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Abstract

BACKGROUND
Population forecasts are widely used for public policy purposes. Methods to quantify
the uncertainty in forecasts tend to ignore model uncertainty and to be based on a single
model.

OBJECTIVE
In this paper, we use Bayesian time series models to obtain future population estimates
with associated measures of uncertainty. The models are compared based on Bayesian
posterior model probabilities, which are then used to provide model-averaged forecasts.

METHODS
The focus is on a simple projection model with the historical data representing population
change in England and Wales from 1841 to 2007. Bayesian forecasts to the year 2032
are obtained based on a range of models, including autoregression models, stochastic
volatility models and random variance shift models. The computational steps to fit each
of these models using the OpenBUGS software via R are illustrated.

RESULTS
We show that the Bayesian approach is adept in capturing multiple sources of uncertainty
1 Corresponding author: Wittgenstein Centre (IIASA, VID/ÖAW, WU), Vienna Institute of Demogra-
phy/Austrian Academy of Sciences, Austria. E-mail: guy.abel@oeaw.ac.at.
2 ESRC Research Centre for Population Change, University of Southampton, United Kingdom.
3 Australian Demographic and Social Research Institute, Australian National University, Australia.
4 Mathematical Sciences, University of Southampton, United Kingdom.
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in population projections, including model uncertainty. The inclusion of non-constant
variance improves the fit of the models and provides more realistic predictive uncertainty
levels. The forecasting methodology is assessed through fitting the models to various
truncated data series.

1. Introduction

In this paper, a detailed exposition of the Bayesian approach to time series forecasts of
population totals is provided. The aim is to encourage the use of Bayesian methods by
researchers interested in population forecasting. The main motivation behind this work
is the need to incorporate the assessment of uncertainty into population forecasts (Alho
and Spencer 1985; Keyfitz 1991; Lee 1998). The rationale for considering the Bayesian
approach is that it offers a more natural framework than traditional frequentist methods to
forecast future population with uncertainty. First, variability in the data and uncertainties
in the parameters and model choice are explicitly included using probability distributions.
Second, the predictive distributions follow directly from the probabilistic model applied.
Third, it allows the incorporation of expert judgements, including their uncertainty, into
the model framework. As a result, probabilistic population forecasts, with more reliable
and coherent estimates of predictive uncertainty, can be obtained for a particular projec-
tion model.

The paper also includes an annotated implementation of Bayesian time series models
in the dedicated software, OpenBUGS (Lunn et al. 2009), implemented via the R statis-
tical package. To illustrate the Bayesian approach to population forecasting, we focus on
the simplest case, a single time series of population change described in the next section.
In Section 3, we set out the notation and describe the models used in this study. These in-
clude autoregression models for time series data, stochastic volatility models and models
with variance shifts to account for heterogeneity. We also outline the Bayesian meth-
ods used for parameter estimation and for model averaging. In Section 4, we demonstrate
how to estimate model parameters in each of the time series models using the OpenBUGS
software via R. The fully probabilistic population forecasts from 2008 to 2032 from these
models are also presented. In Section 5, we illustrate the performance of our forecasting
methodology by fitting the models to various truncated data series and by comparing pre-
dictive distributions against actual observed data, outside the fitting period. Finally, we
end the paper with a summary and some suggestions for extending the proposed approach.
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2. Data

A historical series of the England and Wales population totals are used to introduce the
Bayesian approach to time series forecasting. These data were obtained from The Hu-
man Mortality Database4. The mid-year population totals from 1841 to 2007, including
military personnel, are presented in the top panel of Figure 1. Here, we see that the popu-
lation totals in England and Wales exhibited a steady increase over time, rising from 15.8
million in 1841 to 53.9 million in 2007. Brief periods of slight population decline are
visible during the First World War and the 1918 influenza pandemic. Also noticeable is a
period of levelling off in the population totals during the 1970s and 1980s, a result of net
emigration and a lower rate of natural increase.

The features of population change are more evident when the annual rates of growth,
plotted in the second panel of Figure 1, are considered. Detailed explanations for these
patterns can be found in various books on British population history (Wrigley and Schofield
1989; Coleman and Salt 1992; Anderson 1996; Hinde 2003). The following provides a
very brief account. The population growth rates were highest during the 1840–1910 pe-
riod. This was predominantly due to the decrease in mortality occurring before the decline
in fertility, which remained at pre-industrial levels for much of this period. Between the
two World Wars, the rate of growth remained low in comparison with the later half of the
19th century and early 20th century. This was driven by the effects of low fertility from
economic depression and a change in sociological factors. After the Second World War,
population growth rates increased initially, through a short-lived fertility rise associated
with demobilization, followed by a more substantial increase (baby boom) in fertility dur-
ing the 1950s and early 1960s. In the late 1970s and early 1980s, the levels of population
growth slowed down before rising in more recent decades though net immigration and
higher fertility levels.

A time series of historical data is used to forecast the future rates of population growth.
We are primarily interested in identifying the time series models that best fit these data
in order ultimately to specify probabilistic intervals in forecasted populations. As we can
see from Figure 1, the annual rates of growth have varied considerably over time. The
models, described in the next section, provide alternative probabilistic specifications for
this variation, and hence can be used to predict future variations in population change.
These models are sufficiently flexible to describe a long series, and provide realistic pro-
jections, without the need to choose a strategic starting point for the data series to best
reflect future variation.

4Data available from http://www.mortality.org
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Figure 1: England and Wales population data, 1841-2007
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3. Statistical background

In this section, the models and notation used to forecast future annual growth rates in
England and Wales are specified. The subsections introduce the autoregression models,
stochastic volatility, random variance shifts, Bayesian inference and model uncertainty
used in this paper.

Let pt be the population size at time t for an uninterrupted series of observed time
points. In population forecasting, we are interested in obtaining estimates of pt and the
associated measures of uncertainty for one or more values of t > T , where T is the last
observed time point.

In order to model pt, we first derive the time series of population growth rates rt,
where

pt+1 = pt(1 + rt). (1)

Note, we focus on the geometric growth rate to be consistent with the measurement of
the population data, which have been measured in annual increments. A time series plot
of rt is presented in the second panel of Figure 1. It is clear that neither the mean nor
the variance of this series are stationary. Therefore, as advocated by Chatfield (2003), we
consider the changes in rt:

yt = rt − rt−1. (2)

A time series plot of yt for our data is presented in the third panel of Figure 1. It ap-
pears that an assumption of a stationary mean for yt is appropriate. The assumption of
a stationary variance, however, is not justifiable. Hence, we need models to account for
non-constant conditional variances, as presented in Section 3.2 and 3.3 below.

