that 
redundant structures constitute a plausible lifetime model seems very attractive, as 
extremely high ‘reliability of humans’ is likely to exist in nature only with the help of 
redundancy on different levels. The mortality rates of the simplest redundant structures 
of identical components with constant mortality rates, operating in parallel, were 
analyzed by Gavrilov and Gavrilova (1991, 2002). The authors show that for a 
sufficiently small t , the mortality rate of the fixed parallel structure (loaded 
redundancy) approximately follows the power law and the mortality rate of a structure 
with a random number of initially operable components approximately follows the 
Gompertz law. The latter can be explained also in terms of a general frailty model 
(Finkelstein, 2003). The mortality plateau emerges naturally in this specific model, as 
the mortality rate of a redundant system tends with time to the mortality rate of the last 
surviving component, which is assumed to be constant. Steinsaltz and Evans (2003) 
explained mortality plateaus from the more general viewpoint of quasi-stationary 
distributions (see also Aalen and Gjessing, 2001).  

Repair capacity is crucial for the theory of repairable engineering systems. It turns 
out that this property also plays an important role in modern theories of aging 
(Kirkwood, 1997: Horiuchi, 2002: Yashin et al., 2000). In the current paper, we 
consider models of perfect repair, i.e. a component after repair is as good as a new one. 
In this case, the repair is equivalent to the substitution of the failed component by a 
spare one and is, in fact, a specific case of redundancy (unloaded).  

The goal of our technical paper is to prove the empirical and simulation results of 
Vaupel (2003) analytically and to generalize them to arbitrary lifetime distributions 
where possible.  
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In Section 2, we give formal definitions of the tail of longevity and of the relative 
tail of longevity. Sections 3 and 4 are devoted to proving that redundancy decreases the 
relative tail of longevity. As mentioned, unloaded redundancy can be interpreted in 
terms of repair. Section 5 studies the impact of heterogeneity on the relative tail of 
longevity. As the comparison of quantiles is parameter-sensitive, we also consider a 
more traditional measure of the tail of a distribution in Sections 6-8: the mean 
remaining lifetime function (life expectancy at age t ). We examine the influence of 
redundancy and heterogeneity on this function. As expected, redundancy decreases the 
relative mean remaining lifetime function and heterogeneity increases it. Finally, 
Section 9 formulates the overall conclusion and also discusses other possible measures 
of the tail of longevity. 

 
 

2. The tail of longevity  

Consider a population of a sufficiently large size N . Denote by X  a random age at 
death and by Nω -a random maximal age at death (the age at last death) in this 

population. It is challenging to define a tail of longevity as some remaining potential 
lifetime, taking into account the maximal lifetime variable Nω . A natural candidate for 

this is the difference XD NN −= ω , although it formally allows for negative values.      

Denote by ),( qNωτ  the q -quantile for the distribution of Nω : 

qqNN =≤ )),(Pr( ωτω , and by )( 0qτ  the 0q -quantile for the distribution of X : 

00 ))(Pr( qqX =≤ τ . Vaupel (2003) defines the length of the tail of longevity (we will 

omit the term ‘length’ for brevity sake) as the difference )(),( 0qqN τωτ −  and the 

relative tail of longevity as )(/))(),(( 00 qqqN ττωτ − . Our main focus in the current 

paper is on the latter characteristic.  Relative measures are necessary for adequate 
comparisons of tails in different populations. 

Vaupel (2003) considered specific values of quantiles: 5.0=q  and 9.00 =q . The 

latter value marks the left end point of the post-reproductive zone for some organisms, 
where the force of natural selection is active no longer. The median of the maximal life 
span distribution )5.0,( Nωτ  is just a reasonable choice for a quantile of this 

distribution. Note that formally we do not rely on specific values of q  and 0q : the only 

reasonable restriction is that the corresponding quantiles should be properly ordered: 
)(),( 0qqN τωτ > , which is obviously the case in reality.  

The cumulative distribution function (Cdf) of age at death X  is defined as: 
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be the expected number of members who will survive at t , starting with initial value 
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Let Nω  be the maximal age at death for this sample of size N .  Thatcher (1999) 
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Let ),( qNωτ  denote the −q quantile: qqNN =≤ )),(Pr( ωτω . Using eq. (3), 

),( qNωτ  is obtained from: 

 
qqS N ln)),(( −=ωτ        (4) 

 
or, using eq. (2): 

 

∫ −−≈
),(

0

)lnln(ln)(
qN

qNduu
ωτ

µ .      (5) 

 
The second term on the right in eq. (5) is of minor importance, as N  is large and 

we are not interested in the ‘too high quantiles’ when studying the maximal value 
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distributions. For large enough N , the approximate relation (5) can be practically 

considered as equality and this will be assumed in what follows. 

