
 
 
 
 

DEMOGRAPHIC RESEARCH  
 
VOLUME 29, ARTICLE 22, PAGES 579-616  
PUBLISHED 26 SEPTEMBER 2013 
http://www.demographic-research.org/Volumes/Vol29/22/ 
DOI:  10.4054/DemRes.2013.29.22 
 
Research Article  

 
Validation of spatially allocated small area 
estimates for 1880 Census demography 
 

 
Matt Ruther 

Galen Maclaurin 
Stefan Leyk 
Barbara Buttenfield 
Nicholas Nagle 
 
© 2013 Ruther, Maclaurin, Leyk, Buttenfield & Nagle. 
 
This open-access work is published under the terms of the Creative Commons 
Attribution NonCommercial License 2.0 Germany, which permits use, 
reproduction & distribution in  any medium for non-commercial purposes,  
provided the original author(s) and source are given credit.  
See http:// creativecommons.org/licenses/by-nc/2.0/de/ 
 



Table of Contents 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 Introduction 580 
   
2 Background 582 
2.1 Small area estimation using Census microdata 582 
2.2 Maximum entropy microdata allocation 583 
2.3 The context of the 1880 Census 585 
   
3 Methods 587 
3.1 Finding meaningful constraining variables 587 
3.2 Establishing a validation procedure 588 
3.2.1 Error in margin 589 
3.2.2 Residuals and Standardized Allocation Error (SAE) 589 
3.3 Modified z-statistic 590 
   
4 Results 591 
4.1 The selection of constraining variables 591 
4.2 Post-allocation results: Comparison of allocated distributions to 

actual distributions 
595 

4.3 Post-allocation results: Comparison of the joint distribution of a 
constraining variable and a non-constraining variable 

599 

4.4 Post-allocation results: Comparison of the joint distribution of two 
non-constraining variables 

600 

4.5 Post-allocation results: Geographic heterogeneity in benchmark 
variable allocation errors 

602 

   
5 Discussion and concluding remarks 607 
5.1 Limitations and future steps 611 
   
6 Acknowledgement 611 
   
 References 612 
   
 Appendix 615 



Demographic Research: Volume 29, Article 22 

Research Article 

http://www.demographic-research.org  579 

Validation of spatially allocated small area estimates for 1880 

Census demography 

Matt Ruther
1
 

Galen Maclaurin 
2
 

Stefan Leyk
2
 

Barbara Buttenfield
2
 

Nicholas Nagle
3
 

Abstract 

OBJECTIVE 

This paper details the validation of a methodology which spatially allocates Census 

microdata to census tracts, based on known, aggregate tract population distributions. To 

protect confidentiality, public-use microdata contain no spatial identifiers other than the 

code indicating the Public Use Microdata Area (PUMA) in which the individual or 

household is located. Confirmatory information including the location of microdata 

households can only be obtained in a Census Research Data Center (CRDC). Due to 

restrictions in place at CRDCs, a systematic procedure for validating the spatial 

allocation methodology needs to be implemented prior to accessing CRDC data.  
 

METHODS 

This study demonstrates and evaluates such an approach, using historical census data 

for which a 100% count of the full population is available at a fine spatial resolution. 

The approach described allows for testing of the behavior of a maximum entropy 

imputation and spatial allocation model under different specifications. The imputation 

and allocation is performed using a microdata sample of records drawn from the full 

1880 Census enumeration and synthetic summary files created from the same source. 

The results of the allocation are then validated against the actual values from the 100% 

count of 1880.  
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RESULTS 

The results indicate that the validation procedure provides useful statistics, allowing an 

in-depth evaluation of the household allocation and identifying optimal configurations 

for model parameterization. This provides important insights as to how to design a 

validation procedure at a CRDC for spatial allocations using contemporary census data. 

 

 

 

1. Introduction 

Census public-use microdata possess an attribute richness which should make them 

tremendously useful to researchers interested in demographic small area estimation; 

however, they are underutilized, largely due to their coarse spatial resolution. The 

smallest identifiable geographic areas in Census microdata contain a minimum of 

100,000 individuals, a restriction which may significantly compromise the geographic 

nature of a demographic study. Research which focuses on smaller geographic areas 

generally relies on a limited number of aggregate population characteristics provided by 

the Census Bureau in summary tables and cross-tabulations at the census tract or block 

group level. In order to better exploit the attribute richness of Census microdata at finer 

spatial scales, spatial allocation methods, which allocate microdata households to small 

areas and generate summary statistics for these smaller geographic units using the 

attributes of the allocated microdata households, may be used (Johnston and Pattie 

1993; Ballas et al. 2005; Assunção et al. 2005). Small area estimates, which contain 

extensive detail on the underlying population, are in great demand and are important to 

research on demographic and social processes such as migration, impoverishment, and 

human-environmental interactions. 

A persistent shortcoming in the use of such spatial allocation methods for deriving 

demographic small area estimates is the lack of confirmatory validation.  There are 

often few, if any, sources against which to compare the estimated fine-scale population 

counts and the associated distributions of population characteristics. The main reason 

for the absence of fine-resolution comparison data is the confidentiality protection in 

census surveys, which precludes the release of confirmatory data. Although 

demographic estimates based on U.S. Census data and geographies may be validated at 

a Census Research Data Center (CRDC), the expense of accessing a CRDC and the 

necessary confidentiality restrictions in place at the CRDC mandate that the validation 

process, which is not trivial, be fully realized prior to its implementation at the CRDC.  

This article describes one procedure for validating demographic small area 

estimates derived from spatially allocated household microdata. In general terms, 

spatial allocation refers to the process of assigning data from a set of source zones into a 
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set of (different) target zones. The estimation methodology used here was originally 

developed to spatially allocate Public Use Microdata Sample (PUMS) households, 

which are spatially contained within Public Use Microdata Areas (PUMAs) (source), to 

census tracts (target), by imputing tract-specific sampling weights for each microdata 

household.  The imputation is based on the principle of maximum entropy: Conditional 

on prior information known about the data, the most uniform distribution (i.e., all 

values have equal probability of occurrence) best represents the data-generating process 

(Phillips, Anderson, and Schapire 2006). Maximum entropy models are constrained by 

the information that is known about the process while making no assumptions about 

what is unknown. In this case, the model maximizes uniformity of the distribution of 

tract-specific sampling weights, subject to the constraint that the weights sum to the 

known, aggregate tract populations (summary statistics) (Nagle et al. 2013; Leyk, 

Buttenfield, and Nagle 2013).
4
 

The fine-scale data necessary for the validation of this methodology for 

contemporary Censuses are available only at a CRDC. In contrast, historical Census 

data from 1880 are publicly available, and these data contain the full demographic 

detail for a 100% count of the population.
5
 This historical data is used to (1) generate a 

nested data structure comparable to contemporary census data (i.e., a 5% microdata 

sample and small area population summary statistics), (2) run the imputation model and 

allocate households based on the imputed weights, and (3) examine and validate model 

performance. 

