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A spatial population downscaling model for integrated human-
environment analysis in the United States

Hamidreza Zoraghein1

Brian C. O’Neill2

Abstract

BACKGROUND
Spatial population models are important to inform understanding of historical
demographic development patterns and to project possible future changes, especially for
use in anticipating environmental interactions.

OBJECTIVE
We document, calibrate, and evaluate a high-resolution gravity-based population
downscaling model for each US state and interpret its historical urban and rural spatial
population change patterns.

METHODS
We estimate two free parameters that govern the spatial population change pattern using
the historical population grids of each state. We interpret the resulting parameters in light
of the spatial development pattern they represent. We evaluate the model by comparing
the resulting total population grid of each state in 2010 against its census-based grid. We
also analyze the temporal stability of parameters across the 1990–2000 and 2000–2010
decades.

RESULTS
Our analysis indicates varying levels of performance across states and population types.
While our results suggest a consolidated change pattern in urban population across states,
rural population change patterns are diverse. We find urban parameters are more stable.

CONCLUSIONS
The model’s adaptability, performance, and interpretability indicate its potential for
depicting historical state-level spatial population changes. It assigns these changes to
different representative categories to assist interpretation.

1 Population Council, New York, NY, USA. Email: hzoraghein@popcouncil.org.
2 Pardee Center for International Futures, Josef Korbel School of International Studies, University of Denver,
Denver, CO, USA. Currently at Joint Global Change Research Institute, Pacific Northwest National Laboratory,
College Park, MD, USA.
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CONTRIBUTION
We document and evaluate a gravitational model as well as investigate historical state-
level spatial population changes. This research facilitates future work creating projections
of the spatial distribution of population at the subnational level, especially those
according to the Shared Socioeconomic Pathways (SSPs), widely used scenarios for
climate change research.

1. Introduction

Projections of population, both in the form of its aggregate size and spatial distribution,
are critical for modeling land-use/land-cover change, urbanization, vulnerability
assessment, and sustainable development. For example, spatial population dynamics are
a key driver of land-use/land-cover change, which can happen either directly through
conversion to residential, industrial, or commercial lands, or indirectly by conversion of
different types of land cover to agricultural uses (Bierwagen et al. 2010; Braimoh and
Onishi 2007; Gao and O’Neill 2019; Meiyappan et al. 2014; Verburg et al. 2004). In
addition, projecting changes in spatial population distribution is an essential element in
anticipating future exposure of the population to changes in natural hazards ensuing from
climate change, including flooding (Jongman et al. 2015), wildfires (Knorr, Jiang, and
Arneth 2016), sea level rise (Hardy and Hauer 2018; McGranahan, Balk, and Anderson
2007; Neumann et al. 2015; Reimann, Merkens, and Vafeidis 2018), heat waves
(Georgescu et al. 2014; Jones et al. 2015), and epidemiological events such as outbreaks
of vector-borne diseases (Caminade et al. 2014; Hales et al. 2002). Population projection
models that can be modified to produce alternative futures consistent with broader
socioeconomic scenarios such as the Shared Socioeconomic Pathways (SSPs) (O’Neill
et al. 2017) facilitate the integration of population changes with assessments of
population vulnerability, which are critical for preparedness and adaptation measures
(Rohat 2018).

Well-informed outlooks for future risks and adaptation planning are especially
consequential in areas that experience rapid population growth and urbanization. These
areas may exert ecological and socioeconomic pressure on their inhabitants and
surroundings (Jones and O’Neill 2013), which can be manifested as threats to protected
lands and biodiversity (Güneralp and Seto 2013) or elevated energy demands and
emissions (Dodman 2009; Ewing and Rong 2008; Raupach, Rayner, and Paget 2010;
Zhang et al. 2018), to name a few.