Doubling the sample size N  will only slightly increase ),( qNωτ  for sufficiently 

large N . The increase from N  to 2N  or 3N  gives a substantial increase, depending 
on the shape of the mortality rate: It is smaller for increasing failure rates and larger for 
constant and decreasing failure rates. This result follows from eq. (5). In Table 1 of 

Vaupel (2003), increasing N  from 310  to 610  extends the median maximal lifespan 
for the constant mortality rate from 73  to 142 years, which agrees with eq. (5). 

Increasing N  from 610  to 910  increases the median maximal lifespan from 142  to 211 
years, which also matches eq. (5). 

Our goal is to compare ),( qNωτ  with the quantile )( 0qτ obtained from Cdf (1): 

00 ))(( qqF =τ . The quantile )( 0qτ , chosen as 9.0 , defines the starting point of old age 

(Vaupel, 2003; ten percent of the population alive at age )9.0(τ ). However, formally 

we are not very concerned with the concrete values of 0q  and q , as we only need the 

ordering: ),()( 0 qq Nωττ < .  

Vaupel (2003) defines the tail of longevity as: 
 

)(),(),( 00 qqqqTL N τωτ −≡       (6) 

 
and the relative tail of longevity as 

 

1
)(

),(
),(

0
0 −≡

q

q
qqRTL N

τ
ωτ

.      (7) 

 
The influence of redundancy and heterogeneity on these characteristics will be 

studied in the next three sections. 
 
 

3. Loaded redundancy  

Consider the loaded redundancy when n  statistically independent, identical 
components in parallel, operating simultaneously, constitute a system with the Cdf of 
time at death (failure): 

 

,...2,1;))(()( == ntFtF n
n       (8) 
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The corresponding quantile )(),1();,( 000 qqqn τττ ≡  is obtained from: 

00 )),(( qqnFn =τ , or equivalently:  

 

nqqnF
1

00 )),(( =τ .       (9) 

 
It means that the effect of redundancy of this type changes the baseline level 0q  

into nq
1

0 . For reasonable parameter values this usually leads to a substantial increase of 

the quantile.  
 
What about the maximal lifespan quantile? The only difference from the baseline 

),( qNωτ  is the size of the sample, which is now nN , because the maximal value is 

observed at the failure of the last of the nN components. Therefore, eq. (5) for 
obtaining ),( qNωτ  turns into  
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)lnln(lnln)(
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µ      (10) 

 
for obtaining ),( qnNωτ . Usually, n  is small with respect to N  (although probably this 

is not the case for the molecular or genetic level). Eq. (10) is asymptotic as ∞→N , 
and the quantile ),( qnNωτ  depends on N , so that the term nln  is negligible:  

 
1),(/),( →qq NnN ωτωτ  as ∞→N .     (11) 

 
Proposition 1. Let sample size N  be sufficiently large. Then the relative tail of 
longevity for a system with a loaded redundancy structure is smaller than the one for a 
non-redundant system: 

 
,...3,2);,(),,( 00 =< nqqRTLqqnRTL      (12) 

 
Proof: it follows from eq. (11) that for N  large enough:  
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and, in accordance with the definition of the relative tail of longevity in eq. (7): 
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which leads to inequality (12).♦ 

 
Similarly for N  large enough:  
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which means that the relative tail of longevity decreases with .n  

Inequalities (13) and (14) hold for reasonable values of the parameters and show 
that the loaded redundancy decreases the relative tail of longevity. 

 
Example 1.  Consider the exponential case µµ =)(t  and the level of redundancy 

2=n . From eq. (10): 
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From eq. (9): 
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Thus, for ,106=N  5.0,9.00 == qq  eq. (15) gives 05.1  while equation (16) gives 

1.3. For the relative tails: 
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which shows a decrease of approximately 30% of the relative tail of longevity. 

 
 

4. Unloaded redundancy (repairable systems)  

Consider the unloaded redundancy when one of the identical components starts 
operating and the other 1−n  are in stand by. As the operating one fails, it is 
immediately replaced by the stand by one etc. The system fails when the last 
component fails. This is interpreted as the perfect repair of the failed object and we 
shall use this interpretation in what follows.  