In the context of methodological validation, the 1880 Census presents a unique 

opportunity, as the publicly available data include the full count of the population at a 

fine spatial resolution. The spatial structure of the 1880 Census data is comparable, 

although not identical, to that of contemporary censuses, and the collected population 

                                                           
4 Although originally developed and tested for the U.S. context using PUMAs and census tracts, the allocation 

method described in this paper could conceivably be carried out using data from other nations. The 

international version of the Integrated Public Use Microdata Series (IPUMS), maintained by the Minnesota 
Population Center (MPC), includes microdata from many countries, and national statistical agencies 

frequently provide aggregate population data for small sub-national geographies. The applicability of the 

method described here to an international context will depend on the unit of microdata geography and the unit 
of aggregate population geography used in a particular country. In the U.K., for example, the Sample of 

Anonymised Records microdata regions are quite similar in size to PUMAs in the U.S., and the Output Areas 

(the smallest geography for which U.K. aggregate population estimates are made) are comparable to U.S. 
census tracts. In other countries (e.g., France and Germany), the smallest geographical unit identified in the 

microdata (German states or French regions) is considerably larger than a PUMA; the spatial allocation may 

not perform adequately in these cases. 
5 In fact, historical records from U.S. Censuses in 1940 and decades prior are publicly available and preserved 

on microfilm by the National Archives. Microdata samples from these historical Censuses are also available 

in the IPUMS (Ruggles et al. 2010). The advantage of the 1880 Census, and the motivation for its use here, is 
that 100% of the records have been transcribed and are digitally and freely available, thus allowing for the 

validation procedure which follows. Full transcription of these other historical Censuses has not yet occurred. 
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characteristics are similar. Thus the performance of spatial microdata allocation 

procedures can be objectively evaluated and interpreted to better understand the quality 

of finer resolution demographic estimates and how they reflect underlying population 

characteristics when the model parameters are changed. In order to mimic the data 

available in contemporary censuses, a random 5% sample of population is drawn from 

the full 1880 Census enumeration (comparable to current PUMS data) and “synthetic” 

summary tables are created from the same source (comparable to SF3 files). The spatial 

allocation procedure will be performed on these historical data using different 

combinations of constraining variables, and the results will be validated against the 

actual values from the 100% population count. 

The primary purpose of this article is to evaluate the performance of a spatial 

allocation model which generates small area estimates, through comparisons of these 

estimates with actual population counts and an investigation of model residuals and 

their geographic variation. The paper will also shed light on the evaluation process 

itself, highlighting important considerations in parameter selection and their influence 

on resulting estimates for different population attributes. These considerations are 

crucial in designing a robust validation process prior to undertaking the validation of 

the allocation results using contemporary census data at a CRDC. Data from the 1880 

Census are utilized here as an easily accessible and appropriate surrogate for 

contemporary census data; as such, the priority in this analysis is neither in historical 

interpretations of these allocation results nor in drawing substantive conclusions 

regarding demographic processes in 1880. This article focuses on confirmatory testing 

that can be directly reproduced using contemporary public-domain Census data, as well 

as confidential data in a CRDC, and provides preliminary validation measures for 

spatial allocation methods. 

 

 

2. Background 

2.1 Small area estimation using Census microdata 

Matching the distribution of spatially allocated survey data to known census population 

distributions has been widely employed in small area estimation in the geographical and 

other social sciences, using a variety of reweighting algorithms or other allocation 

techniques. To date, much of this research has occurred in the United Kingdom 

(Johnston and Pattie 1993; Williamson, Birkin, and Rees 1998; Ballas et al. 2005; 

Smith, Clarke, and Harland 2009) and Australia (Melhuish, Blake, and Day 2002; 

Tanton et al. 2011). Of particular relevance to the current study is recent work that 

focuses on the definition of appropriate goodness-of-fit measures to assess the accuracy 
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of synthetic or reweighted microdata (Williamson, Birkin, and Rees 1998; Voas and 

Williamson 2001). A general shortcoming in validating the performance of such models 

is the lack of a “true” population against which the allocation results can be compared. 

Beckman, Baggerly, and McKay (1996) apply an iterative proportional fitting (IPF) 

technique to 1990 U.S. Census data and demonstrate that estimated tract-level 

household distributions are concordant with tract-level summary statistics released by 

the Census Bureau. However, they validate their estimates against a different sample 

drawn from the same population, not against the 100% population count. Melhuish, 

Blake, and Day (2002) use a reweighting process that allocates Australian household 

survey data which lack locative information to small census districts based on the 

known sociodemographic profiles of these small geographies. Their evaluation of the 

results suggests that the allocated populations correctly match the 100% population 

counts for most districts, but data to evaluate the joint distributions for most population 

characteristics are not publicly available. Hermes and Poulsen (2012) provide a current 

and general overview of the use of microdata reweighting techniques in generating 

small area estimates. 

 

 

2.2 Maximum entropy microdata allocation 

A methodology to allocate reweighted demographic microdata to small enumeration 

areas such as census tracts using decennial U.S. Census data has been recently 

described (Nagle et al. 2012; Leyk, Buttenfield, and Nagle 2013), based on the concepts 

of dasymetric mapping and areal interpolation (Mrozinski and Cromley 1999). In this 

approach, maximum entropy methods impute a set of tract-specific sampling weights 

for each microdata record, with the initial tract-specific weights derived from the survey 

design weight. The imputed weights are constrained to match the known (i.e., publicly 

available) tract-level distributions for a number of population characteristics; the 

weights imputation is thus guided and influenced by this chosen set of constraining 

variables. Sampling weights for each microdata household sum across all tracts to the 

approximate design (or household) weight provided by the Census Bureau. As the 

design weight reflects the expected number of households in the Public Use Microdata 

Area (PUMA) that are similar to a given microdata record, each constructed sampling 

weight can be interpreted as the number of households of this “type” that can be 

expected in the respective census tract. 

The maximum entropy imputation of sampling weights is accomplished through an 

iterative proportional fitting technique and uses nonlinear optimization to improve 

computational efficiency (Malouf 2002). Given a set of N microdata household attribute 

values Xi and a set of probabilities pij that a household randomly selected from the 
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population has attributes similar to those of PUMS household i and is located in census 

tract j, it is possible to impute the k-th tract-level attribute value by the equation 

∑          . At the outset of modeling, the probabilities pij are unknown. The 

imputation is constrained such that the imputed probabilities reproduce tract-level 

populations given in Census summary files: 

 

   ∑ ∑ (     )    (  
   

   
)       (1) 

subject to     ∑                     and     ∑         

 

for all households i, tracts j, and attributes k. The yjk are tract-level summaries of 

attribute k from the summary files, and dij are prior estimates of tract-level (i.e., for each 

tract j) weights for each PUMS record i, which are subject to reweighting (Leyk, 

Buttenfield, and Nagle 2013). Following the maximum entropy imputation, the set of 

imputed weights guides allocation of households to individual tracts or other sub-

PUMA areas. 

Although maximum entropy imputation is but one of many methods through 

which this type of data imputation or reweighting may be performed, it offers certain 

advantages. The tract-specific weights imputed through maximum entropy will not lead 

to negative population estimates, as can be the case with least squares regression 

techniques, and the reweighted tract population distributions for constraining variables 

will exactly reproduce those distributions in the summary tables. The maximum entropy 

procedure used here also retains, for each microdata record, the full set of attributes 

present in the record, allowing for the construction of revised summary tables for every 

available attribute or combinations of attributes.  

Once allocated, the microdata household characteristics can be summarized to (1) 

create revised estimates of tract-level (or finer-scale) demographic summary statistics, 

(2) generate summary statistics of attributes not available in summary files, and (3) 

compute new cross-tabulations. In Leyk, Buttenfield, and Nagle (2013), the revised 

summary statistics were compared to original tract population distributions from the 

Census-produced summary tables (based on a 1-in-6 sample), and allocation ambiguity 

was evaluated for each household as a function of the distribution of imputed sampling 

weights over all census tracts. While correlations between the revised tract-level 

summaries and original tract summary statistics were found to be high and statistically 

significant for constraining and non-constraining variables, a full validation could not 

be conducted without access to the full population details maintained at a CRDC.  

In this paper, the same weights imputation technique will be applied to a sample of 

households from the 100% count of the 1880 Census. These households will be 
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allocated to enumeration districts according to their exact imputed sampling weights. 

From these allocations, revised summary statistics are computed for each enumeration 

district. These revised tables are then compared against the true aggregated population 

attributes from the full (100%) population count. While the maximum entropy 

imputation model detailed above is explored here, any allocation model that uses 

similar demographic data could be validated using the procedure outlined in this paper. 