There are several ways to model the spatial distribution of population, with varying
levels of complexity. The approaches can be as simple as using population fixed at the



Demographic Research: Volume 43, Article 54

https://www.demographic-research.org 1565

current level (Gasparrini et al. 2017; Hanasaki et al. 2013), or scaling the existing spatial
distribution of population proportional to aggregate national projections (Dong et al.
2015; Lehner and Stocker 2015). More complex approaches include those employing
gravitational equations (Grübler et al. 2007; Jones and O’Neill 2013) and multivariable
intelligent dasymetric modeling (McKee et al. 2015).

Spatially explicit population projections were first generated mostly for regional or
city scales (Ballas, Clarke, and Wiemers 2005; Landis 1994; Stimson et al. 2012; Zwick
and Carr 2006). However, the emergence of large-scale consistent population datasets
such as the Gridded Population of the World (GPW) (CIESIN 2018), Global Rural-Urban
Mapping Project (GRUMP) (Balk et al. 2006), LandScan Global (Dobson et al. 2000),
and LandScan USA (Bhaduri et al. 2007), as well as remotely sensed land-cover/land-
use products such as the National Land-Cover Database (NLCD) (Homer et al. 2015) and
Global Human Settlement Layer (GHSL) (Pesaresi et al. 2016) has facilitated the
development of large-scale (global/national) spatially explicit population projections
(Jones and O’Neill 2013, 2016; McKee et al. 2015), which have been especially useful
for large scale environmental issues such as climate change (Jones et al. 2015).

In this paper we document, detail, and evaluate a spatial population model for the
United States that produces projections at high resolution (1km) tailored to each state.
The model takes state population as an input and produces a projection of spatial
distribution within the state that is consistent with the aggregate state total. Model
parameters governing the spatial pattern of the development produced by the model can
be calibrated (or specified) separately for each state. The combination of flexibility in
representing different spatial development patterns in different states, a uniform approach
and model structure for all states, and comprehensive national coverage of all population
and land area makes the model also well suited to national-level studies that require
spatial population projections as one input to integrated analyses. As noted above,
examples of such analyses include projections of spatial land use in the United States and
its environmental consequences; understanding potential future population exposure and
vulnerability to natural hazards, including those related to climate change; and
anticipating spatial patterns of energy demand and pollutant emissions. This work fills a
gap that exists between large-scale global and national spatial population projection
models that lack subnational subtleties, making them too generalized for local analysis
(Bengtsson, Shen, and Oki 2006; Jones and O’Neill 2016; van Vuuren, Lucas, and
Hilderink 2007), and local population projections that do not have sufficient spatial
coverage to be used in studies with national scope (Ballas, Clarke, and Wiemers 2005;
Stimson et al. 2012).

Our work is founded on the gravity-based population downscaling model developed
by Jones and O’Neill (2013), based on earlier work by Grübler et al. (2007). This model
has several advantages. First, it relies on multiple ancillary datasets that make the model
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adaptive and able to be improved as new data become available. Second, the well-defined
structure of the model makes it easy to adapt to different study areas and requirements.
Third, its underlying gravitational form employs two parameters that are estimated based
on historical population data. These parameters characterize different patterns of spatial
population change, leading to its distinctive and data-driven interpretation in a study area.
This is an important feature of this model, allowing it to be modified to reflect different
types of spatial population change, and therefore well suited to generate population
projections consistent with a range of alternative socioeconomic scenarios in the future.
We summarize several new characteristics of the model that distinguish it from the
previous works by Jones and O’Neill (2013, 2016).

 It is applied to all 50 states individually, rather than at the national or regional level.
 It downscales aggregate state-level population to higher resolution (1km) grids

using updated historical population data based on the highest resolution spatial units
disseminated by the US Census.

 The implementation of the model is parallelized to accommodate the parameter
calculation at 1km resolution.

 The spatial mask layer is created separately for each state using more accurate
national and state-level datasets.

 The method of parameter estimation is modified and includes two steps to
thoroughly search for optimal values within a range informed by parameter
interpretation.

 An explicit interpretation of parameter values is provided, reflecting implied
patterns of spatial population change.

 Model performance is evaluated against observed changes over a recent decade.
 A test of parameter stability over time is provided.