3.1 Autoregression model

There are several examples in the literature of autoregression (AR) models being used to
forecast populations; see for example, Saboia (1974), Ahlburg (1987), Pflaumer (1992),
Alho and Spencer (2005) and Tayman, Smith, and Lin (2007). An AR model of order p,
denoted AR(p), is defined as

yt =

p∑
j=1

φjyt−j + zt, (3)

where φj are the autoregressive coefficients representing the correlations between obser-
vations yt and yt−j , whilst j represents the time lag, and zt are assumed to be independent
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observations from a probability distribution with zero mean and constant variance, σ2. For
a fully-specified probability model, a normal distribution for zt is typically assumed.

3.2 Stochastic volatility model

Stochastic volatility (SV) models have been widely used for modelling financial data,
where the assumption of constant variance for zt is usually untenable. Models that ac-
count for non-constant variance have been sparsely used in the demographic context (Keil-
man and Pham 2004; Bijak 2010). This is surprising as historical time series of demo-
graphic data often exhibit volatility due to events such as epidemics, wars or baby booms.
This is certainly true for the data presented in Figure 1.

SV models are time series models, similar to the AR models defined in (3), but where
the variance of zt is allowed to be time-dependent. This is achieved by replacing σ2 with
σ2
t , and specifying a time series model for σ2

t . In this paper, we assume an AR(1) model
for log σ2

t . Here, let

σ2
t = eht (4)

and

ht = ψ0 + ψ1(ht−1 − ψ0) + η, (5)

where ht represents the volatility at time t conditional on its own past, ψ0 denotes the
mean level of ht over the entire time period whilst ψ1 is the autoregressive coefficient rep-
resenting the correlations between ht and ht−1. Finally, η are the error terms of ht which
are assumed to be independent observations from a normal distribution with zero mean
and constant variance τ2. Other approaches to deal with non-constant variances include,
for example, autoregressive conditional heteroscedastic models (ARCH) and generalised
ARCH models (GARCH); see for example Chatfield (2003). All of these approaches
assume that the variance changes at each time step. An alternative approach, which we
consider next, is to adopt a model where the variance changes at less frequent intervals,
with intervening periods of constant variance.

3.3 Random variance shift model

Random variance shift (RV) models, based on the models introduced by McCulloch and
Tsay (1993), allow the standard deviations of zt to shift at certain time points by a ran-

1192 http://www.demographic-research.org
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domly distributed factor, which we denote by eβt , so

σt =

{
σt−1 if δt = 0
eβtσt−1 if δt = 1

(6)

where δt is a binary variable taking the value 1 if a variance shift occurs at time t and
0 otherwise. We model the sequence of δt as independent Bernoulli random variables
with P (δt = 1) = ε, where ε is the probability of the shift. The magnitude of a variance
shift, when it occurs, depends on the variable βt which is assumed to follow a normal
distribution with mean 0, and standard deviation λ representing the magnitude (on the log
scale) of average variance shifts. The key feature of this model is that it adapts to periods
of high or low volatility; thus forecasts of uncertainty during a period of low volatility
will be predominately based on a lower variance than the overall level.

3.4 Bayesian inference

In Bayesian inference, uncertainty about the (multivariate) parameter θ of a statistical
model is described by its posterior probability distribution given observed data y{T} =
{y1, . . . , yT }. The probability density function of yt is obtained by using Bayes Theorem:

f(θ|y{T}) =
f(y{T}|θ)f(θ)

f(y{T})
, (7)

where f(y{T}|θ) is the likelihood function and is defined by the model, f(θ) is the prior
distribution for θ and f(y{T}) is a normalising constant. The prior distribution f(θ)
specifies the uncertainty about θ prior to observing any data.

Forecasting or prediction is particularly natural in a Bayesian framework. Uncertainty
about the next K future values of yt (for t = T + 1, . . . , T +K) is described by the joint
predictive probability distribution

f(yT+1, . . . , yT+K |y{T}) =
∫
f(θ|y{T})

K∏
k=1

f(yT+k|y{T+k−1}, θ)dθ. (8)

Note that the product term represents the joint predictive distribution in the case that
parameter θ is known. The Bayesian predictive distribution simply averages (integrates)
this with respect to the posterior probability distribution for θ. Hence, uncertainty about
θ in light of the observed data is fully incorporated.

In Bayesian analyses, forecasts and associated measures of uncertainty are obtained
by calculating marginal probability distributions for quantities of interest by integrating
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the posterior distribution in (7) or the predictive distribution in (8). Performing these
integrations analytically is often not possible for complex models, such as those described
above. Historically, this has prevented demographers and others from taking advantages
of Bayesian methods for statistical inference. More recently, this has become less of an
obstacle as developments in Bayesian computation have improved. In particular, Markov
chain Monte Carlo (MCMC) methods for generating samples from distributions, such
as (7) or (8), have made it possible to apply Bayesian techniques to a wide variety of
applications. Once a sample has been obtained from a joint distribution, then a sample
from a distribution of any component or function of components is readily available; see
Gelman et al. (2003) for details. To generate the samples from the posterior and predictive
distributions for our study, we used the MCMC sampling approach implemented in the
OpenBUGS software (Lunn et al. 2009). For each model, the performance of the MCMC
sampler was assessed by standard visual inspection of time series traces of key parameters.
After discarding any iterations required as burn-in, posterior summaries and projections
were based on an MCMC sample of size of 10, 000. Details on the code to formulate the
Bayesian time series models for OpenBUGS used in this paper are provided in the next
section.

3.5 Model uncertainty

It is unrealistic for the analyst to be sure that any particular statistical model is the cor-
rect one upon which to base their forecasts. Hence, the statistical methodology adopted
should be one which allows for model uncertainty. Furthermore, we consider it essential
that the measures of uncertainty associated with any forecast should incorporate both the
uncertainty concerning the model and the uncertainty concerning the parameters of each
model. Measurement error uncertainty in rt is practically insignificant relative to the size
of the population. In this paper, model uncertainty is directly integrated with parameter
uncertainty into a single predictive probability distribution. A comprehensive review of
Bayesian model averaging is available in Hoeting et al. (1999), and for some demographic
applications, see Bijak (2010) and Bijak and Wiśniowski (2010).