 

 

2.3 The context of the 1880 Census 

The 1880 Census is considered the first high-quality enumeration of the U.S. population 

and full individual records from this historical census have been digitally transcribed 

and made available online (Goeken et al. 2003; Ruggles et al. 2010). Important for the 

research reported here, the 1880 Census records contain household microdata including 

spatial identifiers for the geographic units – enumeration districts – in which the 

households were located as well as the spatial boundaries of these districts. Although 

neither PUMAs nor census tracts had yet been defined in 1880, State Economic Areas 

(SEAs) and enumeration districts (EDs) represent a similar spatial data structure as can 

be found in contemporary censuses. SEAs, which consist of single counties or groups of 

contiguous counties, were defined for the 1950 Census and retroactively applied to 

prior censuses by the Minnesota Population Center (Bogue 1951; Ruggles et al. 2010). 

SEAs were designed to have a minimum population of 100,000 people, much like 

contemporary PUMAs, although the retrospective definition of SEAs to the 1880 

Census may result in substantially different population sizes. SEAs were divided into 

minor subdivisions known as EDs, similar to contemporary census tracts but slightly 

smaller; these districts corresponded to the area that a door-to-door enumerator could 

cover during the Census period. EDs are fully nested in and completely enclosed by 

SEAs. The similarity between SEAs and PUMAs, and EDs and census tracts, allows the 

1880 Census to serve as a reasonable substitute for more current censuses in performing 

and validating the allocation method. 

Although the questions on the 1880 Census covered a wide array of social and 

demographic characteristics, there are differences in attribute coverage in the 1880 

Census relative to recent censuses. Notably, the 1880 Census carried no questions 

regarding income or housing tenure, and the results from the tendered questions on 

educational attainment and literacy were not digitally transcribed. This lack of direct 

measures of socioeconomic status may require the use of less distinct related data, such 

as occupational class or standing, in the construction of constraining variables. The 

purpose of the constraining variables and the procedure used to select them are 

described in the Methods section below. 
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Because the number of observed attributes found in each individual record is quite 

large, the validation and discussion of the spatial allocation results will focus on 

selected benchmark variables commonly used by, and of particular interest to, 

demographic researchers. These benchmark variables include the gender, age, race, and 

marital status of the householder; the full list of benchmark variables and their 

categorizations are shown in Table 1.  

 

Table 1: Benchmark variables for validation of spatial allocation validation 

Benchmark 

Number of 

categories 

Measurement Record Count 

(PUMS N = 3,408) 

Age of Householder 4 Age 0-17 87 

  Age 18-34 976 

  Age 35-49 1,278 

  Age 50+ 1,067 

Gender of Householder 1 Male 2,747 

Race of Householder 1 Non-White
 

151 

Marital Status of Householder 2 Single 305 

  Married 2,542 

Presence of Children in Household 2 Any Children 2,528 

  5+ Children Present 555 

Nativity of Householder
1 

2 Native Born
 

872 

  Foreign Born 1,918 

Occupational Status of Householder
2 

4 Non-Worker 637 

  Low-Skill 997 

  Medium-Skill 909 

  High-Skill 865 

Group Quarters Status of Household
3 

1 Group Quarters 293 

Urban Status of Household
4 

1 Urban Household 2,788 

Farm Status of Household 1 Farm Household 219 

 

Notes: 
1
 Native born refers to individuals born in the U.S. with parents who were born in the U.S.  Foreign born refers to individuals 

not born in the U.S.  A third grouping, U.S.-born household heads whose parents were foreign born, is not considered here. 
2
 Occupational standing is measured using the occupational earnings score variable, with the observed variable broken into three 

tertiles (Low-Skill, Medium-Skill, and High-Skill).  Non-workers were individuals outside of the labor force. 
3
 Because households were not defined in the 1880 Census, the contemporary distinction between group quarters and households is 

not relevant here. 
4
 The converse of “Urban” is “Rural”, distinct from but correlated with the “Farm” designation. 

 

 

These benchmark variables and the categorizations used in this study are believed to be 

fairly representative of the full range of population characteristics available in this 

census. To clarify, while the benchmark variables include some variables that will be 
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used as constraining variables in the allocation procedure, the function of the remaining 

benchmark variables is to serve as validation instruments. 

 

 

3. Methods 

The 1880 Census data were used to run the weights imputation and spatial allocation 

model for Hamilton County, Ohio. This county was chosen based on its stable 

boundaries over time and the fact that it was coextensive with a single SEA (SEA 336). 

Although the 1880 Census did not define households in the same way as is done in 

contemporary Censuses, variables describing household composition were added 

retrospectively during data transcription (Goeken et al. 2003; Ruggles et al. 2010). 

There were 68,160 households (comprising 313,702 individuals) in Hamilton County in 

the 100% count of the 1880 Census. Household characteristics were identified using the 

records for all individuals listed as person number one (head of household), and all 

references to household or householder refer to the attributes of this individual. 

Individuals living in group quarters, who are not considered household members in 

current Censuses, are considered household members in this study. Hamilton County 

was divided into 135 EDs, which contained, on average, 505 households (or 

approximately 2,300 individuals). A 5% sample, similar to a contemporary PUMS, was 

randomly drawn from the full count of households in the SEA, and each household in 

this sample was assigned a design weight (household weight) of 20. This “pseudo-

PUMS” (N=3,408) comprises the analytical sample used in the maximum entropy 

procedure, which is subsequently spatially allocated among the 135 EDs covering the 

county. 

Prior to running the weights imputation, a crucial task is the selection of 

constraining variables; this procedure is described first. Then three different measures 

are described that can be used to validate the imputation and allocation results for 

different combinations of constraining variables. As noted above, this study focuses on 

the validation procedure; technical details about the maximum entropy weights 

imputation and allocation model beyond the above summary are described in Nagle et 

al. (2012; 2013) and Leyk, Buttenfield, and Nagle (2013). 

 

 

3.1 Finding meaningful constraining variables 

The constraining variables in the maximum entropy weights imputation should ideally 

delineate different household-level residential patterns; this will increase the variability 

in the underlying data that can be explained and result in more accurate estimates. 
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Population characteristics (such as gender) that are similarly distributed among EDs are 

unlikely to produce satisfactory allocation results when used as constraints, since there 

may be little variation to exploit. In addition, the inclusion of multiple highly correlated 

variables may be unnecessary, as highly correlated variables will likely be redundant in 

explaining variation in the underlying population distribution. The choice of 

constraining variables represents a difficult problem in survey sampling that has found 

limited attention to date and there is no standard method in place.   

Bivariate correlations of ED-level population characteristics are calculated as one 

obvious way of assessing highly correlated variables that would be unsuitable 

constraining variables if applied in concert. Principal component analysis (PCA) is used 

to examine how much variation in the data is explained by the different population 

characteristics, and thus to identify the variables that may be most useful as constraints. 

While PCA is commonly used to reduce the dimensionality in a given set of data, it 

may also be helpful in describing the associations between the variables present in the 

data (Jolliffe 2002; Demšar et al. 2013). Finally, a segregation index, the index of 

dissimilarity (D), is computed at the ED-level to determine those variables that may 

represent appropriate constraints. The index of dissimilarity is a measure of the 

evenness of the distribution of two groups (Massey and Denton 1988), and may 

therefore be helpful in determining which variables best differentiate (or segregate) 

household residential patterns. Dissimilarity index values range from 0 to 1, with values 

tending towards 1 indicative of more highly segregated groups and values tending 

towards 0 suggesting low levels of segregation among the groups. 

 

 

3.2 Establishing a validation procedure 

Weights imputation is performed using different combinations of constraining variables 

to examine the sensitivity of the allocation model to the number and types of constraints 

applied. As noted in the Methods section above, the weights imputation redistributes 

among the 135 EDs the original design weight for each household in the pseudo-PUMS 

sample, and then iteratively reweights the ED-level weights to match the aggregate 

summary statistics for each ED. Although these imputed weights are not required, and 

in reality are unlikely, to be whole numbers, the sum of the weights for a particular 

household record type across all EDs will be equal to the expected number of 

households of that type (with „type‟ characterized by the set of constraining variables 

used) in the SEA. Aggregating the imputed weights over those households exhibiting a 

particular attribute (e.g., foreign born household heads) within each ED will result in a 

revised summary statistic for that ED. This revised summary statistic will match exactly 

the actual count derived from the full enumeration if this attribute has been used as a 
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constraining variable. An important component of the validation task then is to establish 

how well the revised summary statistics for household attributes not used as constraints 

replicate the actual number of households with those attributes in each ED. Following 

each model run, revised summary tables were generated by ED for the attributes of 

interest (benchmark variables as described above) based on the allocated microdata. 