We apply the model separately to the rural and urban population of each state in
2000 and 2010, leading to interpretations of state-specific historical rural and urban
population change patterns during this period based on the values of two parameters that
are estimated for each state. We evaluate the model on a state-by-state basis by comparing
spatial model projections for 2010 with spatial data based on disaggregating census
blocks.

This paper seeks to provide the research community with a documented and useful
tool that, based on historical experience, can produce high resolution spatial distributions
of population for each US state consistent with the IPCC’s shared socioeconomic
pathways (SSPs). We elucidate several aspects of this tool and evaluate it using historical
census data, leaving producing scenario-based state-level population projections for our
future work. Therefore, the two primary contributions of this paper are the detailed



Demographic Research: Volume 43, Article 54

https://www.demographic-research.org 1567

specification of the model and its evaluation, in conjunction with the interpretations it
provides of historical urban and rural spatial population patterns in each state.

2. Methodology

2.1 Overview

The model takes a spatial downscaling approach that converts aggregate population
change of an area over a given time period to changes in the population of grid cells
within it. The basic approach was developed in Grübler et al. (2007) and further refined
by Jones and O’Neill (2013), who particularly added the estimate of model parameters
from historical data. In our application, aggregate population change occurs at the level
of US states for two separate populations (rural and urban), the time step is 10 years, and
the grid cell resolution is 1km. Rural and urban populations can coexist within a given
grid cell. The allocation of the aggregate population changes is based on rural and urban
suitability values calculated per cell (discussed below), which determines the
attractiveness of the cell to gain population. When population increases, aggregate
population change is allocated to grid cells proportional to the suitability of each cell.
When it decreases, the aggregate change is allocated proportional to the inverse of the
suitability of each cell. This approach is consistent with the assumption that the most
attractive cells should gain the most population when it increases and lose the least
population when it diminishes. Figure 1 illustrates how the model works.

The central element of the model is the determination of the suitability surface,
which is done using a gravity-based, parameterized, negative exponential equation
adapted from similar models used in transportation, urban, and economic geography. In
addition, a spatial mask is used to modify suitability to account for physical or political
constraints on population location. Parameters in the suitability equation are estimated
from historical data to determine how the existing population configuration influences
the spatial distribution of population in the next time step. In particular, the approach
accounts for the role of population agglomerations and their proximity in determining
where and to what extent population changes are likely to occur.
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Figure 1: High-level illustration of the population downscaling model

The model is composed of calibration and projection components. The first
component estimates model parameters based on historical population grids, and the
second produces population projection grids. In this paper we focus on the calibration
component and apply it to each US state to analyze different types of rural and urban
population change patterns. The lessons we learn from this stage provide a basis for
applying the model to the development of alternative future scenarios and their
corresponding population grids. The input data of the model can be found at Zoraghein
and O’Neill (2020), and the code for the calibration component that generated the
resulting parameters is available from Zoraghein, O’Neill, and Vernon (2020).

2.2 Suitability

The suitability value of a cell is a numeric proxy for all qualities such as its local
amenities, network connectivity, and economic opportunities that make it attractive or
repellent to population change. It is assumed that suitability can be modeled as a function
of the population in surrounding cells, as well as by accounting for physical or other
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constraints on population location. Equation 1 shows the mathematical notation of the
gravity-based equation used to derive the suitability value of each cell.1

𝑣𝑖 = 𝑙𝑖 ∑ 𝑃𝑗𝛼 × 𝑒−𝛽𝑑𝑖𝑗𝑛
𝑗=1 (1)

In Equation 1, vi is the suitability value estimated for the focal cell i (for either urban
or rural population, a distinction not represented here); li is the mask value modifying the
suitability of the focal cell, depending on its topographic and other characteristics
(described in the next section); Pj is the total population of the neighboring cell, j; and dij

is the distance between the focal cell and its neighboring cell. The summation over j is
performed for n cells contained in the neighborhood within100km of the focal cell,
following previous work (Jones and O’Neill 2013, 2016) on representing a distance
estimate over which existing amenities are influential in attracting population in the
United States (Santos et al. 2011). Consequently, the neighborhood for each cell includes
all cells within the state and those in other states that fall within the 100km buffer.

