
 
 

 

DEMOGRAPHIC RESEARCH  

 

VOLUME 28, ARTICLE 9, PAGES 259-270  

PUBLISHED 12 FEBRUARY 2013 
http://www.demographic-research.org/Volumes/Vol28/9/ 

DOI:  10.4054/DemRes.2013.28.9 
 

Formal Relationship 20  

 
Gamma-Gompertz life expectancy at birth 

 
Trifon I. Missov 

 

© 2013 Trifon I. Missov. 
 

This open-access work is published under the terms of the Creative Commons 

Attribution NonCommercial License 2.0 Germany, which permits use, 
reproduction & distribution in  any medium for non-commercial purposes,  

provided the original author(s) and source are given credit.  

See http:// creativecommons.org/licenses/by-nc/2.0/de/ 

 

 



Table of Contents
1 Relationship 262

2 Proof of the Relationship 263

3 History and Related Results 263

4 Applications 267

5 Conclusion 267

6 Acknowledgements 269

References 270



Demographic Research: Volume 28, Article 9

Formal Relationship

Gamma-Gompertz life expectancy at birth

Trifon I. Missov 1

Abstract

BACKGROUND
The gamma-Gompertz multiplicative frailty model is the most common parametric model
applied to human mortality data at adult and old ages. The resulting life expectancy has
been calculated so far only numerically.

OBJECTIVE
Properties of the gamma-Gompertz distribution have not been thoroughly studied. The fo-
cus of the paper is to shed light onto its first moment or, demographically speaking, char-
acterize life expectancy resulting from a gamma-Gompertz force of mortality. The paper
provides an exact formula for gamma-Gompertz life expectancy at birth and a simpler
high-accuracy approximation that can be used in practice for computational convenience.
In addition, the article compares actual (life-table) to model-based (gamma-Gompertz)
life expectancy to assess on aggregate how many years of life expectancy are not captured
(or overestimated) by the gamma-Gompertz mortality mechanism.

COMMENTS
A closed-form expression for gamma-Gomeprtz life expectancy at birth contains a special
(the hypergeometric) function. It aids assessing the impact of gamma-Gompertz parame-
ters on life expectancy values. The paper shows that a high-accuracy approximation can
be constructed by assuming an integer value for the shape parameter of the gamma dis-
tribution. A historical comparison between model-based and actual life expectancy for
Swedish females reveals a gap that is decreasing to around 2 years from 1950 onwards.
Looking at remaining life expectancies at ages 30 and 50, we see this gap almost disap-
pearing.

1 Max Planck Institute for Demographic Research, Konrad-Zuse-Str. 1, 18057 Rostock, Germany
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1. Relationship

Suppose in a population individuals die according to a force of mortality

µ(x |Z) = Zµ(x),(1)

where Z is a random variable, called frailty (Vaupel, Manton, and Stallard 1979), which
accounts for unobserved heterogeneity across individuals, and µ(x) is the baseline force
of mortality. Model (1) is called a multiplicative (frailty) model.

Assume µ(x) follows the Gompertz law

µ(x) = aebx , a, b > 0

and frailty is gamma-distributed, i.e. Z ∼ Γ(k, λ) has a probability density function

π(z) =
λk

Γ(k)
zk−1 e−λx , k, λ > 0 .

Then life expectancy at birth e0 can be expressed as

(2) e0 =
1

bk
2F1

(
k, 1; k + 1; 1− a

bλ

)
,

where 2F1(α, β; γ; z) is the Gaussian hypergeometric function

(3) 2F1(α, β; γ; z) =

+∞∑
j=0

α(α+ 1) . . . (α− j + 1)β(β + 1) . . . (β − j + 1)

γ(γ + 1) . . . (γ − j + 1) j!
zj

defined for γ > β > 0 (see, for example, Abramowitz and Stegun 1965, 15.1.1, p.556).
If the shape parameter k of the gamma distribution is an integer, then

(4) e0 =
1

b

(1− a

bλ

)−k
ln
bλ

a
−
k−1∑
j=1

1

j

(
1− a

bλ

)j−k
and, moreover, (4) serves as a high-accuracy approximation of (2) even when k is not
integer. As a result, gamma-Gompertz life expectancy can be calculated by using (4).
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2. Proof of the Relationship

Life expectancy is the integrated survivorship of the population across all ages

e0 =

∞∫
0

S(x)dx

where

S(x) =

∞∫
0

exp

{
−
∫ x

0

µ(t | z)dt
}
π(z)dz

In a gamma-Gompertz multiplicative model S(x) =
(
1 + a

bλ

(
ebx − 1

))−k
and thus

(5) e0 =

∞∫
0

(
1 +

a

bλ

(
ebx − 1

))−k
dx.