For a constant mortality rate of a component: )exp(1)( ttF µ−−= , the probability 

of the system failure at t  is an 1−n  fold convolution of the exponential distribution: 
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The mortality rate of the system is (Barlow and Proschan, 1975): 
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1),( >ntnµ  is a monotonically increasing function, ;0)0( =nµ  µµ →)(tn  as ∞→t  

and  
 

1;0),()( 1 >>∀< − nttt nn µµ .      (18) 
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(Barlow and Proschan, 1975). The 0q -quantiles for the simple and redundant cases are 

defined by equations: 
 

)1ln()( 00 qq −−=τµ ,       (19) 

 

∫ −−=
),(

0

0

0

)1ln()(
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n qduu
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respectively. Due to inequality (18): 

 
1);,1(),( 00 >−> nqnqn ττ ,      (21) 

 
which implies: 

 
1);(),1(),( 000 >≡> nqtqtqnt .      (22) 

 
The corresponding q -quantiles, in accordance with eq. (5), are defined by: 

 
)lnln(ln),( qNqN −−=ωτµ ,      (23) 
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where 1),,,( >nqn Nωτ  denotes the q -quantile for a redundant object with 

),(),,1( qq NN ωτωτ ≡ . As previously, the sample size N  is supposed to be sufficiently 

large and the quantiles should be ordered as: 
 

)lnln(ln)1ln( 0 qNq −−<−− .      (25) 

 
Proposition 2. Let the mortality rate of a non-redundant component be constant. Then 
the relative tail of longevity (for a sufficiently large sample size N ) is smaller for a 
system with unloaded redundancy structure than for a non-redundant  system. 
 
Proof. Under condition (11), we show that inequality (13) holds for the case under 
consideration, which, using the notation of eqs. (19) to (24), is equivalent to: 
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Due to the monotonicity of )(tnµ  and because for large t  this function approaches 

the ‘non-redundant’ value µ , inequality (26) is achieved for N  large enough. The 

mortality rate )),,(( qn Nωτµ  is sufficiently close to µ  in this case and, taking into 

account eqs. (23) and (24), ))lnln(/(ln),,( qNqn N −−ωτ  is close to 1. Therefore, 

Proposition 2 holds and the unloaded redundancy also decreases the relative tail of 
longevity.♦ 

Proposition 1 is also explained from the general fact that:  
 

)()( ttn µµ → , ∞→t ,      (27) 

 
as the mortality rate )(tnµ  of a system with a loaded  redundancy  tends to the mortality 

rate of the last remaining component. This means that for 1>n , as ∞→t and 
∞→N : 
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which leads to Proposition 1. 

Proposition 2 was proved only for a constant mortality rate. Eq. (27) is true for this 
case. However, eq. (27) does not hold for an arbitrary mortality rate )(tµ . The 

corresponding (random) mortality rate is defined (Aven and Jensen, 1999) as 
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where 1−nt  is the random failure time of the last but one component in the unloaded 

redundancy structure of n  components. This effect introduces ‘unexpected’ 
heterogeneity in this case through random 1−nt . The increasing sample size N  

decreases the relative tail of longevity, whereas heterogeneity increases it. This needs a 
more detailed investigation in the future. 
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5. Heterogeneity  

Consider the values of the accumulated mortality rate )(tM  on  the y -axis: 

 

∫==
t

duutMy
0

)()( µ .      (29) 

 
Denote by 1y  and 2y  specific values of the accumulated mortality rate in the quantile 

points: ))(( 0qM τ  and ),(( qM Nωτ , respectively. It follows from eq. (1) and eq. (5) that 

 
)lnln(ln),((),1ln())(( 2001 qNqMyqqMy N −−==−−== ωττ .  (30) 

 
We shall prove the following hypothesis of Vaupel (2003):  
 

-The more variability (environmental or internal) in a mortality pattern of an object, 
the longer its relative tail of longevity.   