The α and β parameters govern the importance of existing surrounding population
concentrations (within the neighborhood defined by n) and their accessibility (a function
of distance) in determining the suitability value, respectively. We detail the interpretation
of these two parameters in Section 2.5. Although the model calculates the two parameters
separately for the rural and urban population, the population element of Equation 1 is the
total population. This implies that the suitability of the rural and urban population
allocation to a given cell is associated with the presence of both population types in
surrounding cells.

2.3 Spatial mask

We derived a mask value for each cell to exogenously constrain population allocation
according to physical barriers such as elevation, slope and land-cover, and mandates
determined by both federal and state governments in the form of preserved areas. While
Jones and O’Neill (2016) employ global datasets to derive a global mask layer, and Jones
and O’Neill (2013) use more generalized and coarser resolution datasets to create their
mask layer for the coterminous United States, we used high resolution spatial datasets
with a more diverse set of categories that constrain population settlement. The
combinatory mask value ranges from 0 to 1, with 0 being completely unsuitable for
population settlement and 1 indicating no constraints.

1 The equation used in Jones and O’Neill (2013, 2016) also includes a border adjustment factor (a). However,
we decided not to use it as the inclusion of that factor increases the processing time while not changing estimated
parameters significantly (B. Jones, pers. comm.).
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We either established new decision rules or followed the recommendations of
previous studies to quantify the influence of each contributing factor on the mask value.
For elevation we established a two-threshold approach: if the highest elevation in a state
was lower than 1000 meters we set 1000 meters as the elevation threshold for that state.
Otherwise, we derived the maximum elevation across populated census blocks from
Census 2000 in each state and used that value as its elevation threshold. This two-step
decision reflects our distinction between states in which elevation is not a prohibitive
factor due to their mild topography and those with topographical barriers to the
population allocation that should specifically be addressed.

For slope, we used 25% as the threshold beyond which population allocation is not
allowed, following previous work (Jones and O’Neill 2013, 2016). We excluded open
water, perennial ice/snow, and wetlands as uninhabitable land-cover types. We
incorporated federal land mandates by setting Department of Defense lands, national
forests, national wildlife refuges, and national parks as not allowable for population
settlement. Finally, we also treated state parks, county parks, airports, golf courses, and
cemeteries as uninhabitable. Figures A-1 and A-2 in the Appendix illustrate the steps to
create the spatial mask layer and how the combinatory mask value is calculated for a cell,
respectively. Moreover, we have listed the specific data sources in Table A-1 of the
Appendix.

2.4 Parameter estimation

The calibration component of the model estimates the rural and urban α and β parameters
for each state using historical rural and urban population grids in 2000 and 2010. We
created these historical grids using census blocks as the smallest set of enumeration units
with mutually exclusive rural/urban categories. We describe creating these historical
grids in the Appendix. Parameters are estimated at values that, when applied to the
population distribution of a given state in 2000, minimize the sum of absolute differences
between projected and actual grids for that state in 2010 (Figure 2).
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Figure 2: The calibration process of the gravity-based population downscaling
model
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Previous work (Jones and O’Neill 2013, 2016) used the Generalized Reduced
Gradient (GRG) algorithm to solve an unconstrained local optimization problem. We
modified this approach in three ways. First, we used the Sequential Least SQuares
Programming (SLSQP) (Kraft 1988) method rather than GRG for local optimization
because it was faster than other algorithms in reaching a similar pair of optimized
parameter values. Second, we treated the problem as a constrained rather than
unconstrained optimization, since meaningful limits on parameter values could be set that
reduced computational time and improved the ability to find a globally optimal solution.
Boundaries for the two parameters (alpha = [–2.0, 2.0] and beta = [–0.5, 2.0]) were
identified as thresholds beyond which changes to the parameters were not meaningful
given the model structure. For example, high values of β heavily discount the population
of surrounding cells, and with values above 2 the effective distance within which
surrounding cells matter to the suitability of the focal cell is not more than a single cell
(1km, see Figure A-4). Given that beta values equal to or greater than 2 translate to a
similar interpretation of the influence of neighboring cells, we set its maximum threshold
to 2. On the other hand, large negative values of the parameter exponentially intensify
the influence of large distances. Our experiments with incorporating α and β beyond these
thresholds resulted in negligible changes in the value of the objective function while
increasing the processing time of the optimization considerably.