Formally, let m = 1, . . . ,M index the models under consideration and let θm repre-
sent the parameter associated with model m. Note that different models may have param-
eters of different dimensionality. For example, the AR(2) model has a three-dimensional
parameter (φ1, φ2, σ2). The likelihood function for model m is f(y{T}|θm,m), the prior
distribution for θm is f(θm|m) and the posterior distribution is

f(θm|y{T},m) =
f(y{T}|θm,m)f(θm|m)

f(y{T}|m)
, (9)
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where f(y{T}|m) is a normalising constant, known as the marginal likelihood for model
m, and is given by

f(y{T}|m) =

∫
f(θm|m)f(y{T}|θm,m)dθm. (10)

Prior uncertainty about models is encapsulated by a discrete probability distribution,
f(m), m = 1, . . . ,M . As we have no prior reason to prefer any model over any other,
we give every model the same prior probability, 1/M .

The posterior probability distribution for m given observed data y{T} is obtained by
using Bayes Theorem:

f(m|y{T}) =
f(y{T}|m)f(m)

f(y{T})
. (11)

Hence, the posterior model probability for any model m is proportional to the product of
the prior model probability and the marginal likelihood. Therefore, an efficient method
for computation of marginal likelihoods is essential for Bayesian inference under model
uncertainty (see, for example, those described in O’Hagan and Forster 2004). In our
implementation, we found that the bridge sampler (Meng and Wong 1996) was effective
for this computation.

Finally, to obtain a predictive distribution for population forecasts in the presence of
model uncertainty, (8) is extended to

f(yT+1, . . . , yT+K |y{T}) =

M∑
m=1

f(m|y{T})f(yT+1, . . . , yT+K |y{T},m)

=

M∑
m=1

f(m|y{T})
∫
f(θm|y{T},m)

K∏
k=1

f(yT+k|y{T+k−1}, θm,m)dθm (12)

which is the average of predictive distributions for individual models weighted by their
posterior probabilities, f(m|y{T}).

4. Computation and forecasts

In this section, we illustrate the parameter estimation from a range of individual AR,
SV and RV models. The predictive probability distributions from a selection of these
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models are provided in order to gain a better understanding of the effect of increasing the
complexity of the model on future population growth rates. These individual forecasts
are compared in Section 4.4 with a single forecast that incorporates uncertainty in model
choice.

4.1 Individual autoregressive models

An initial set of nine models was considered for the differenced population growth rate,
yt, introduced in (1) and presented in the bottom panel of Figure 1. These consist of an
independent normal (IN) model and eight autoregression models, increasing in order from
AR(1) to AR(8). This range of models was selected in order to represent all possible au-
toregressive processes that might adequately describe the differences in the overall growth
rate series. As we have no previous knowledge about the nature of the parameters in each
model we assigned weakly informative prior distributions: φj ∼ N(0, 1), j = 1, . . . , p
and σ−2 ∼ Gamma(10−6, 10−6), where N(µ, σ2) denotes a normal (Gaussian) distribu-
tion with mean µ and variance σ2, and Gamma(a, b) denotes a gamma distribution with
shape parameter a and scale parameter b. As we also have no prior belief that the data
should conform to a stationary regime, our prior distribution on the autoregression (φj)
parameters does not constrain the model to be stationary.

The computation of AR models were undertaken in OpenBUGS, where BUGS mod-
els were produced using the ar.bugs function in tsbugs R package (Abel 2013). For
example, a BUGS model for an AR(2) process on the difference of the population growth
rate was created in R using the following code:

> library("tsbugs")
> r <- ts(ew[2:167]/ew[1:166]-1, start=1841)
> y <- diff(r)
> ar2.bug <- ar.bugs(y, ar.order=2, k=25, beg=9)

In the first three lines of above code, the differenced series of the population growth
rate is derived as in (1) and (2), where ew is a time series object of the England and Wales
data, contained in the tsbugs package. The fourth line uses the ar.bugs function to
create the BUGS model. Arguments are set for the model order, the number of future
data points to be forecast (k) and the starting points for which the mean part of the like-
lihood should be calculated over (beg). This is set to 9 for all time series models run
in our analysis, enabling the same set of data to be considered regardless of the number
of autoregressive terms. The BUGS model in the ar2 object can be viewed using the
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print.tsbugs command in R:

> print(ar2.bug)
model{
#likelihood
for(t in 9:190){

y[t] ~ dnorm(y.mean[t], isigma2)
}
for(t in 9:190){

y.mean[t] <- phi1*y[t-1] + phi2*y[t-2]
}
#priors
phi1 ~ dnorm(0,1)
phi2 ~ dnorm(0,1)
isigma2 ~ dgamma(0.000001,0.000001)
sigma <- pow(isigma2,-0.5)
#forecast
for(t in 166:190){

y.new[t] <- y[t]
}
}

In the first part of the BUGS code, the likelihood for the AR(2) model is given. The
random variable y[t], defined in the first for loop is specified to come from normal
distribution with mean y.mean[t] (defined in the second for loop) and precision
isigma2. The likelihood is based on data points y[9] to y[190], where the last
25 observations are treated as missing by BUGS and simulated values given the parame-
ters estimates are generated. In the second part of the BUGS code, the prior distributions
are given, which by default are created with the distributions stated at the beginning of
this subsection. In the third part of the BUGS code, forecasted values of yt that are esti-
mated in the likelihood part of the model, are duplicated and relabelled y.new to enable
an easier handling of the BUGS output.

The ar2.bug object in R has two additional elements, aside from the $bugs ele-
ment, that are not printed. First, the $info element provides additional information on
the data and BUGS model for use in other functions. The second is a cleaned version
of the data formatted for use in R2OpenBUGS (discussed below). This is stored in the
$data element which can be displayed in R:

> ar2.bug$data
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$y
[1] 1.598748e-04 9.949415e-04 3.466781e-04 8.274713e-04 -6.824515e-04
[6] -3.774363e-03 2.865602e-03 -1.522894e-03 6.070610e-03 -4.213722e-03

...
[161] 3.303926e-05 4.433711e-04 1.470939e-03 3.009411e-04 -8.359634e-05
[166] NA NA NA NA NA
...
[181] NA NA NA NA NA
[186] NA NA NA NA NA

Note, the output above is edited to reduce space. The $data is a list named y, to corre-
spond to the 165 observed data points appended with 25 further missing data points to be
forecast by the BUGS models.