A t = 1− e−bx substitution will result in

(6) e0 =
1

b

1∫
0

(1− t)k−1
(

1−
(

1− a

bλ

)
t
)−k

dt

Taking into account

2F1(α, β; γ; z) =
Γ(γ)

Γ(β)Γ(γ − β)

1∫
0

tβ−1 (1− t)γ−β−1(1− tz)−α dt

(see Abramowitz and Stegun 1965, 15.3.1, p.558), (6) reduces to (2). Relationship (4) is
obtained by integrating k times the right-hand side of (5) by parts.

Q.E.D.

3. History and Related Results

The gamma-Gompertz multiplicative frailty model (1) has been introduced in demogra-
phy by Vaupel, Manton, and Stallard (1979). While capturing the observed bending of
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human mortality rates at older ages (see Beard 1959), it also takes into account unob-
served heterogeneity. Relationship (2) describes, on the one hand, the first moment of
the mixture gamma-Gompertz distribution and, from a demographic point of view, the
expected lifetime duration under the gamma-Gompertz assumption.

The fact that gamma-Gompertz life expectancy is proportional to a hypergeometric
function with a z-argument close to 1 (for human populations a ∝ 10−6, b ≈ 0.14,
and k = λ > 1) sheds light on the dynamics of e0 with respect to model parameters.
As γ − α − β = 0 for the hypergeometric function 2F1 in (2), life expectancy is an
increasing function of z for z → 1− and lim

z→1
2F1(α, β; γ; z) = +∞ (see Abramowitz

and Stegun 1965, p.556, 15.1.1(c)). This implies that e0 increases when a declines
keeping all other parameters fixed, which is intuitively justified as a denotes the starting
level of mortality. A little counterintutive is the finding that life expectancy increases as
the rate of aging b = d lnµ(x)/dx increases (see Figure 1). The gamma parameters k and
λ, often assumed to be equal to one another, so that µ(x) denotes the force of mortality
of the “standard” individual (with frailty Z = 1), have one and the same impact on life
expectancy – the higher k, λ, the higher e0.

Figure 1: Life expectancy as a function of b.

Notes: Life expectancy at birth as a function of b for fixed a = 5× 10−7, k = λ = 7.

Note that when baseline mortality µ(x) in (1) is Gompertz-Makeham, i.e.

µ(x) = aebx + c ,

and, consequently,
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µ(x |Z) = Z(aebx + c) ,

the corresponding life-expectancy integral

e0 =

∞∫
0

(
1− a

bλ
+
c

λ
x+

a

bλ
ebx
)−k

dx

cannot be solved analytically, even for integer values of k.
As already pointed out, for human populations we have 1− a/bλ ≈ 1, which leads to

further simplification of (4):

(7) e0 ≈
1

b

ln
bλ

a
−
k−1∑
j=1

1

j



Note that when k = λ (often assumed, see Vaupel, Manton, and Stallard (1979)), the
right-hand side of (7) contains the difference between the partial sum of the harmonic
series and the natural logarithm:

(8) e0 ≈
1

b

ln
b

a
+

1

k
−

 k∑
j=1

1

j
− ln k

 .
The limit of the latter when k → ∞ is the Euler-Mascheroni constant γ∗ ≈ 0.577.
Note that k → ∞ corresponds to the case when the Gompertz model for a gamma-
heterogeneous population tends to the Gompertz model for a homogeneous population.
As a result, life expectancy at birth for a homogeneous population experiencing a Gom-
pertz force of mortality could be approximated by

(9) e0 ≈
1

b

[
ln
b

a
− γ∗

]
.

An expression for remaining life expectancy ex at age x in terms of a hypergeometric
function can also be derived. Consider the indefinite integral in the right-hand side of (5):
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I :=

∫ (
1 +

a

bλ

(
ebx − 1

))−k
dx =

∫ (
bλ

a
e−bx

)k (
1−

(
1− bλ

a

)
e−bx

)−k
dx .

A y = e−bx substitution will result in

I = −1

b

(
bλ

a

)k ∫
yk−1

(
1−

(
1− bλ

a

)
y

)−k
dy .

Taking into account (see Lebedev 1965, p.258)

(
1−

(
1− bλ

a

)
y

)−k
= 2F1

(
k,C;C;

(
1− bλ

a

)
y

)
∀C ≡ const

and 2F1(α, β; γ; z) = 2F1(β, α; γ; z) , we have

(
1−

(
1− bλ

a

)
y

)−k
= 2F1

(
k, k; k;

(
1− bλ

a

)
y

)
.

Using in addition (see MathWorld 2012, http://functions.wolfram.com/07.23.21.0006.01)

∫
zγ−1 2F1(α, β; γ; z)dz =

zγ

γ
2F1(α, β; γ + 1; z)

and switching back to the original variable x, we reduce (6) to

I = − 1

bk

(
bλ

a
e−bx

)k
2F1

(
k, k; k + 1;

(
1− bλ

a

)
e−bx

)
.