Third, in order to produce the best initial value for the local optimization, we first
generated a matrix of parameter values by dividing [–1.0, 1.0] into 10 intervals for α, and
[0, 1.0] into 5 intervals for β. We used these subsets of the final ranges to establish a high-
resolution matrix of pairs that were likely to serve as relevant candidate initial points for
the second step of the optimization. We calculated the objective function value for each
combination of parameters and selected the pair with the lowest objective function value

2.5 Interpretation of parameters

The α parameter indicates the degree to which the population size of surrounding cells
translates into the suitability of a focal cell. A positive value indicates that the larger the
population that is located within the 100km neighborhood of a focal cell, the more
suitable it is for population allocation (while a negative value of alpha would imply a less
suitable focal cell). A value of 1 indicates that the contribution of surrounding cells is
proportional to their population size. Values greater than 1 indicate that the population of
surrounding cells has a strong (more than proportional) effect on the suitability of a focal
cell, meaning that new population development would occur predominantly in or very
near to already-settled areas. By contrast, values of alpha below 1 indicate that the
population of surrounding cells has a weaker (less than proportional) effect on the
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suitability of a focal cell, meaning that new population development would occur less
strongly in already-settled areas.

The β parameter reflects the significance of distance to surrounding cells for the
suitability of a focal cell. It should be seen within the context of the window or
neighborhood structure of the suitability equation: the characteristics of cells more than
100km from the focal cell have no effect on the suitability of that cell. Within 100km, β
determines how distance modifies the effect on suitability. Because the exponent in
Equation 1 is the negative of β, the higher the positive value of the parameter, the greater
the deterrent effect of distance. For higher values of β, local population distributions
prevail in determining the suitability of a focal cell and the presence of more distant (but
still within 100km) population centers matters less. In other words, between two
hypothetical focal cells, if the value of β is high, one with neighboring populous cells
would be much more suitable for allocation of new population than one with similarly
populous cells located farther away. By contrast, negative values of the parameter imply
a lower friction of distance, so that the population characteristics of distant cells matter
more than the population of nearer cells to the suitability of a focal cell. When β is 0, it
means distance does not matter, and each cell contributes to the suitability of the focal
cell proportional to its population raised to α.

Figure 3 illustrates the influence of varying values of α and β on how attractive a
focal cell is for population growth or how prone it is to population loss, depending on the
direction of change in the aggregate population being downscaled. The quadrant in which
estimated parameters of a state fall implies a broad characterization of the historical
pattern of spatial population change it has experienced.

When parameters fall in the first (upper right) quadrant, it represents consolidated
population growth because population gain tends to concentrate close to areas that are
already populated. A positive value of α leads to a preference for cells with large
populations in the surrounding region (within their 100km window), and a positive value
of β implies that focal cells closer to existing settlements within that region are preferred.

When α is negative while β is still positive, as characterized by the second (upper
left) quadrant, a low-density population growth pattern can be conceived. The negative
value of α means that focal cells with low population within their 100km windows are
preferred, while the positive β value implies that within that region, cells near the highest
local population densities are preferred. According to this pattern, new population is more
likely to be located close to existing small towns (i.e., the highest density locations within
generally low-density areas).
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Figure 3: The influence of α and β on the suitability of a focal cell

The third (lower left) quadrant represents rural development or new small settlement
growth, which implies the growth of population far from existing population settlements.
The negative α means that focal cells in low population regions are preferred, while the
negative β implies that within that region, settlement away from existing (small)
population centers is preferred.