Creating the BUGS model in R has two prominent advantages. Firstly, users can eas-
ily run the estimation in OpenBUGS using the R2OpenBUGS package (Sturtz, Ligges,
and Gelman 2005). Secondly, numerous output analysis and diagnostics for the MCMC
simulations are available in the coda package (Plummer et al. 2006). The BUGS model
produced by the code above can be passed to OpenBUGS in R:

> writeLines(ar2.bug$bug, "ar2.txt")
> theta <- c("phi1", "phi2", "sigma")
> library("R2OpenBUGS")
> ar2 <- bugs(data = ar2.bug$data,

inits = list(inits(ar2.bug)),
param = c(theta,"y.new"),
model = "ar2.txt",
n.iter = 11000, n.burnin = 1000, n.chains = 1)

In the first line of the code above, the BUGS code, stored in the $bug element of the
ar2.bug object, is written to text file in the local directory. In the second line the object
theta is created to correspond the AR(2) parameter set for later use. In the rest of the
code, the bugs command in the R2OpenBUGS package is used to fit the BUGS model,
given the specified arguments for the data, initial values, parameters to monitor in the
MCMC simulations, the name of the model text file and MCMC settings for run lengths
and burn in periods. Functions in the tsbugs package can help provide the values of the
first two arguments. Initial values can be automatically generated for the parameters in
the tsbugs model using the inits function. The parameters names are concatenated
with the y.new variable to specify that simulations of the both the parameters and fore-
casted values should be returned. The results of the MCMC simulations are stored in the
ar2 object. The convergence of the MCMC can be analysed using various convergence
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diagnostics in the coda package. For example, the trace plots in Figure 2 of the model
parameters can be obtained after converting the posterior simulations to an mcmc type
object:

> library("coda")
> param.mcmc <- as.mcmc(ar2$sims.matrix[,theta])
> plot(param.mcmc)

In the appendix of this paper, we illustrate how the density function of prior distributions
can be plotted on top of the posterior densities from the plot.mcmc function.

Figure 2: Trace plots and posterior distributions of AR(2) model parameters
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The marginal posterior distributions, such as those in Figure 2, completely describe
the uncertainty about each model parameter given the observed data. In a Bayesian anal-
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ysis, these are typically summarised by using posterior means (as parameter estimates)
and posterior standard deviations (as measures of uncertainty), which we calculated using
the summary.mcmc command in the coda package. For all AR models, the posterior
means of σ are around 0.002 with much lower standard deviations than in their prior dis-
tributions. In all models, the posterior means of φj at lower values of j were below zero,
indicating negative autocorrelation for these lags. Estimates of φj , for j > 5, tend to be
close to zero, signifying that the association between yt and yt−j becomes weak at larger
values of j.

Posterior predictive plots of the forecasted rt from the IN, AR(4) and AR(8) models
are illustrated in the top row of Figure 3, where the darkest shades correspond to higher
probability masses of the posterior distributions. Contour lines are also plotted at each
decile. Forecasts from the simple independent normal (IN) model resulted in a higher
level of uncertainty in future values than did any of the AR models. As autoregressive
parameters were added to the independent normal model, the posterior predictive distri-
bution became comparatively narrower.

Plots of the posterior predictive distributions can be replicated using the fanplot pack-
age (Abel 2012) in R and the MCMC results stored in a bugs object:

> ynew.mcmc <- ar2$sims.list$y.new
> rnew.mcmc <- apply(ynew.mcmc, 1, diffinv, xi = r[166])
> rnew.mcmc <- t(rnew.mcmc[-1,])
> library("fanplot")
> rnew.pn <- pn(sims = rnew.mcmc, start = 2008)
> plot(r, ylim = range(r), xlim = c(1970, 2040))
> fan(rnew.pn)
> lines(r)

The first three lines of this code use the y.new[t] variables in the BUGS model and the
last observed value of rt to derive the simulated values of posterior predictive distribution
via the diffinv function. The rest of the code calculates the percentiles of the posterior
predictive distributions for rt with the pn function and then plots the percentile object
using the fan function in the fanplot library.
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Figure 3: Posterior predictive plots of population growth rates from selected
constant variance, stochastic volatility and random variance shift
models
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4.2 Individual stochastic volatility models

Nine SV models were considered for the differenced population growth rate. The SV
extension replaces the σ2 term in the AR models with time dependent variances σ2

t . As
specified in (5), this results in three new parameters ψ0, ψ1 and τ , as well as values of
ht at each time point. Weakly informative prior distributions were also assigned to the
new parameters: e−ψ0 ∼ Gamma(10−6, 10−6), ψ1 ∼ U(−0.999, 0.999) and τ−2 ∼
Gamma(0.01, 0.01). The BUGS models were again produced using tsbugs package. For
example, a BUGS model for an AR(2)-SV process was created in R:

> sv2.bug <- sv.bugs(y, ar.order=2, k=25, beg=9,
sv.mean.prior2 =
"dgamma(0.000001,0.000001)",
sv.ar.prior2 = "dunif(-0.999, 0.999)")

> print(sv2.bug)
model{
#likelihood
for(t in 9:190){

y[t] ~ dnorm(y.mean[t], isigma2[t])
isigma2[t] <- exp(-h[t])
h[t] ~ dnorm(h.mean[t], itau2)

}
for(t in 9:190){

y.mean[t] <- phi1*y[t-1] + phi2*y[t-2]
}
for(t in 9:9){

h.mean[t] <- psi0
}
for(t in 10:190){

h.mean[t] <- psi0 + psi1*(h[t-1]-psi0)
}
#priors
phi1 ~ dnorm(0,1)
phi2 ~ dnorm(0,1)
psi0.star ~ dgamma(0.000001,0.000001)
psi0 <- -log(psi0.star)
psi1 ~ dunif(-0.999, 0.999)
itau2 ~ dgamma(0.01,0.01)
tau <- pow(itau2,-0.5)
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#forecast
for(t in 166:190){

y.new[t] <- y[t]
}
}

In the first loop of the BUGS model, the likelihood of the AR(2)-SV model is defined in a
similar fashion as that of the constant variance equivalent shown previously. However, the
precision term for yt, isigma2[t] has a index allowing for a variation over time. This
is formed by a transformation of the volatility process h[t]. In the second loop the AR(2)
mean process is set up. In the third and fourth loops the mean level of the volatility process
is given an AR(1) process for all but the initial data point. The likelihood part of the BUGS
code is followed by the prior distributions which are specified in the sv.bugs command
to take the distributions presented at the beginning of this subsection (the default values
for these arguments are different). Finally, a new set of variables is created to record
the forecasted values. Plots of the MCMC traces, posterior and prior distributions of the
AR(2)-SV model are shown in the appendix.