The revised summary tables were compared to summary tables constructed from the 

100% enumeration of the population. To examine the accuracy of allocation results 

from different perspectives, three goodness-of-fit statistics were calculated, as described 

below. 

 

 

3.2.1 Error in margin 

The actual number of households in the entire study area exhibiting a particular 

population characteristic will be compared to the total allocated number of households 

with the same characteristic in order to assess how well individual variables are being 

allocated overall; this difference is designated the error in margin. While the error in 

margin reveals little about the performance of the allocation procedure in reproducing 

the accurate population distribution within EDs, substantial differences between total 

household counts and allocated household counts will indicate variables for which the 

model critically fails. In short, concordance between the total number of allocated 

households and the total number of actual households is a necessary, but not sufficient, 

condition under which to validate model performance. 

Importantly for the implementation of the allocation model with current Census 

data, the error in margin can be easily calculated in most cases based on publicly 

available data, even for attributes for which the other goodness-of-fit statistics described 

below cannot be derived. In such cases it is important to examine how well errors in 

margin correspond to the standardized absolute error or z-statistics described below, 

which quantify the error in the distribution. These measures are sometimes irretrievable 

from contemporary censuses without access to confidential data. 

 

 

3.2.2 Residuals and Standardized Allocation Error (SAE) 

The residual is the difference within an ED between the actual population count and the 

allocated population count. Standardized Allocation Error (SAE) is the sum over all 

EDs of the absolute residuals standardized by the total expected population: 
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∑ |      |  

∑    
 (2) 

 

where Ui is the actual count of the population in EDi and Ti is the allocated count of the 

population in EDi. SAE will generally fall between 0 and 2, with values closer to 0 

indicating a better fit between the actual and allocated distributions. Because the 

allocated margin is not required to match the actual margin for non-constraining 

variables, the SAE could, in theory, be greater than 2 for these variables. The SAE 

compares the actual ED-level household distribution to the allocated ED-level 

household distribution, and is a stricter evaluation of the accuracy of the model than is 

the error in margin described above; SAE is thus the primary measure of model 

performance. SAE is used to test the performance of a variety of model specifications 

(e.g., different variables used as constraining variables) and to compare across 

specifications. The SAE may also be computed for individual EDs, or for individual 

estimates within an ED. In this sense, the SAE is similar to a coefficient of variation, 

which is calculated as the standard error of an (average) estimate divided by the 

estimate itself.  

 

 

3.3 Modified z-statistic 

The modified z-statistic can be used to compare a table representing the actual joint 

distribution (or cross-tabulation) of multiple population attributes with a table 

representing the allocated joint distribution of those attributes (Williamson, Birkin, and 

Rees 1998). The z-statistic is calculated for each corresponding pair of table cells, with 

significant values representing those elements in the distribution of the particular 

population attribute for which the allocation procedure is performing inadequately.  The 

modified z-statistic is calculated by 

 

     
          

√
           

∑      

                  
   

∑      
              

   

∑      
  (3) 

where i and j indicate individual cells (row i and column j) within the joint distribution 

table of some population attributes, Uij is the actual count for cell ij in the ED and Tij is 

the allocated count for cell ij in the ED. Population attributes for which the actual and 

allocated distributions are poorly matched may require further consideration, such as 

additional constraining variables to be incorporated into the model. 
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The above three measures will highlight those variables which show unusual 

behavior within the allocation procedure and make it possible to carry out an in-depth 

validation based on the available full population count. Of particular interest is the level 

of accuracy with which non-constraining variables can be estimated. An important 

question is whether one can differentiate between those non-constraining variables 

which are strongly correlated with one or more constraining variables, and those which 

are seemingly unrelated to any of the constraining variables. This will provide 

important insight for the selection process of constraining variables and the 

configuration of the allocation model. The described validation procedure will also 

indicate whether the accuracies of the ED estimates for different population 

characteristics exhibit geographic heterogeneity through the compilation of residual 

maps, and whether the goodness-of-fit for an allocated distribution, as measured by the 

SAE, can be inferred from the error in margin. 

The focus on these different measures of error, and the relationships between the 

measures, is based on the consideration that, in the contemporary context, model 

performance may need to be assessed under different conditions. The error in margin 

can be evaluated with no knowledge of the underlying tract-level distribution of the 

population and the data necessary to carry out this evaluation is frequently available in 

summary tables at the county- or PUMA-level. This is true even for those population 

attributes for which no census tract summaries are publicly available. However, the 

error in margin is limited in assessing model performance because it does not provide 

any information about the distributional accuracy of the model. The SAE and the 

modified z-statistics can be used to evaluate distributional accuracy, but can be 

calculated only when tract-level summary tables are available. Of course, this is not to 

say that the calculation of these latter measures requires the 100% count of the 

population that is available here; however, having the 100% count of the population 

allows SAE to be calculated for the full range of sociodemographic variables and, more 

importantly, for any cross tabulations of variables in the microdata. 

 

 

4. Results 

4.1 The selection of constraining variables 

The first step in the allocation process is the selection of those variables that will be 

used as constraints. Although the digitally transcribed 1880 Census includes fewer 

variables than more contemporary censuses, there is greater flexibility in choosing 

constraining variables using the 100% population count because univariate and joint 

distributions of any variables of choice can be constructed. Thus this step is not limited 
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by the summary tables produced by the Census Bureau. As noted above, while the 

choice of constraining variables should be grounded in theory, there are analytical 

techniques that may guide the selection process. In this study segregation indices, 

bivariate correlations, and principal component analysis are used to determine favorable 

constraining variables i.e., variables with higher potential explanatory power that are 

not strongly correlated. 

Table 2 displays the index of dissimilarity, measured at the level of the ED using 

the aggregate summary tables, for each of the benchmark variables. Some variables, 

including the urban/rural dichotomy, residence in group quarters, and farm residence, 

display very high levels of segregation, due to their natural geographical disparity. 

However, several benchmark variables are highly correlated, and the inclusion of 

multiple highly correlated variables as constraints would be redundant. Examples of 

highly correlated variables include urban residence and farm residence (Spearman ρ=-

0.64) and group quarters status and single status (Spearman ρ=0.69). The full 

correlation matrix for all benchmark variables is displayed in Appendix 1. 

Principal component analysis (PCA) provides another method of selecting relevant 

and non-superfluous constraining variables. The results from the PCA run on the ED-

level aggregate summary tables for the 19 benchmark variables suggest that five 

underlying latent variables explain more than 85% of the variation in the benchmarks. 

These five principal components all have eigenvalues greater than 1; the sixth principal 

component has a substantially smaller eigenvalue.
6
 

  

                                                           
6 PCA is commonly used to reduce the dimensionality (number of variables) of a dataset by creating new 
variables (principal components) that are combinations of the original variables and that are uncorrelated with 

each other. The principal components should retain as much of the variation in the dataset that is explained by 

the original variables as possible. Eigenvalues are the sample variances of the principal component scores. 
The rubric of retaining only those principal components with eigenvalues greater than 1 (in cases where the 

PCA was run on a correlation matrix) is known as Kaiser‟s Rule (Kaiser 1960; Jolliffe 2002). 
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Table 2: Segregation indices for Hamilton County, Ohio (diversity measured 

by enumeration district) 

Variable D 

Urban vs. Rural 1.00 

Farm vs. Non-farm 0.81 

Group vs. Non-group 0.81 

Male vs. Female 0.14 

White vs. Non-white 0.53 

Single vs. Non-single 0.25 

Married vs. Non-married 0.13 

Children present vs. No children present 0.13 

5+ Children present vs. Less than 5 children present 0.15 

Foreign born vs. Non-foreign born 0.28 

Native vs. Non-native 0.39 

Occupation:  Non-worker vs. All other 0.13 

Occupation:  Low-skill vs. All other 0.27 

Occupation:  Medium-skill vs. All other 0.19 

Occupation:  High-skill vs. All other 0.14 

Age:  Age 0-17 vs. All other 0.76 

Age:  Age 18-34 vs. All other 0.07 

Age:  Age 35-49 vs. All other 0.06 

Age:  Age 50+ vs. All other 0.09 

 

Note: The urban/rural dichotomy has an index of dissimilarity of 1 because EDs are wholly classified as either urban or rural, with the 

classification extending to all households within the district.  While no such “perfect” constraining variables will exist in 

contemporary Census data, this variable was nevertheless retained as a constraint. 