Finally, the fourth (lower right) quadrant represents population sprawl. Population
growth tends to occur in highly populated regions because the positive α favors focal
cells with high populations within their 100km window. However, the negative β implies
that within that area, focal cells farther away from populous centers are preferred because
distance does not act as a prohibitive factor. In contrast to the consolidation pattern, the
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sprawling pattern represented by this quadrant still favors growth around populous
centers (positive α) within their 100km surrounding region but away from the centers.

We can derive a similar set of categorizations for population decline. If the
parameters lie in the first quadrant they imply rural decline, as remote cells with low
concentration of population in their surroundings are more prone to population loss.
Parameters in the second quadrant indicate a pattern where cells in populated regions but
away from populous centers lose more population. Due to the spatial arrangement this
pattern creates, it represents consolidation-oriented decline. When parameters fall in the
third quadrant they signify a high-density decline, as cells adjacent to populous centers
in highly populated regions tend to lose more population. Finally, parameters in the fourth
quadrant suggest a low-density decline, as cells close to small towns (population centers
in low-density regions) are more prone to population loss.

These interpretations are broad characterizations, each representing the
quintessential population settlement pattern associated with a quadrant. However,
depending on where the parameters of a state fall within a quadrant, the degree to which
its pattern follows these archetypes will differ.

3. Results and discussion

3.1 State-level parameters

Figure 4 shows state-level choropleth maps of the distribution of the estimated α and β
parameters for the rural and urban population, while Table A-2 in the Appendix includes
the values. For each population type, those states with population decline over the 2000–
2010 decade are distinguished with white borders.

Increases and declines in population impose direct effects on the estimation of α and
β parameters. Over the 2000–2010 decade, rural population diminished in 24 states,
whereas Michigan was the only state with urban population loss. According to the census,
there was no rural population in the District of Columbia.

Figures 5 and 6 illustrate scatterplots of resulting urban and rural parameters,
respectively. We divided the plots into four quadrants consistent with Figure 3. We also
differentiated states based on their sign of population change to reflect the points included
in Figure 3.
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Figure 4: State-level (a) α for rural population, (b) β for rural population, (c) α
for urban population, and (d) β for urban population. Population-
declining states have white borders

Both Figures 5 and 6 reveal that in many cases the optimal β value (and to a lesser
extent the optimal alpha value) occurs at its maximum allowable limit. Typically, such a
pattern implies that the constraint is overly restrictive and is determining the outcome.
However, in this case our results indicate that in many instances the influence of the
population of surrounding cells on the suitability of a focal cell is strictly limited to
adjacent cells (or very remote cells when the inverse of suitability is considered in the
case of population decline). This condition is represented by a very large β value, and the
result is not sensitive to its precise value as long as it is at or above 2. Our approach limits
the computation time spent searching for a precise value, while capturing the fact that a
very large beta value is optimal and interpretable.

Figure 5 shows that all states with urban population growth fall in the first quadrant,
suggesting a consolidated urban growth pattern. Higher values of α and β in this quadrant
indicate stronger consolidation. On the other hand, lower values represent less significant
dominance of populous clusters to absorb the growth and more diffuse settlement around
clusters.
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Figure 5: Scatterplot of state-level urban α and β parameters

Figure 6: Scatterplot of state-level rural α and β parameters
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Figure 7 shows a negative association between urban α values and urbanization
levels of states with growing urban populations. This suggests increasing returns to scale
in states that have lower levels of urbanization, where urban growth occurs most strongly
in the most heavily populated regions (100km windows). Conversely, in highly urbanized
states, urban population growth is less strongly concentrated in the most highly populated
regions. The only exception is Rhode Island with both high α and urbanization, which we
suppose results from the small area of the state and its low β, allowing more flexible
urban population settlement and high urbanization.

Figure 7: Relation of urbanization levels of US states in 2010 (except Michigan)
to their estimated urban α parameters

Michigan, as the only state with urban population decline, lands in the second
quadrant, suggesting a consolidation-oriented decline pattern. This is consistent with the
historical pathway that Detroit has experienced as the dominant urban center in the state
(McDonald 2014).