As with the constant variance models, the fitting of the parameters for the SV mod-
els by OpenBUGS were run from R, allowing MCMC diagnostics checks and summary
statistics of the posterior distributions to be easily obtained. The posterior means and
standard deviations of the parameters in the nine SV models are presented in Table 1.
Estimates of autoregressive parameters tend to be close to zero for most φj with the ex-
ception of j = 2 and j = 3. The posterior means of ψ0, the average volatility level, are
similar across all models. The corresponding values of the variance (eψ0 ) are very similar
to those for the AR models with constant variance. Posterior means for ψ1, representing
the autocorrelation between a current level of volatility and that of a previous year, are all
close to 0.92. This indicates a strong positive autocorrelation in the volatility levels of rt.
Estimates of τ , measuring the standard deviation of volatility, are also similar across all
models.
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Table 1: Posterior means (standard deviations) of stochastic volatility model
parameters from MCMC simulations
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The posterior distributions for the σt parameters, obtained by transforming the preci-
sion values (isigma2[t] from OpenBUGS), are plotted in the upper panel of Figure
4 for the independent normal model with stochastic volatility (IN-SV). These were pro-
duced in a similar fashion as the forecast fans in Figure 3. Inspection of this plot reveals
a number of features. First, the estimated standard deviations decrease throughout most
of the observed period. Volatility is at its lowest level in 2001, prior to a increase in sub-
sequent years leading up to the last observation, marked by the vertical line. Second, the
estimated standard deviations are highest during the 1918 influenza pandemic and war
periods. During these years, the 10th percentiles of the estimated standard deviation are
higher than the 90th percentiles for 2007. Finally, the median and width of the predictive
distributions gradually increases over time.

Figure 4: Posterior and predictive distributions of standard deviation (σt)
from the IN-SV model (upper panel) and the IN-RV model
(lower panel)
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Posterior predictive plots of the forecasted rt from the IN-SV, AR(4)-SV and AR(8)-
SV models are presented in the middle row of Figure 3. Comparisons between models
with SV terms reveal that uncertainty in forecasted rt is reduced through the addition of
autoregressive parameters, as was the case with the AR models with constant variance.
However, for j > 3, the reductions in uncertainty were minimal as the values of φj
remained close to zero. Comparison of the forecasted population growth rates between
the selected individual models with constant variance and the SV models (between the top
and middle row in Figure 3) demonstrates a different shape in the forecast fans, caused
by a combination of lower φ values and additional terms for a non-constant variance in
the SV models. The inter-decile ranges of the predictive distributions in the SV models
increase at a steady rate. The corresponding contour lines in the constant variance models,
on the other hand, tend to spread quickly (depending on the order of the AR model) and
then continue to widen at a steady but slower rate. For the IN model, the inclusion of the
SV terms reduces the width of the predictive distribution, as illustrated in 2032 where the
difference between the 90th and 10th percentile is 0.028 for the IN-CV model compared
to 0.023 for the IN-SV model. This is because the SV model acknowledges the recently
observed low volatility in its forecast.

4.3 Individual random variance shift models

As with the SV models, RV models allow for a time dependent variance of yt. The RV
model replaces the ψ0, ψ1, τ and ht terms in the SV models with time constant parameters
ε and λ, and time varying parameters βt and δt; see (6). For the additional parameters
in the RV model, we assigned the following prior distributions: βt ∼ N(0, λ2), δt ∼
Bernoulli(ε) and λ−2 ∼ Gamma(0.01, 0.01). The prior distribution for ε ∼ Beta(1, 100),
where Beta(a,b) denotes a beta distribution with shape parameter a and scale parameter
b, which is set to produce a low probability of a random variance shift. This reflects our
prior belief that variance shifts should be relatively rare events.

Scripts to fit the models in OpenBUGS were produced using the rv.bugs command
in the tsbugs package. For example, the AR(2)-RV model was created in R:

> rv2.bug <- rv.bugs(y, ar.order=2, k=25, beg=9)
> print(rv2.bug)
model{
#likelihood
for(t in 9:190){

y[t] ~ dnorm(y.mean[t], isigma2[t])
isigma2[t] <- exp(-h[t])
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h[t] <- 2*lsig[t]
}
for(t in 9:190){

y.mean[t] <- phi1*y[t-1] + phi2*y[t-2]
}
lsig[9] <- -0.5*log(isig02)
for(t in 10:190){

lsig[t] <- lsig[t-1]+(delta[t]*beta[t])
delta[t] ~ dbern(epsilon)
beta[t] ~ dnorm(0,ilambda2)

}
#priors
phi1 ~ dnorm(0,1)
phi2 ~ dnorm(0,1)
isig02 ~ dgamma(0.000001,0.000001)
sig0 <- pow(isig02,-0.5)
epsilon ~ dbeta(1, 100)
ilambda2 ~ dgamma(0.01,0.01)
lambda <- pow(ilambda2,-0.5)
#forecast
for(t in 166:190){

y.new[t] <- y[t]
}
}

In the first loop of the BUGS code above, the likelihood of the AR(2)-RV model is defined
similarly to the SV equivalent. However, the volatility, h[t], which monitored for com-
parative purposes, is derived from transforming the logarithm of the standard deviation,
lsig[t]. This variable is set up in the last loop of the likelihood and is equivalent the
logarithmic transformation of (6). Preceding the final in the likelihood part of the BUGS
code is a transformation to the logarithmic scale of the standard deviation for the prior
distribution defined by isig02. This prior is required in order to initiate subsequent
variation levels and random shifts. As with previous BUGS code, the prior distributions
are specified after the likelihood. The rv.bugs command takes the prior distributions
stated in the top of this subsection as default values. Finally, a new set of variables are
created to record the forecasted values. Plots of the MCMC traces, posterior and prior
distributions of the AR(2)-RV model are shown in the appendix.