 

 

Based on the PCA, the segregation indices, and the bivariate correlations, five 

constraining variables were selected for the analysis. Urban status and group quarters 

status loaded most heavily on principal components 1 and 2, respectively, and were 

retained; these variables also exhibited high dissimilarity indices. Foreign born status 

and native born status loaded most heavily on principal component 3. Because these 

variables display a (naturally) high correlation, only foreign born status was kept as a 

constraint. The variables loading most heavily on principal component 4 were those 

relating to the occupational status of the householder; all of these variables were also 

retained. Although the variables that displayed the highest loadings on principal 

components 5 (and 6) were those related to the age of the householder, race, with the 

highest loading on principal component 7, was nevertheless chosen as a fifth 

constraining variable. This substitution was made because householder race displayed a 

higher level of segregation than did most of the age categories. The exclusion of age as 
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a constraining variable also allows for its use in the confirmatory validation that 

follows. 

While the constraining variables used here are chosen through a quantitatively 

informed selection procedure, this procedure should not be construed as the de facto 

standard for choosing the “optimal” constraining variables for the model. There are 

variables available in the 1880 Census that are not considered in this paper, and the 

groupings of householder age and occupational status used here may not reflect the 

ideal categorizations for these variables. Cross-tabulations or interactions of individual 

variables (e.g. race by age, gender by occupational status) could also be constructed and 

used as constraints, in the hope that such interactions would ultimately provide 

improved estimates. However, the constraining variables selected above are assumed to 

be sufficiently robust for the validation procedure which follows. 

As noted above, the primary purpose of this paper is to describe a method of 

validating small area estimates using perfect and complete census information and to 

infer from the validation results a process for validating when such complete 

information is not available. A second purpose, however, is to assess how changing 

estimation parameters affect model performance and the estimates themselves. To this 

end, while the model with five constraints will form the base model, models with 2-4 

constraining variables will also be estimated. This step-wise modeling approach will 

facilitate the evaluation of the sensitivity of the estimation procedure to changes in the 

model parameterization. Because adding constraints is likely to increase the accuracy of 

the spatial allocation process in reproducing the actual 100% population distribution, a 

natural inclination would be to add constraining variables until the supply of available 

constraints was exhausted. However, overfitting of the maximum entropy model 

through the inclusion of an excessive number of constraining variables may lead to 

inefficiency and non-convergence. This may be particularly true in cases where the 

univariate or joint population distributions (such as summary statistics from the Census 

SF3 or American Community Survey) for constraint variables used in the maximum 

entropy imputation include sampling error or imputed data. 

Following the maximum entropy imputation, the set of imputed weights is applied 

to allocate households to specific EDs. The imputed weight for a single household in a 

single ED represents the expected number of households of that type within that ED. 

Allocation can proceed by assigning fractional parts of households in strict adherence to 

the imputed weights, or by rounding the imputed weights to integers and relaxing the 

strict adherence (Leyk, Buttenfield, and Nagle 2013). The method applied here utilizes 

the exact imputed household weights.  
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4.2 Post-allocation results: Comparison of allocated distributions to actual 

distributions 

Figure 1 compares the total population counts in the SEA to the allocated population 

counts following the maximum entropy allocation model with five constraining 

variables. The variables used as constraints are listed first (within the gray area), 

followed by the additional benchmark variables. While the 100% population counts and 

the allocated population counts for constraining variables are, by design, the same, this 

chart highlights how the allocated total counts for the other benchmark variables are 

very close to their actual counts. For example, the actual number of male householders 

in Hamilton County is 54,932, while the number of male householders predicted by the 

model is only slightly larger, at 54,999. 

 

Figure 1: Comparison of actual population count to allocated count,  

model with five constraints 
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The largest absolute errors in margin occur in the number of households with five 

or more children, for which 931 households are over-allocated (9.1% error in margin), 

and in the number of married householders, over-predicted by 589 households (1.2% 

error in margin). Other than the variable denoting married householders, the only 

benchmark variable with an error in margin greater than 5% is the number of 

householders younger than age 18 (6.5% error in margin). 

Figure 2 displays the SAE (distributional error) metrics for those benchmark 

variables not used as constraining variables in the five-constraint maximum entropy 

model; by design the SAE for variables used as constraints is 0. Although many of the 

benchmarks appear to be well allocated by this measure, two variables have noticeably 

poorer fits: Householders younger than age 18 and farm households. The SAE is 

equivalent to the mean residual divided by the mean actual number of households. On 

average, the number of allocated households in an ED is within approximately 20% of 

the actual number of households in that ED, for most benchmark variables. 

 

Figure 2: Standardized allocation error, model with five constraints 
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The maximum entropy procedure was also run with different numbers of 

constraining variables to evaluate how additional constraints affect the distribution of 

allocation errors. Figure 3 displays the SAEs of the benchmark variables for the 

maximum entropy models with 2-4 constraining variables, as well as the SAEs for the 

baseline five-constraint model. As before, these SAEs fall to zero when a variable is 

used as a constraint in the model. In general, the addition of constraining variables to 

the model reduces the SAE for the benchmark variables, although the magnitude of the 

decrease appears to depend on the relationship between the benchmark variable and the 

newly added constraint. For example, the error in the allocation of farm households 

drops substantially when occupational status is added as a constraining variable (most 

farm householders have low occupational status), while the error in the allocation of 

native-born households is greatly reduced when foreign-born is added as a constraint. 

Several benchmark variables, including those representing ages above 18, gender, and 

marital status, exhibit little change when additional constraints are added to the model. 

These benchmarks are largely uncorrelated with any of the constraining variables and 

generally have small errors under any of the model specifications. 

 

Figure 3: Comparison of standardized allocation error for different constraint 

variable specifications 
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One final facet in the evaluation of model performance is the association between 

the error in margin and the SAE. Figure 4 highlights the relationships between the 

errors in margin of the benchmark variables (x-axis) and their ED-level SAE (y-axis), 

for the model with 5 constraining variables. A linear regression line is provided to 

summarize the point relationship between the two measures of error. The error in 

margin and the SAE exhibit a positive association, although it is fairly weak. Notably, 

the total allocated counts of both farm households and householders less than age 18 are 

very close to their actual counts in the population, but the distribution of these 

populations within specific EDs is much less successful. It appears therefore that 

inferences about the distributional performance of the allocation model based on 

agreement between the actual and allocated totals (error in margin) should be 

approached with caution. This underscores the earlier statement that the error in margin 

is itself insufficient in determining model performance. 

 

Figure 4: Model with 5 constraints: Error in margin (ratio of residual to actual 

count) by error in distribution (ratio of summed absolute residuals to 

actual count) 
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4.3 Post-allocation results: Comparison of the joint distribution of a constraining 

variable and a non-constraining variable 

To this point, only allocation errors in the univariate distributions of the group of 

benchmark variables have been explored. However, researchers are often interested in 

the joint distributions of variables; indeed, one anticipated goal from developing spatial 

allocation models using microdata is the ability to estimate joint distributions of 

variables for which none had previously existed. To assess the accuracy of the spatial 

allocation in duplicating the actual joint distributions of variables, the z-statistic 

described above may be used. 