 
We start with a simple case. Consider an object in a baseline environment with a 

constant mortality rate µ . Assume that some perturbation of a baseline environment 

obeys  a mutiplicative frailty model: 
 

µµ ZZt =),( ,       (31) 

 
where Z  is a random variable with Cdf )(zL , support ∞≤<≤ baba 0];,[ , and 

1)( =ZE , which means that ba << 1 . We shall compare tails for a constant mortality 

rate µ  and a stochastic mortality rate (31). The mixture (observed) mortality rate 

)(tmµ , which corresponds to eq. (31), monotonically decreases to the mortality rate of 

the strongest population µa  with an initial level defined as µµ =)0(m . (Finkelstein and 

Esaulova, 2001). 
Denote by ),,( qNωµτ , ),,( qNm ωµτ  the q -quantiles for samples of size N  for 

mortality rates µ  and )(tmµ , respectively, and the corresponding ‘ordinary’ 0q -

quantiles-by ),( 0qµτ  and ),( 0qmµτ . In accordance with eq. 30, define two quantiles 

for each curve µ  and )(tmµ : 
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Define the tail of longevity for µ  constant as a baseline one. When changing from 

µ  to )(tmµ , consider the increments at the right and left ends of this tail, respectively:  

 
0),,(),,(),( >−≡∆ qq NNmmright ωµτωµτµµτ , 

0),(),(),( 00 >−≡∆ qqmmleft µτµτµµτ . 

 
Due to eqs. (25), (30), and (32) and, taking into account that )(tmµ  monotonically 

decreases:  
 

0),(),( >∆−∆ µµτµµτ mleftmright ,     (33) 

 
which means that heterogeneity increases the tail of longevity, defined by relation (6): 
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so that: 

 
),,(),,( 00 qqTLqqTL m µµ > .      (34) 

 
This is not, in fact, surprising: As the weakest populations are dying out first 

(Vaupel et al, 1979), the ‘homogeneous’ mortality rate µ  is ‘bent down’ and the 

survival probability is higher. 
Inequality (33) does not guarantee a similar ordering of relative tails of longevity, 

as the following inequality should hold for this property:  
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which can be seen taking into account definitions of ),( µµτ mleft∆  and ),( µµτ mright∆ . 

Inequality (35) is equivalent to: 
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Although inequality (33) holds, the quantiles are ordered as: ),(),,( 0qqN µτωµτ > , 

which can change the sign of inequality for relative tails of longevity. Consider a simple 
illustrative example, which shows that relations (34) and 0);()( >< tttm µµ  do not 

guarantee an increase in the relative tail of longevity.  
 

Example 2.  Let 1)( µµ =t ; 2)( µµ =tm  and 12 µµ < . It does not matter that this 

situation does not model the frailty setting. It is important that 0),()( >< tttm µµ  and 

that the tail of longevity is larger for the Cdf defined by 2µ  than for the Cdf defined by 

1µ . For this case: 
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1
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ωµτ
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q N == ,     (37) 
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q N ==       (38) 

 
and  
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12
212

11
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µµ
µµτ yright , 
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12
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11
),(

µµ
µµτ yleft . 

 
Finally: 



Demographic Research: Volume 14, Article 7 

http://www.demographic-research.org  125

),(

),(11

),,(

),(
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12
1
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12

qq
left

N

right

µτ
µµτ

µ
µµωµτ

µµτ ∆
=








−=

∆
. 

 
We have obtained an equality and not an inequality as in eq. (36).  
 
 

Theorem 1. Under the assumptions defining the frailty model (31), the relative tail of 
longevity, defined for the Cdf with mortality rate )(tmµ , is larger than the baseline 

relative tail of longevity, defined for a constant µ . 

 
Proof. It follows from eq. (32):  

 

1

2

0),(

),,(

y

y

q

qN =
µτ
ωµτ

.       (40) 

 
The corresponding quantiles for a given y  can be obtained from line ty µ= , and 

the relative tail of longevity does not depend on µ  in this case. Consider now 

),(/),,( 0qq mNm µτωµτ . The mixture mortality rate )(tmµ  in the model defined by eq. 

(31) decreases monotonically to the mortality rate of the strongest population µa , and 

the initial level is defined as µµ =)0(m . Accumulated mortality )(tM m  in this case is a 

convex function, as .0;0)()( ≥<′=′′ tttM mm µ  Define rate )( 1yµ  as 

 

),(
)(

1

1
1

yt

y
y

mµ
µ =        (41) 

 
and consider the hypothetical Cdf with this rate µµ << )( 1ya . In accordance with eq. 

(40), the corresponding relative tail of longevity is equal to 1)/( 12 −yy  and does not 

depend on the value of µ . As )(tM m  is convex: 

 
),),((),,( 1 qyq NNm ωµτωµτ > ,      (42) 

 
which completes the proof.♦ 

Similarly, an increase in heterogeneity (e.g., in variance) increases the relative tail 
of longevity.  