The posterior means and standard deviations of the parameters in the nine RV models
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are presented in Table 2. Again, the estimates of the autoregressive parameters are close
to zero for most φj with the exception of j = 2 and j = 3. The posterior means of ε,
i.e., the probability of a variance shift, are similar across all models with around a 4%
chance of a variance shift in any given year during the observed period. The λ parameter,
representing the magnitude (on the log scale) of average variance shifts, also remains
relatively constant across all models.

The posterior distributions for the σt parameters are plotted in the lower panel of
Figure 4 for the independent normal model with random variance shifts (IN-RV). In com-
parison to the SV plot in the upper panel, the standard deviations shift according to the
δt exhibit considerably narrower posterior distributions during periods of low volatility.
In the first period up to 1858, the standard deviation is at a relatively high level, before a
downward shift, followed by a period of stability at a lower level. The standard deviations
increase dramatically during the times of the two wars and the 1918 influenza pandemic.
The posterior distributions of the standard deviations immediately after the Second World
War are slightly lower than during the conflict period. In the early 1950s the standard
deviations narrow considerably and with a lower median level. The upper deciles of the
predicted posterior standard deviations from the RV model, in the future time period, are
much lower than those of the SV model.

Posterior predictive plots of the forecasted rt from the IN-RV, AR(4)-RV and AR(8)-
RV models are presented in the bottom row of Figure 3. In comparison to the correspond-
ing SV models, the forecast uncertainty is much lower. For the IN model, the inclusion of
the RV terms reduces the width of the predictive distribution even further (in comparison
to the CV and SV models) with the difference between the 90th and 10th percentiles being
0.010 for the IN model. Similar to the CV and SV models, the uncertainty decreases from
independent normal to AR(4) and then remains fairly stable.
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Table 2: Posterior means (standard deviations) of random variance shift
model parameters from MCMC simulations
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4.4 Model-averaged forecasts

We estimated posterior probabilities, f(m|y{T}), for all models, using the approach de-
scribed in Section 3.5. These are displayed in the top panel of Table 3. Note, the posterior
probabilities for the models with AR component of order 5 or higher were very close to
zero and hence are aggregated. A replicable demonstration of the calculations, performed
in R using the tsbridge package (Abel, G.J. and Wong, J.T.S. 2013), is provided in the
online supplementary materials.

Over all 27 models, the posterior model probabilities give strong support both the
IN-SV model and the AR(1)-SV model (posterior probabilities of 0.828 and 0.126 re-
spectively). Other SV models have some small amount of support. All models with a
constant variance and random variance shift terms appear very unlikely with posterior
model probabilities close to zero.

The predictive probability distributions of rt, averaged over all models, are presented
in the top left hand panel of Figure 5. Because a sample from the posterior of probabil-
ity distribution of each individual model is generated in the analysis, calculation of the
averaged predictive probability distribution over all models is straightforward. Not sur-
prisingly, this plot strongly resembles the IN-SV model forecast in Figure 3, for which
large posterior model probabilities were obtained. However, one should keep in mind that
it also includes a small amount of information from other SV models. On the top right
hand panel of Figure 5, we present the resulting population forecasts from the predictive
probability distributions of rt. Our results provide a median predictive population of 62.9
million in 2032 with the 10th percentile at 55.2 million and the 90th percentile at 71.6
million.

A considerable contribution in the width of the 80% prediction intervals in the top
panel of Figure 5 are generated by large tails in the forecast distributions, represented by
the lighter, yellow colours. For example, the 60% prediction interval for the population
in 2032 (9.0 million) is almost half the size of the 80% prediction interval (16.4 million).
We found that smaller tails of forecasted distributions are produced if we dropped all
stochastic volatility models from the anlaysis. These are shown in the bottom panel of
Figure 5, where the medians are very close to those produced under all models. Forecasts
are based predominately on a combination of the AR(2)-RV and IN-RV models with
posterior probabilities of 0.558 and 0.440 respectively.

The decision to only consider RV models to account for non-constant variance might
be of interest to potential user for a couple of reasons. First, the wider forecast distribu-
tions from the inclusion of the SV models originate in the different specification of the
time-varying variance term, σt. In the SV models the size of the tails of the forecasted
distribution are influenced by the τ parameter, for the variance of the volatility. Its esti-
mate, and hence the forecasts are based on all past observations including periods of great
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changes in the volatility during and between the wars. In contrast, in the RV models the
future uncertainty in the forecasted distribution is predominately dictated by the estimate
of σT in the last observed period of the differenced series. As the estimated level in the
last period is at a historic low, see Figure 4, the smaller variance is carried through to the
forecast. The RV model does allow for future increases (or decreases) from this estimated
small variance, via ε the probability of a shift. However, as shown in Table 2 these proba-
bilities were relatively low. Second, as illustrated in the next section, for recent in-sample
forecasts made in low volatility periods they appear to be better calibrated.

Figure 5: Joint predictive probability distribution of the model averaged
growth rates (left) and population forecast in millions (right) over
all models (top panel) and only constant variance and random
variance shift (bottom panel
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Table 3: Posterior model probabilities for both the full data series (top) and
four reduced data series with different end points (bottom)

Full Sample
Model CV SV RV
IN 0.000 0.828 0.000
AR(1) 0.000 0.126 0.000
AR(2) 0.000 0.031 0.000
AR(3) 0.000 0.015 0.000
AR(4) 0.000 0.001 0.000
AR(5)-AR(8) 0.000 0.000 0.000

Truncated Samples
Last Data Point: 1900 Last Data Point: 1925
Model CV SV RV Model CV SV RV
IN 0.019 0.251 0.170 IN 0.000 0.661 0.073
AR(1) 0.019 0.050 0.096 AR(1) 0.000 0.079 0.004
AR(2) 0.003 0.023 0.084 AR(2) 0.000 0.107 0.001
AR(3) 0.061 0.017 0.084 AR(3) 0.000 0.051 0.008
AR(4) 0.030 0.007 0.069 AR(4) 0.000 0.012 0.002
AR(5)-AR(8) 0.006 0.001 0.010 AR(5)-AR(8) 0.000 0.002 0.001