The top two panels of Table 3 display, for two randomly selected enumeration 

districts, the actual numbers of households, the allocated numbers of households, and 

the calculated z-statistics for the cross-tabbed distribution of a household attribute used 

as a constraining variable, householder occupational status, and a household attribute 

not used as a constraining variable, householder age. These tables reveal ED-specific 

discrepancies in the allocation performance of the model and may also highlight broad 

misallocation trends, such as that seen among the non-worker occupational class in both 

EDs. The last panel of Table 3 shows the aggregated performance metrics for each 

occupation/age group cell as the total number (and percent) of EDs which are well-

allocated for that cell. In general, the number of well-allocated EDs is quite high for any 

particular cell, with noticeable patterns of poor allocation among the 25-29 age group 

and among the oldest householders. 

 

Table 3: Comparison of allocated age and occupational status distribution to 

100% count distribution 

Enumeration District 192 

 

Non-worker Low Occupational 

Status 

Medium Occupational 

Status 

High Occupational 

Status 

Age 100% Allocated 

z-

statistic 100% Allocated 

z-

statistic 100% Allocated 

z-

statistic 100% Allocated 

z-

statistic 

19 or less 245 232 -1.32 36 25 2.29** 9 10 0.34 3 1 -1.16 

20-24 13 14 0.28 42 47 -0.79 21 25 0.92 16 22 1.55 

25-29 30 6 -4.55** 59 50 1.39 35 35 0.00 42 34 -1.35 

30-34 17 29 2.97** 34 37 -0.53 40 36 -0.70 43 35 -1.34 

35-39 18 33 3.62** 28 37 -1.58 37 34 -0.54 37 31 -1.07 

40-44 23 13 -2.15** 23 38 -2.60** 30 34 0.78 35 39 0.73 

45-49 18 6 -2.89** 32 21 2.49** 24 14 -2.16** 29 33 0.79 

50-54 16 12 -1.02 25 18 1.70 13 14 0.29 22 33 2.45** 

55-59 11 15 1.22 10 15 -1.32 8 11 1.08 16 12 -1.03 

60-64 8 14 2.14** 12 11 0.31 6 6 0.00 7 10 1.15 

65 or greater 5 30 11.25** 11 14 -0.82 3 7 2.32** 6 5 -0.41 

Total 404 404  312 313  226 226  256 255  
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Table 3: (Continued) 

Enumeration District 115 

 

Non-worker Low Occupational 

Status 

Medium Occupational 

Status 

High Occupational 

Status 

Age 100% Allocated 

z-

statistic 100% Allocated 

z-

statistic 100% Allocated 

z-

statistic 100% Allocated 

z-

statistic 

19 or less 108 83 -3.60** 1 3 2.01** 0 0 0.00 0 2 2.00** 

20-24 1 6 5.01** 5 4 -0.46 6 7 0.42 2 14 8.53** 

25-29 2 5 2.13** 5 12 3.22** 9 16 2.42** 10 29 6.16** 

30-34 2 15 9.24** 15 11 -1.13 32 21 -2.23** 32 29 -0.58 

35-39 6 13 2.90** 12 13 0.31 19 20 0.25 48 34 -2.30** 

40-44 10 9 -0.32 10 13 1.00 20 19 -0.24 22 28 1.35 

45-49 13 10 -0.86 19 12 -1.80 15 15 0.00 26 26 0.00 

50-54 20 13 -1.65 11 8 -0.96 13 15 0.58 22 22 0.00 

55-59 12 12 0.00 7 7 0.00 11 11 0.00 16 11 -1.30 

60-64 9 11 0.68 8 6 -0.74 6 7 0.42 14 8 -1.66 

65 or greater 12 18 1.79 2 5 2.14** 3 4 0.58 17 6 -2.78** 

Total 195 195  95 94  134 135  209 209  

All Enumeration Districts 

19 or less 112 83% 119 88% 129 96% 131 97% 

20-24 116 86% 113 84% 102 76% 92 68% 

25-29 102 76% 99 73% 105 78% 98 73% 

30-34 100 74% 118 87% 111 82% 117 87% 

35-39 100 74% 123 91% 120 89% 124 92% 

40-44 117 87% 116 86% 123 91% 118 87% 

45-49 122 90% 109 81% 112 83% 122 90% 

50-54 118 87% 116 86% 125 93% 111 82% 

55-59 122 90% 123 91% 111 82% 124 92% 

60-64 116 86% 111 82% 114 84% 118 87% 

65 or greater 96 71% 106 79% 106 79% 103 76% 

 

Notes: ** Statistically significant at 5%, based on modified z-statistic.  Totals may not be equivalent due to rounding. 

Bottom panel: Number of enumeration districts with allocated count of age/occupational status category statistically near the actual 

count, as measured by the modified z-statistic.  Total number of enumeration districts in the study area is 135. 

 

 

4.4 Post-allocation results: Comparison of the joint distribution of two non-

constraining variables 

Because occupational status was used as a constraining variable in the maximum 

entropy imputation, the allocated counts for a joint distribution which includes this 

variable might be expected to maintain a high level of consistency with the 100% count. 

To assess the performance of the allocation for the joint distribution of two non-

constraining variables, the cross-tabulation analysis in the prior section was repeated for 

the gender and age of the householder, two benchmark variables that are not used to 

constrain the maximum entropy imputation. These results are shown in Table 4. 
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Table 4: Comparison of allocated age and sex distribution to 100% count 

distribution 

Enumeration District 192 

 

Female Male 

Age 100% Allocated z-statistic 100% Allocated z-statistic 

19 or less 61 158 14.37** 221 122 -7.59** 

20-24 13 30 4.85** 84 73 -1.26 

25-29 32 31 -0.19 125 103 -2.11** 

30-34 22 22 0.00 115 112 -0.30 

35-39 22 31 2.01** 107 96 -1.13 

40-44 26 24 -0.42 100 85 -1.59 

45-49 22 21 -0.22 70 64 -0.74 

50-54 18 25 1.72 51 59 1.15 

55-59 11 15 1.23 39 33 -0.98 

60-64 10 10 0.00 22 33 2.37** 

65 or greater 4 20 8.07** 24 33 1.86 

Total 241 387  958 813  

Enumeration District 115 

19 or less 49 37 -2.16** 60 51 -1.24 

20-24 6 7 0.42 8 24 5.70** 

25-29 2 5 2.14** 24 57 6.90** 

30-34 6 10 1.67 75 66 -1.13 

35-39 9 11 0.69 76 68 -1.00 

40-44 9 11 0.69 53 59 0.87 

45-49 13 11 -0.58 60 51 -1.24 

50-54 18 14 -1.01 48 44 -0.61 

55-59 10 12 0.66 36 29 -1.21 

60-64 7 9 0.78 30 24 -1.13 

65 or greater 4 11 3.55** 30 21 -1.69 

Total 133 138  500 494  

All Enumeration Districts 

 

Female Male 

Age 

Number of EDs  

Allocated Satisfactorily Percent 

Number of EDs  

Allocated Satisfactorily Percent 

19 or less 112 83% 90 67% 

20-24 100 74% 89 66% 

25-29 91 67% 81 60% 

30-34 101 75% 104 77% 

35-39 91 67% 117 87% 

40-44 110 81% 106 79% 

45-49 111 82% 110 81% 

50-54 118 87% 119 88% 

55-59 111 82% 113 84% 

60-64 113 84% 105 78% 

65 or greater 99 73% 97 72% 

 

Notes: ** Statistically significant at 5%, based on modified z-statistic.  Totals may not be equivalent for non-constraining variables. 

Bottom panel: Number of enumeration districts with allocated count of age/gender category statistically near the actual count, as 

measured by the modified z-statistic.  Total number of enumeration districts in the study area is 135. 
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Within the two selected EDs, allocation performance appears to be at least as good 

as, and possibly better than, the allocation in the previous occupation/age distribution. 