Consider now the time dependent baseline rate in eq. (31): 
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)(),( tZZt µµ = ,       (43) 

 
For the proper ordering of relative tails we impose natural conditions on 

∫=
t

duutM
0

)()( µ  and ∫=
t

mm duutM
0

)()( µ  as functions of t . Inequality (35), written in 

a standard form: 
 

)),((

),),((

)),((

),),((

00 qt

qt

qt

qt

m

NmN

µτ
ωµτ

µτ
ωµτ <      (44) 

 
is rearranged as:  

 

),),((

),),((

)),((

)),((

0

0

qt

qt

qt

qt

N

Nmm

ωµτ
ωµτ

µτ
µτ <  .      (45) 

 
Eq. (45) means that the relative horizontal distance (or relative −t distance) 

between the curves )(tM m  and )(tM  is larger for larger values of 

)()( tMtMy m == (for fixed 1y , 2y  and 12 yy > ).  

Define by ))()(( 11 yMyM m
−−  the corresponding inverse function: yyMM =− ))(( 1 .  

 
 

Proposition 3. If the relative −t distance between the curves )(tM m  and )(tM : 

 

)(

)(
)),(),((

1

1

yM

yM
yttM m

m −

−

=µµ  ,      (46) 

 
increases in 0>y , then inequality (45) and the relative tails of longevity ordering of 

eq. (35) hold.  
 
Remark. The relative −t distance is equal to 0;1)),(),(( ≥− yyttM mµµ . For 

simplicity of notation we call )),(),(( yttM mµµ  the relative −t distance (without 

subtracting 1). 
The next theorem shows that the frailty setting of eq. (43) for the specific case 

when )(tµ  is a power function, results in an increased relative tail of longevity. As in 
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Theorem 1, we will not use the specific form of the mixing distribution. But first, we 
need to formulate two important supplementary results: 

 
Proposition 4. Let ])|( tZE  denote the conditional expectation of Z  (on condition that 

an object did not die in 1)()0|();,0[ =≡ ZEZEt ). Applying the operation of 

conditional expectation to both sides of eq. (43): 
 

)|()()( tZEttm µµ = .       (47) 

 
Then, (Finkelstein and Esaulova, 2001), )|( tZE  decreases with age t . (See Yashin 

and Manton, 1997 for a more general case.) 
 

Proposition 5.  The relative −y distance )(/)( tMtM m , defined for the setting of 

Proposition 4, increases. 
 
Proof : 
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∫
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t

tt

m
duuZEu

duutZEduuZEut

tM

tM

µ

µµµ
,  (48) 

 
where the fact that )|( tZE  decreases is used.  

 
Theorem 2. If heterogeneity is described by the multiplicative frailty model of eq. (43), 

with 0,)1()( >+= ααµ αtt  (Weybull Cdf) and ∈Z  ∞≤<≤ baba 0];,[ , 1][ =ZE , 

then the relative −t distance )),(),(( yttM mµµ increases in y . 

 

Proof. Consider a baseline curve 1)( += αttM , which defines the family of curves 

})({ ctM = 1);( ≤≤ catcM . The relative −y distance between )(tM  and )(tcM  is 

constant and equal to c . The corresponding inverse functions are defined by: 
 

1

1
1 )( +− = αyyM      and     1

1

1

1
1 )( ++

−− = αα ycyM c , 
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respectively, where the family of inverse curves is denoted by )}({ 1 yM c
− . Due to this 

specific form, the relative −t distance, defined for this case as 

1,);(/)( 21
11

21
≤≤−− ccayMyM cc , for each pair of curves from )}({ 1 yM c

−  is constant in 

y . Therefore, the relative −t distance between )(tM  and )(tcM  is equal to 1

1

+
−

αc  

and increases as c  is decreased. From Proposition 5, )(/)( tMtM m  decreases in t . As 

t  increases, )(tM m  crosses the curves with smaller c . A similar effect takes place with 

inverse functions: As y  increases, function )(1 yM m
−  ‘climbs’ on a larger 1

1

+
−

αc  and 

)),(),(( yttM mµµ increases.♦ 

 
Proposition 5 states that the relative −y distance is an increasing function. The similar 

procedure for the t -distance results in the following condition: 
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m

mm

m

µµ

    (49) 