Last Data Point: 1950 Last Data Point: 1975
Model CV SV RV Model CV SV RV
IN 0.000 0.476 0.000 IN 0.000 0.744 0.000
AR(1) 0.000 0.251 0.000 AR(1) 0.000 0.125 0.000
AR(2) 0.000 0.119 0.000 AR(2) 0.000 0.060 0.000
AR(3) 0.000 0.132 0.000 AR(3) 0.000 0.064 0.000
AR(4) 0.000 0.019 0.000 AR(4) 0.000 0.007 0.000
AR(5)-AR(8) 0.000 0.002 0.000 AR(5)-AR(8) 0.000 0.000 0.000

The RV models tend to have lower posterior probabilities than the SV models, espe-
cially for longer series, as they require considerably more parameters in the specification
of the σ2

t . In the SV models, the σ2
t series are estimated using three time constant param-

eters (ψ0, ψ1 and τ ) and another T time varying ht parameters. The RV models has only
two time-constant variables (ε and λ) but twice the amount of time varying parameters in
δt and βt. The higher number of parameters tend to lead to a small posterior density for
the RV models in comparison to the SV models, which in turn can lead to small poste-
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rior probabilities, when the observed data does not clearly support a variance-shift type
structure. However, for the purposes of forecasting population, the RV models can poten-
tially provide a more effective control for outlier events in the past data, such as war and
epidemics.

5. In-sample forecast validation

In this section, we show how the posterior model probabilities and associated forecasts
change when four different time periods are used to fit the models: 1841-1900, 1841-
1925, 1841-1950 and 1841-1975. For each of the four time periods, we fitted the same
27 models described in Section 4 and then calculated the posterior model probabilities
to produce model averaged forecasts. These in-sample forecasts were made for 25 years
beyond the range of data used for fitting, to enable a comparison with actual observed
rates, in order to validate the approach.

In the two bottom panels of Table 3, we present the posterior model probabilities
for all 27 models fitted to each of the four time periods described above. As with the
full sample in the top panel, the low posterior probabilities for models with AR orders
of 5 and higher were aggregated for presentation purposes. For the first set of models,
based on population data from 1841-1900, we find the IN-SV model has the largest model
probability of 0.251, followed by the IN-RV model, and then other SV and RV models.
For this period, there was a small amount of support for the models with constant variance.
For the second forecast, based on data from 1841-1925, the model probabilities indicate
a large support for the IN-SV models with a probability of 0.661. The third forecast,
based on data from 1841-1950, resulted in the large model probabilities for IN-SV and
AR(1)-SV models as was the case for the final forecast based on data from 1841-1975. In
comparison to the model probabilities for the full sample forecast presented in the upper
panel of Table 3, the forecasts with end points 1925, 1950 and 1975 are similar in that
they all have considerable model probabilities for SV models, especially the IN-SV for the
longer series. In all cases, there was very little support for the constant variance models.

To illustrate how the model averaged forecasts performed in relation to the observed
data, we present the posterior predictive distributions for the four periods in the top panel
of Figure 6.For the first forecast, several data observations appear in the tails of the fore-
cast distributions, suggesting that the forecast uncertainty may be somewhat underesti-
mated, due to the fact that, prior to 1900, there was no experience of a period of extremely
high variability. The second and third forecasts, not surprisingly, exhibited considerably
more uncertainty, as they were based on data which included recent periods of high vari-
ability. In the case of the third forecast, which took place just before a dramatic fall,
the first future observation (the population growth rate in 1950) is still within the 5th
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percentile of the predictive distribution. For the last forecast, we see the uncertainty de-
creases somewhat, after the variance shifts to a period of relatively low volatility. Here,
the observed data remain within the 30th and 70th percentiles.

The posterior predictive distributions for the four periods based only on constant vari-
ance and random variance shift models are shown in the bottom panel of Figure 6. The
forecasted distributions are wider than those based predominately on the SV models for
data cut at 1925 and 1950, due to higher variances levels estimated in the RV models
during these base years. In the case of the series ending in 1925, there are too few ob-
servations beyond the war and pandemic to shift variance levels downwards, as suggested
by models fitted to the entire data series (as in Figure 4). Conversely, as with the 2007
forecast in the previous section, they provide narrower forecasted distributions in low
volatility periods. In the case of the forecast from the series ending in 1975 the forecast
distribution appears to be better calibrated to future observed values that the forecasts
based predominately on the SV models.

Figure 6: In-sample forecasts with data cut at 1900, 1925, 1950 and 1975
based on all models (top panel) and only constant variance and
random variance shift (bottom panel)
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6. Conclusion

In this paper, we have explored the use of Bayesian models to forecast a single time series
of population data in England and Wales from 1841 to 2007 forward to 2032. The key
issue has been the specification of uncertainty in the forecasts. We have shown that both
the forecasted medians and measures of uncertainly can differ considerably depending on
the time series model used. This was reconciled by developing a Bayesian approach which
combines forecasts from different models, with weights determined by how well models
fit the observed data. We found that models which allow the underlying variance to shift
at particular time points fitted the observed data well. They also provided a realistic
assessment of forecast uncertainty which balances recent levels of variability with the
probability that variance shifts may occur in the future, at a rate which is estimated based
on the historical prevalence of such events.

The contributions of this paper are threefold. First, we have presented the Bayesian
approach to time series forecasting for use in population applications. The computational
steps required to estimate the model parameters have also been illustrated. Second, we
have shown how Bayesian models are capable of including multiple sources of uncer-
tainty. In particular, we extended standard autoregressive time series models to include
stochastic volatility, random variance shifts and model averaging. In this paper, we have
introduced these ideas by using relatively simple time series data, in order to develop a
framework for incorporating Bayesian methods to produce population forecasts, and to
gain a good understanding of the benefits. The results show the limitations of using a sin-
gle model, particularly in the specification of uncertainty. While the underlying inputs we
have used in this paper are relatively simple, the results can be used to provide a bench-
mark for specifying uncertainty in more complex projection situations that include, for
example, age and demographic components of change (fertility, mortality and migration).
These methods will also be valuable for forecasting other single demographic indicator
variables, such as total fertility rates or life expectancies. Third, we have applied random
variance shift models based on McCulloch and Tsay (1993), to forecast future popula-
tion. We found these models, which to our knowledge have not previously been applied
to demographic data, effectively controlled forecasts for the observed volatility.