Once again, the most egregious misallocations occur in the youngest and oldest age 

groups. Unlike in the occupation/age distribution shown above, in which the column 

margins (occupation) were constrained to be equal, there is no such restriction in this 

table. As such, much of the misallocation in the gender/age distribution in enumeration 

district 192 of Table 4 may be the consequence of the overallocation of female heads of 

household over the whole study area. 

Although it is infeasible to examine the joint distributions of all variables over 

each and every ED in the sample, the information gleaned from the comparisons of a 

few EDs may be useful in restructuring the original optimization problem. In addition, 

the third panels of Tables 3 and 4, which aggregate the joint distributional errors over 

all EDs, may be helpful for a better understanding of spatial heterogeneity in the 

allocation error, which is the focus of the next section. 

 

 

4.5 Post-allocation results: Geographic heterogeneity in benchmark variable 

allocation errors 

The model with five constraints results in only two benchmark variables (householder 

age 0-17 and households with 5+ children) having an error in margin greater than 5% 

and only four benchmark variables (householder age 0-17, farm households, native-

born householder, and single householder) having SAE values greater than 20%. Maps 

of the allocation errors in these poorly performing variables were created at the scale of 

the ED to visually assess whether spatial heterogeneity or local clustering was present 

in the errors.
7
 Figures 5-9 display maps of the standardized residuals, by ED, for those 

benchmark variables that have high SAEs or high errors in margin. The focus of these 

maps is on the EDs in the denser, central portion of the county, which comprise most of 

the city of Cincinnati. The extant outset maps display the whole county as a reference. 

EDs are shaded according to their allocation error (the residual divided by the actual ED 

count) in the five constraint model, with lighter EDs indicating lower allocation errors 

and darker EDs indicating greater allocation errors. 

Residuals for householders age 0-17 (Figure 5) and households with 5+ children 

(Figure 6) appear to be largest in the south-central portion of the county, which 

encompasses the city of Cincinnati. While single householders (Figure 7) were also 

misallocated to the largest extent in this general locale, large residuals for single 

householders seem to be clustered on the outskirts of the central city. Perhaps the most 

                                                           
7 These maps were based on GIS boundary files downloaded from the Urban Transition Historical GIS 

Project (http://www.s4.brown.edu/utp/). This project is further described in Logan et al. (2011). 

http://www.s4.brown.edu/utp/
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distinct clustering of allocation residuals occurs for the benchmark variables of native-

born householder (Figure 8) and farm households (Figure 9). There are large errors in 

the allocation of native born households in the EDs just north of the historic central 

business district of Cincinnati, while farm households are highly misallocated in the 

majority of the downtown EDs. 

 

 

Figure 5: Standardized allocation error (expressed as %) for householders age 

0-17 

 

 

 

Spatial heterogeneity in the ED-level allocation errors for a benchmark variable 

may arise due to spatial clustering of the variables used as constraints or due to very 

small population sizes in some EDs, and may be linked to substantive processes and 

ideas. In a general sense, the processes that lead to clustered misallocations of 
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households of a particular population attribute in nearby EDs may manifest as clustered 

ED-level allocation errors of this attribute or another that is closely related. The residual 

maps provide visual confirmation of such spatial patterns, and may be useful in guiding 

additional examination of constraining variables that may improve model performance 

(i.e., decrease spatially clustered allocation errors). In this sense such maps can be 

useful investigative tools to better understand the allocation process and the reasons for 

its limited performance in some areas. 

 

 

Figure 6: Standardized allocation error (expressed as %) for households with 

5+ children 
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Figure 7: Standardized allocation error (expressed as %) for single 

householders 
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Figure 8: Standardized allocation error (expressed as %) for native born 

householders 
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Figure 9: Standardized allocation error (expressed as %) for farm households 

 

 

 

5. Discussion and concluding remarks 

The maximum entropy procedure detailed above aims to increase the utility of Census 

microdata in small area estimation by adding geographic detail to household microdata 

records. This spatially enhanced microdata can be used in the construction of revised 

summary tables which cover a wider range of population characteristics than those 

currently available, as well as new joint distributions. However, there has been limited 

authentication of the results obtained from this spatial allocation model, a model which 

may comprise many different specifications, variables, and geographical contexts. The 

purpose of this paper is thus to design and test a validation procedure, highlighting the 

performance of the model under different configurations using publicly available 

Census data from 1880 and drawing conclusions about how to transfer this framework 



Ruther et al.: Validation of spatially allocated small area estimates for 1880 Census demography 

608   http://www.demographic-research.org 

to the more contemporary context. The results shown above suggest that the validation 

procedure provides useful statistics, allowing an in-depth evaluation of the accuracy of 

the household allocation model and highlighting some directions for future work. While 

the focus in this paper is on an imputation and allocation procedure based on the 

principle of maximum entropy, nothing in the validation itself is specific to this spatial 

allocation design. As such, a wide variety of different allocation methods could be 

employed and validated with the same data source, and the results used to compare and 

evaluate the performance of the different methods. The 100% count data from the 1880 

Census offers an attractive alternative to the use of synthetic or simulated microdata, the 

creation of which may rely on a host of assumptions regarding social and residential 

processes.  

One important conclusion from this assessment is that the addition of constraining 

variables improves model fit not just for the constraining variables themselves, but also 

for variables that are correlated with the constraining variables (Figure 3). For example, 

the addition of the foreign born variable as a constraint results in a decrease of nearly 

50% in the SAE for the native born benchmark variable, with which it is highly 

correlated. This behavior can be leveraged, and the total number of constraints 

minimized, through a careful selection of constraining variables that share multiple high 

correlations with other variables. A second significant conclusion is that smaller errors 

in margin are associated, albeit weakly, with overall better fitting distributions 

(indicated by SAEs). Errors in margin are an easily calculable fit statistic, and since 

their computation requires no knowledge of the actual distribution of the population 

within or across the EDs (or tracts) in the SEA (or PUMA), they can be computed using 

publicly available data. This fact is highly beneficial, as it would allow for a 

preliminary validation of an allocation model with a specific set of parameters without 

any need to access confidential data. However, the number of variables over which this 

relationship was tested was small, some of the benchmark variables still displayed poor 

distributional fit, and the overall association between the errors in margin and the SAE 

was not remarkably strong.  

While the intent here is not to develop an optimal model fitting the 1880 Census 

data, it is instructive to consider the overall pattern of data fit that is being produced by 

the maximum entropy imputation and subsequent spatial allocation, as this model has 

been developed for use with, and evaluated using, contemporary Census data. In 

general, the estimates being produced by the model are quite promising.  In its report on 

the use of American Community Survey data, the National Research Council (2007, p. 

64) advises that coefficients of variation (CVs) in the range of 10-12% are acceptable 

for population estimates. While the SAEs shown above are not CVs in a strict sense, 

they are mathematically comparable. The results from Figure 2 show that nearly half of 

the non-constraint benchmark variables used in this study achieve this goal, with 
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several others performing only marginally worse. In the context of contemporary ACS 

tract population estimates which have large variances, the estimates from this spatial 

allocation do not seem excessive for most of the benchmark variables surveyed. 

Although the allocated counts for most benchmark variables display high 

concordance with the 100% counts, two variables, the number of householders age 0-17 

and the number of farm households, are poorly allocated. The large allocation errors for 

these variables are somewhat surprising since both variables are highly correlated with 

constraint variables included in the model; the minor householder population with the 

group quarters population (ρ=0.53) and the farm household population with the urban 

population (ρ=-0.64). The problem in the allocation of these two variables, then, 

appears to be that both describe relatively small populations. Of the non-constraining 

benchmark variables examined in this paper, these two variables have by far the 

smallest sample counts (NAGE 0-17 = 87, NFARM = 219). Although both the group quarters 

variable and the non-white variable also have sample counts in this range, these 

variables are used as constraints; thus, the allocation errors for these variables are 0. 