Taking into account

lim
x→∞

{
− 1

bk

(
bλ

a
e−bx

)k
2F1

(
k, k; k + 1;

(
1− bλ

a

)
e−bx

)}
= 0 ,

we finally get

(10) ex =
1

bk

(
bλ

a
e−bx

)k
2F1

(
k, k; k + 1;

(
1− bλ

a

)
e−bx

)
.
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4. Applications

Relationship (2) and its approximation (4) can be used to measure the difference between
actual (calculated by lifetable methods) and model-predicted (based on the estimation
of gamma-Gompertz parameters) life expectancy at birth. This difference quantifies the
cumulative excess infant and adult mortality. Figure 2 illustrates this gap for Swedish
females from 1891 to 2010. As infant mortality improves over time, the difference de-
creases from 1950 onwards to an almost constant value of about 2 years.

If we use expression (10) or its approximation (for integer k) analogous to (4), we can
see that the gap between actual and fitted gamma-Gompertz remaining life expectancy
decreases over age x (see Figure 3). This illustrates on aggregate the phenomenon that
most deaths which are not captured by the gamma-Gompertz model, occur from infant to
young adult ages.

Empirically, it does not make a significant difference whether life expectancy is calcu-
lated in terms of the hypergeometric function (2) or by approximation (4). I use the data
for Swedish females (HMD 2012) to estimate parameters a, b, and k (assuming k = λ) by
miximizing a Poisson likelihood of the respective death counts. I start at age 70, assuming
the baseline force of mortality onwards to be purely Gompertz, and calculate the initial
mortality level by multiplying the estimated â by exp{(initial age− 70)b̂}, where b̂ is the
maximum-likelihood estimate of b. Table 1 shows observed and fitted gamma-Gompertz
life expectancies at birth and at age 30 for Swedish females in several specified years, il-
lustrating how close these values are, regardless of the proximity of k̂ to its closest integer
[k̂]. This implies that one can use (4) instead of (2) without losing much precision.

Approximations (7) and (8) are not very accurate as small deviations a/bk (k = λ)
from 1 can lead to substantial deviations from (4) and, thus, from (2). They can be used,
though, to assess the impact of model parameters on the values of life expectancy at birth.

5. Conclusion

Life expectancy in a gamma-Gompertz multiplicative model can be expressed analytically
in terms of a special function (the hypergeometric series), which provides insight on life
expectancy dynamics with respect to model parameters. In practice, one can use high-
accuracy approximation (4) instead of (2) to calculate model-based e0 for fitted parameter
values. The difference between the latter and actual (life-table) life expectancy at birth
or any age x could tell how many years of actual life expectancy are potentially due to
causes not captured by the gamma-Gompertz frailty model.
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Figure 2: Actual vs gamma-Gompertz life expectancy at birth.

Notes: Actual vs gamma-Gompertz life expectancy (Data source: HMD (2012), Sweden, females; own estimation).

Figure 3: Actual vs gamma-Gompertz life expectancy.

Notes: Actual vs gamma-Gompertz remaining life expectancy at ages 0, 30, and 50 (Data source: HMD (2012),
Sweden, females; own estimation).
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Table 1: Maximum-likelihood estimates for model parameters and associ-
ated life expectancies.

Year â b̂ k̂ [k̂] e0(â, b̂, k̂) e0(â, b̂, [k̂]) e30(â, b̂, k̂) e30(â, b̂, [k̂])

1891 0.4488 0.10 10.26 10 73.12764 73.12776 42.20659 42.20671
1900 0.0418 0.11 8.64 9 75.24996 75.25373 44.27699 44.28077
1910 0.0370 0.11 8.97 9 76.08955 76.08812 45.11981 45.11837
1920 0.0374 0.11 9.17 9 75.93948 75.94496 44.97437 44.97984
1930 0.0379 0.10 9.69 10 75.34311 75.34210 44.39173 44.39073
1940 0.0388 0.11 8.75 9 75.80182 75.81748 44.82903 44.84469
1950 0.0340 0.12 8.23 8 77.28965 77.26412 46.30584 46.28031
1960 0.0287 0.13 7.91 8 78.80005 78.85181 47.81052 47.86228
1970 0.0218 0.13 7.80 8 81.02338 80.98194 50.00065 49.99920
1980 0.0180 0.13 7.66 8 82.37141 82.40531 51.39669 51.40060
1990 0.0147 0.13 7.62 8 83.70550 83.70612 52.71329 52.70737
2000 0.0119 0.14 7.40 7 85.10804 85.12865 54.10920 54.11260
2010 0.0091 0.14 7.12 7 86.53489 86.53414 55.49925 55.49785

Notes: Maximum-likelihood estimates â (at age 70), b̂, k̂ of the gamma-Gompertz parameters and respective life
expectancies: e0(â, b̂, k̂) calculated by (2), e0(â, b̂, [k̂]) calculated by (4), e30(â, b̂, k̂) calculated by (10),
and e30(â, b̂, [k̂]) calculated by a formula analogous to (4) (Data source: HMD (2012), Sweden, females;
own estimation).
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