Future work should consider modelling the demographic components of population
change. Separate series of births, deaths and migration can be modelled as a multivariate
time series process using Bayesian vector autoregressive models. This decomposition
may be further continued by modelling subnational populations (and the flows between
them) and by incorporating age structures. These extensions, which we are currently
investigating, are likely to reduce the uncertainty of population forecasts in comparison
to those presented in this paper. Here, the recent work on modelling fertility (Tuljapurkar
1999; Heilig et al. 2010; Alkema et al. 2011, 2012), mortality (Pedroza 2006; Girosi and
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King 2008; Raftery et al. 2013) and migration (Brierley et al. 2008; Bijak 2010; Raymer,
J., Wiśniowski, A., Forster, J.J., Smith, P.W.F. and Bijak, J. 2013) provide good starting
points. However, as the projection models become more complex, the relative importance
of expert opinion will increase (see Bijak and Wiśniowski (2010) ). Fortunately, the
Bayesian approach allows data and uncertainty in parameters and model choice to be
fully quantified using probability distributions. In our implementation, prior distributions,
which was kept weakly informative, had minimal influence on the final forecasts. This is
not likely to be the case with more detailed forecasts, or in situations where the availability
of data is lacking.

In conclusion, this work is relevant as most statistical agencies still rely on ‘high’
and ‘low’ variants to communicate uncertainty around their principal population projec-
tions. Such variants have a number of drawbacks with the most prominent being a lack of
specificity regarding the probability range of the high, low or even principal variants (for
discussion, see Keilman, Pham, and Hetland (2002) or Lutz and Goldstein (2004)). In
response, demographers and statisticians have developed frequentist methods to calculate
probabilistic forecasts that describe the uncertainly of future populations by relying on
time series models, expert judgements or extrapolation of past forecast errors (Keilman
2001; Keilman, Pham, and Hetland 2002). Methods have also been developed to combine
elements of each of these approaches, for example, the parameters from time series mod-
els have been constrained according to expert opinions (Lee and Tuljapurkar 1994) or to
target levels and age distributions of fertility and mortality (Lutz, Sanderson, and Scher-
bov 2001). However, the use of Bayesian methods, which have the potential to bring all
of these ideas together, are only recently gaining prominence in population forecasting
(Bryant and Graham 2013; Raftery et al. 2012). We hope this paper illustrates some of
the advantages of the Bayesian approach and motivates researchers to carefully consider
not only if but how they include uncertainty in their forecasts.
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Appendix

Adding a plot of prior distributions to those generated from the plot.mcmc command
in the coda package is not straight forward. In this appendix we illustrate some R code
to enable the prior and posterior distributions to appear on the same plot for each of the
model types illustrated in this paper.

The nodes function in the tsbugs package provides a data.frame on the parameters
used in the prior part of the BUGS script. Using the ar2 object (see Section 4.1) we may
illustrates its output,

> pp <- nodes(ar2.bug, part="prior")
> pp

name type dt beg end stoc id dist param1 param2
1 phi1 ~ dnorm(0,1) NA NA 1 2 dnorm 0.000000 1.000000
2 phi2 ~ dnorm(0,1) NA NA 1 3 dnorm 0.000000 1.000000
3 isigma2 ~ dgamma(0.000001,0.000001) NA NA 1 4 dgamma 0.000001 0.000001
4 sigma <- pow(isigma2,-0.5) NA NA 0 5 <NA> NA NA

The MCMC simulations for these parameters, stored in the ar2 object can be extracted
after defining our parameter set, theta, as those parameters that have prior distributions
directly defined in the BUGS script,

> pp <- subset(pp, stoc==1)
> theta <- pp$name
> j <- length(theta)
> param.mcmc <- as.mcmc(ar2$sims.matrix[,theta]).

These simulations, that are now mcmc type objects, can be plotted using the plot.mcmc
command,

> par(mfrow=c(j,2))
> plot(param.mcmc, auto.layout=FALSE).

Note, we suppress the auto.layout in the plot.mcmc, allowing us to fix the plotting
area to take j rows (the number of parameters) and two columns defined in the previous
line. This produces a plot, much like that in Figure 2 in the paper.
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To add the posterior densities to the plots, we consider each density plot in the second
column within the for loop below,

> par(mfrow=c(j,2))
> for(i in 1:j){

par(mfg=c(i,2))
densplot(param.mcmc[,i], yaxt="n", xaxt="n")
xx <- par()$usr[1:2]
xx <- seq(min(xx) ,max(xx), length=1000)
f <- match.fun(pp$dist[i])
if(pp$dist[i]=="dnorm") pp$param2[i] <- 1/sqrt(pp$param2[i])
lines(xx, f(xx, pp$param1[i], pp$param2[i]), col="orange")

}

Within the loop, we first select the plotting area using the mfg graphical parameter, then
overlay the exiting plot with the same posterior density. Second, using the usr graphical
parameter, information on the range of the x-axis is first saved, and then used to create a
sequence of numbers within the minimum and maximum values. Third, the distribution
function of the prior parameter is stored as function labelled f. In addition, if this func-
tion is dnorm the second, precision parameter, stored in the pp object is converted to a
standard deviation. Finally, the density of the given prior distributions and its parameters
are calculated for values over the range of the x-axis and plotted as a orange line. The
output from this sequence of code for the ar2 object is shown in Figure A-1.

The code above can also be used to plot prior and posterior distributions for the
stochastic volatility and random variance shifts models. This can be done after defin-
ing pp as the BUGS script produced in the paper, from sv2.bug or rv2.bug and the
param.mcmc object as the corresponding MCMC simulation results, stored in sv2 or
rv2. These plots are shown in Figures A-2 and A-3.
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Figure A-1: Trace plots, posterior and prior (orange) densities of AR(2) model
parameters
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Figure A-2: Trace plots, posterior and prior (orange) densities of AR(2)-SV
model parameters
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Figure A-3: Trace plots, posterior and prior (orange) densities of AR(2)-RV
model parameters
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