The inability of the maximum entropy procedure to accurately allocate variables 

describing rare populations is troubling, as estimates for these variables may be the 

most desired; in the contemporary context, variables with small populations may be 

least likely to have Census-produced summary tables. Additional research is therefore 

warranted on whether these variables may be better estimated through a different post-

imputation allocation and how they can be reliably identified based on model 

diagnostics. It is also worth repeating that the allocated counts described above are not 

counts of specific households within each ED; rather, they are the imputed weights for 

all households exhibiting an attribute, aggregated within the ED. As such, small 

allocated counts do not identify the ED in which any particular household is located. 

In addition to overall measures of goodness of fit, the spatial distributions of model 

residuals for individual variables are useful to determine where a model over- or under-

predicts and to identify local clusters of small or large residuals. While in this study 

substantive discussion is not a priority, the results demonstrate the usefulness of such 

maps for researchers who are interested in more detailed interpretations of residual 

distributions with regard to specific variables of interest. 

As noted before, this article does not discuss substantive questions regarding 

demographic processes in 1880 due to a desire to focus on the validation procedure 

itself. An important question is how the validation methods described above will 

translate from the 1880 Census to more current Censuses or the ACS. Nothing in the 

validation procedure is specific to the data from 1880 (or to the chosen geography of 

Hamilton County, Ohio), although there are certainly differences between the 1880 

Census and the current context. 
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The maximum entropy procedure requires constraining variables that occur within 

(and are comparable between) both the public-use microdata file and the Census-

produced summary files. This caused no restriction in using the 1880 data, for which 

the “public-use” microdata file and summary files could simply be constructed from the 

100% data. This will not be the case when using current data, although an examination 

of the 2006-2010 ACS public-use microdata and summary files reveals that it contains 

many of the constraining variables used in this analysis. A more persistent 

methodological problem may be the presence of sampling variance and imputed data in 

contemporary Census data. Because the full 1880 census was available for use in this 

analysis, there is no inherent uncertainty in the summary tables created. Sampling 

variance and data imputation in current Census-produced summary files could lead to 

convergence problems in the maximum entropy procedure and may require model 

reparameterization. In the worst case scenario some potential constraining variables 

may have to be discarded if their inclusion in the model repeatedly leads to non-

convergence. This indicates an obvious need for uncertainty-sensitive modeling 

techniques that can handle inherent sampling variance in constraining variables. 

Beyond the issue raised above, this study has been designed so that the historical 

data are similar to contemporary data in organizational structure and geographic scale, 

to offer a compelling case for the use of this method on such data. Prior research has 

likewise provided evidence for the application of this method to the contemporary 

context. In Leyk, Nagle, and Buttenfield (2013), tract summary counts for spatially 

allocated microdata from the 2000 Census exhibit strong correlations with tract counts 

from Census-produced summary tables for several variables. The results from the 

present study suggest that further validation of these contemporary findings should be 

pursued at a CRDC. 

Based on the insights from this study there are some general rules and actions that 

can be done prior to undertaking a model validation at a CRDC. The first is to develop a 

set of benchmark variables against which to evaluate the results. A limited number of 

benchmark variables were included in this validation analysis. It may be desirable to 

include additional variables in the full evaluation, particularly those variables which are 

uncorrelated with model constraints or which have small overall margins, as these 

benchmarks exhibited high residuals and SAEs. Next, those variables available for use 

as constraining variables can be determined using a combination of publicly available 

summary tables and PUMS documentation. Note that constraining variables must be 

procurable in both the microdata and the summary tables. Variables which are likely to 

produce the most satisfactory results when used as constraints may be identified using 

bivariate correlations, measures of segregation, and PCA; the data necessary to run 

these identification tests are publicly available in Census-produced summary files. 
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Following the selection of the constraining variables, the imputation may be run 

using the publicly available PUMS data. The imputed weights can then be used in the 

tract allocation, and the total margins for the allocated data can be compared to the 

actual margins to identify prominent errors and adjust the model accordingly. For those 

benchmark variables for which Census-produced summary tables or cross-tabulations 

are publicly available, SAEs and z-statistics can be computed to further adjust the 

model. Measures of error for benchmark variables and joint distributions not publicly 

available will require evaluation at a CRDC. 

 

 

5.1 Limitations and future steps 

Some potential limitations with regard to the relationship between the historical and 

contemporary data may require further consideration. Relative to current censuses, the 

1880 Census appears to include a less diverse population with more homogeneous 

residential patterns (less segregation), and thus the choice of constraining variables may 

need to be revisited. While the results in this paper indicate that additional constraining 

variables have a beneficial impact on the reproduction of the correct population 

distribution for other non-constraining variables, it is still unclear what the optimal 

number of constraints might be. Additional work with current ACS data will allow 

determination of the point at which additional constraints may result in model non-

convergence or increasing misallocation. The impact of population size of SEAs and 

EDs should also be further examined, to better understand the effect of population size 

on the maximum entropy method applied. This will also provide some indication how 

the method might be applied to different survey data, such as the National Health 

Interview Survey or the National Health and Nutrition Examination Survey, which are 

reported only for large geographies (i.e. states or regions).  Future research will also 

investigate differences in the validation results within rural and urban settings in more 

detail. 
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Appendix 

Table A-1: Spearman correlation coefficients for benchmark variables 

(variables measured as proportion of households in enumeration 

district exhibiting the characteristic) 

 

Age 0-17 Age 18-34 Age 35-49 Age 50+ Male 

Non-

white Single Married 

Any 

Children 

5+ 

Children 

Age 0-17 1.00 

         Age 18-34 0.15 1.00 

        Age 35-49 -0.30 0.00 1.00 

       Age 50+ -0.40 -0.60 -0.30 1.00 

      Male -0.37 -0.11 0.24 0.19 1.00 

     Non-white 0.12 0.06 0.10 -0.08 -0.25 1.00 

    Single 0.55 0.05 -0.37 -0.22 -0.59 0.41 1.00 

   Married -0.51 -0.07 0.35 0.20 0.92 -0.29 -0.75 1.00 

  Any Children -0.49 -0.11 0.43 0.19 0.65 -0.48 -0.84 0.75 1.00 

 5+ Children -0.29 -0.26 0.31 0.27 0.68 -0.31 -0.51 0.66 0.72 1.00 

Native 0.00 -0.20 -0.09 0.22 0.06 0.56 0.28 0.00 -0.29 -0.12 

Foreign -0.13 0.21 0.23 -0.11 -0.01 -0.44 -0.34 0.08 0.34 0.20 

Non-worker 0.36 -0.19 -0.32 0.06 -0.53 0.09 0.39 -0.58 -0.44 -0.42 

Low-skill 0.07 -0.12 -0.14 0.14 0.15 0.36 0.21 0.02 -0.13 0.12 

Med-skill -0.17 0.37 0.38 -0.26 0.11 -0.33 -0.40 0.23 0.37 0.14 

High-skill -0.18 0.16 0.43 -0.15 0.02 -0.03 -0.26 0.17 0.22 0.00 

Group 

Quarters 0.53 0.11 -0.21 -0.35 -0.57 0.28 0.69 -0.62 -0.64 -0.47 

Urban 0.00 0.35 0.31 -0.42 -0.36 -0.10 -0.08 -0.20 0.03 -0.23 

Farm -0.12 -0.19 -0.15 0.24 0.54 0.09 -0.04 0.40 0.08 0.31 

 

Native Foreign 

Non-

worker Low-skill Med-skill High-skill 

Group 

Quarters Urban Farm 

 Native 1.00 

         Foreign -0.92 1.00 

        Non-worker 0.03 -0.10 1.00 

       Low-skill 0.49 -0.46 -0.25 1.00 

      Med-skill -0.62 0.66 -0.18 -0.65 1.00 

     High-skill -0.11 0.16 -0.12 -0.60 0.34 1.00 

    Group 

Quarters 0.05 -0.10 0.34 0.07 -0.27 -0.05 1.00 

   Urban -0.52 0.50 0.03 -0.64 0.57 0.60 0.12 1.00 

  Farm 0.49 -0.47 -0.21 0.42 -0.38 -0.23 -0.21 -0.64 1.00  
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