 
Condition (49), as follows from Proposition 3, guarantees the relative tails of 

longevity ordering of eq. (35). It can be verified for various specific cases such as the 
power law for the mortality rate and the gamma Cdf for the mixing distribution. As 
another illustration, )),(),(( yttM mµµ  increases for the exponential baseline mortality 

rate and the gamma frailty model (Vaupel, 2003; Finkelstein and Esaulova, 2001): 
 
 

Example 3. For Z   exponentially distributed with parameter 1=ϑ  and 
 

)exp(),( tZkZt =µ , 

 
where 0>k  is a constant (Finkelstein and Esaulova, 2001):  

 

1)exp(

1
1

1)exp(

)exp(
)(
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+−
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ktk
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ktk
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tmµ  

 
and )),(),(( yttM mµµ increases. For 1=k  the observed rate )(tmµ  is equal to 1. 
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6. Mean remaining lifetime function  

Another tail characteristic can be considered as a reasonable alternative to the tail of 
longevity: life expectancy at age t . In accordance with reliability terminology, this 
function is also called the remaining lifetime (MRL) function. Demote it by )(tm . It is 

well known that:  
 

)(

)(

)(
tF

duuF

tm t
∫
∞

≡ ∫ ∫
∞ +














−=

0

)(exp dxduu
tx

t

µ .    (50) 

 
The function )(tm  is a conditional tail measure (on condition that an object did not 

fail in ),0[ t ). The MRL function uniquely defines the corresponding Cdf )(tF  

(Finkelstein, 2002).  
Differentiating the right hand side in eq (50):  
 

1)()(
)(
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)( −=
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=′
∫
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tmt
tF

tFduuFt

tm t µ
µ

 

 
or: 

 

)(

1)(
)(

tm

tm
t

+′
=µ  .        (51) 

 
Eq. (51) is helpful for comparing shapes of )(tµ  and )(/1 tm  (Mi, 1995; Gupta 

and Akman, 1995; Finkelstein, 2002).  
Let )(tF , )(tG  be two lifetime distributions with mortality rates )(tfµ , )(tgµ , 

and the MRL functions )(),( tmtm gf , respectively. Define the MRL distance )(tDmrl  as 

 
),0[|;)()(|)( ∞∈∀−= ttmtmtD gfmrl .     (52) 

 
Comparing relative values is usually more appropriate than comparing absolute 

values Define the relative MRL function )(tmr , called the relative tail, as 
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)0(

)(
)(

m

tm
tmr = .       (53) 

 
For aging distributions (with decreasing )(tm ) the function )(tmr  represents the 

proportion of the remaining lifetime at age t .  We say that lifetime X  (with the Cdf 
)(tF ) is smaller than lifetime Y (with the Cdf )(tG ) in the relative MRL ordering and 

write YX rmrl≤ , if 

 
),0[);()( ∞∈∀≤ ttmtm rgrf .      (54) 

 
We now compare the relative tails for redundant structures (see Shaked and 

Shantikhumar, 1993). 
 
 

7. Comparing relative tails for redundant objects  

Consider the following quotient: 
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)(
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tm
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tR
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rg

rf ×=≡ .     (55) 

 
1)0( =R , and the shape of )(tR  for 0>t  depends on the shapes of )(tmf  and )(tmg .  

 
Example 4.  Unloaded redundancy.  We compare the relative tails for two objects 
with the constant mortality rates of components and different levels of redundancy: 

nm < . Mortality rates )(tmf  and )(tmg  for this case are defined by eq. (17): 

 

∑
−

−

−
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!
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)!1(
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t
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t

µ
µ

, 

 
for ni =  and m , respectively. 

As the rate of the Erlangian distribution increases monotonically to approach µ  

from below as ∞→t , the functions )(tmf  and )(tmg  decrease and 

0);()( >> ttmtm gf . Taking into account that µ/)0( nmf =  and µ/)0( mmg = : 
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because µ/1)( →tmf  and µ/1)( →tm g   as ∞→t . Conditional probability and eq. 

(50) imply: 
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)(1 tR  on the right in eq. (60) increases in t , )(2 tR  decreases and  

1)0(;/)0( 21 == RmnR , nmmn ttRttR −− →→ )(;)( 21 , as ∞→t . The derivative )(2 tR′  is 

negative when 
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Changing the index of summation in the second sum: nmij −+= , on the left in 

eq. (61) turns into: 
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which is positive, as mn >  and 1−≤ ni . Function )(1 tR  is analyzed similarly.  The 

initial behavior of )(tR  is defined by 0)()0(1 >−=′ mnR µ , 0)0(2 =′R . This function 

increases from level 1)0( =R , then decreases, crossing line 1=y  at some mt , and  

approaches nm /  as ∞→t  from above. 
Therefore, the relative MRL ordering (54) holds for mtt ≥  so that the increase in 

redundancy leads to a  decrease in relative tails.  
When 1=m : 
 

nn

tm
tR f 1)(
)( →=

µ
 

 
and this function decreases for all 0≥t .  
 

 
Example 5. Loaded redundancy. In this case:  

 
nttF ))exp(1()( µ−−=   mttG ))exp(1()( µ−−= ; nm < . 

 
The shape of )(tR  is similar to the one for unloaded redundancy and  

 

1)1/(1/1

1)1/(1/1
)(

+⋅⋅⋅+−+
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nn

mm
tR  as ∞→t . 

 
For 1=m , the function )(tR  decreases in ),0[ ∞ . 

 
 

8. Relative tails in the heterogeneous case 

Let )(tF  denote the Cdf of a life span in some deterministic baseline environment and 

)(tG - the Cdf in the heterogeneous case. Consider the frailty model of eq. (43) 

( baZE <<= 1,1)( ) and denote:  
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);()( tt mf µµ ≡ )()( ttg µµ ≡ . 

 
Let 0),|( ≥ttzπ  be the conditional mixing probability density function (pdf): 

)()0|( zz ππ ≡ , where )(zπ  is the pdf of a random variable Z . This model describes 

the influence of heterogeneity on the observed rate )(tmµ . Using the pdf )|( tzπ , eq. 

(47) reads: 
 

∫ ==
b

a

m tZEtdztzztt )|()()|()()( µπµµ .     (62) 

 
Denote by ),( ztm  the MRL function defined by the mortality rate ),( ztµ  (eq. 

(43)).  The ‘observed MRL function’ )(tmm  is related to ),( ztm  through: 

 

∫=
b

a

m dztzztmtm )|(),()( π .        (63) 

 
 

Example 6. Let )(tF  be an exponential Cdf with parameter µ . The observed mortality 

rate )(tmµ  in this case decreases, monotonically converging to the failure rate of the 

strongest population:  
 

µµ atmt =∞→ )(lim . 

 
Therefore:  
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== ∫ Z
Edzz

z
m

b

a

m

11
)(

1
)0(

µ
π

µ
, 

 
as ∞→t , we obtain: 
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The relative tail in the heterogeneous case is equal to 1  at 0=t  and increases 

monotonically to value ))/1(/(1 ZaE , whereas the relative tail for the baseline Cdf is 

constant and equal to 1.   
We generalize this result to arbitrary increasing mortality rates: 
 

 
Theorem 3. In a heterogeneous case modeled by the frailty model of eq. (43), where 

1)( =ZE , the function: 
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increases with t . 

This means that heterogeneity increases the relative tail.  
 

Proof. Using definitions (50), (55), and eq. (62): 
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   (64) 

 
It is sufficient to show that  
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∫ ∫
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increases in t . As )|( tZE  decreases in age (Proposition 4), 0),( >′ xtBt  and ),( xtB  

increases with t . ♦  
 
 

9. Concluding remarks  

Our study shows that structural reliability concepts suggested in Vaupel (1998) can be 
really helpful for analyzing trajectories of mortality at the post-reproductive period. We 
prove analytically that the properties of the relative tail of longevity, described in 
Vaupel (2003) using simulation results, are valid in a much greater generality. Namely: 
Structural redundancy and the possibility of repair decrease the relative tail of 
longevity, whereas greater heterogeneity increases it. These properties are important for 
analyzing the nature of mortality curves at advanced ages. 

As mentioned in the Introduction, other measures driven by the difference 
XD NN −= ω  can be considered also. For instance, another possible natural relative 

measure is 1))(/][( 0 −qE N τω . It is clear, however, that this is just a specific case of our 

measure (7), as the value of q  can be chosen as a solution of the equation 

),(][ qE NN ωτω = . 

A stochastic analysis of the influence of redundancy, repair capacity, and 
heterogeneity on the random variable 1)/( −XNω  can be hopefully also performed 

within the framework of stochastic ordering (Shaked and Shantikhumar, 1993), but this 
is a topic for a future study. 
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