Figure 6 shows that states with the highest rural population growth – such as Alaska,
Wyoming, Arizona, Maine, and Idaho – fall in the first quadrant, following the
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consolidated pattern, with rural growth occurring preferentially in highly populated
regions, but to varying degrees. Estimated β values also differ, suggesting variation in the
importance of proximity to populated centers within these highly populated regions. The
states with rural population gain and negative α parameters that follow low-density
population growth patterns are Indiana, Maryland, North Carolina, Virginia, Connecticut,
and Rhode Island. The low rural population growth in these states tends to settle close to
existing population centers in low density regions. Texas, Kentucky, Tennessee, Georgia,
New Hampshire, and Washington are six states with growing rural populations with their
parameters in the fourth quadrant, pointing to a sprawling development pattern. In
general, high negative β in this quadrant could suggest either a high level of accessibility
for distant rural areas or urban to rural migration. However, the resulting β values are
close to 0, except for New Hampshire, suggesting no significant preference on distance.

Many states with significant rural population decline such as Nevada, Nebraska,
North Dakota, Kansas, and Massachusetts are situated in the second quadrant with the
maximum allowable β and varying degrees of α. They follow the consolidation-oriented
decline pattern, suggesting that rural cells in more highly populated regions but away
from populated centers within those regions are most prone to population loss. Oregon,
Iowa, Alabama, Louisiana, and Utah are five states with rural population decline that lie
in the first quadrant, pointing to a pattern of decline in the most remote, low-density areas.
The rural population decline in the majority of these states is small. The very low β for
some of these states indicates the insignificant role of where lightly populated areas are
in the surroundings of focal cells.

3.2 Spatial autocorrelation

We performed spatial autocorrelation analysis at both global and local scales by deriving
the global Moran’s I and LISA (Local Indicators of Spatial Association) measures
(Anselin 1995) for four parameters, namely rural α, rural β, urban α, and urban β. Our
definition of neighbors for each state in this analysis is consistent with that used in
Equation 1 to derive its parameters, i.e., in addition to its adjacent states, the set extends
to embody those states that intersect a bandwidth of 100km around a given state. Finally,
we constructed a binary spatial weights matrix accordingly to formulate the spatial
connectivity between states, and row-standardized it. Hawaii and Alaska were not part of
the analysis due to lack of neighbors. In the 49 by 49 matrix, each state is represented by
a row, with values that are either 0 or 1 divided by the number of its neighbors.

Figure A-5 shows the Moran scatterplots for all parameters. It demonstrates that no
parameter has a strong global measure of spatial autocorrelation, indicating no overall
spatial clustering for any of the parameters. However, local spatial autocorrelation in the
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form of a few hot-spots and cold-spots exist for all parameters except the urban β, shown
in Figure A-6.

3.3 Model evaluation

We evaluated the model by comparing the projected population grid in 2010 based on the
optimal pair of parameters for each state with the corresponding observed (block-based)
grid. We derived cumulative distribution functions (cdf) of errors for the urban, rural, and
total population of each state. However, we emphasize total population results here since
the primary output of the model is a set of total population grids (sum of urban and rural)
to be employed in integrated human-environment analysis. In the resulting cdf plots, the
horizontal axis represents the absolute values of percentage differences in 2010, while
the vertical axis is the corresponding cumulative population percentage (that is, the
percentage of the population in locations with less than a specific level of error). Errors
are calculated based on mean population values over 10km by 10km windows to alleviate
the spatial mismatch issue typical at the original 1km resolution. Figure 8 shows these
plots, based on total population grids, for several states spanning a range of resulting cdfs,
while Figure 9 includes those resulting from urban and rural population grids. Table A-3
in the Appendix lists absolute percentage differences corresponding to 50% and 90% of
the population for all states. Moreover, Figure A-7 in the Appendix presents block-based
and estimated total population grids for two sample states in 2010 as well as their mean
population difference maps.

Plots with a narrower distribution indicate better model performance, since lower
absolute percentage differences are associated with higher proportions of the state
population, whereas wider distributions indicate the contrary. For instance, Figure 8
demonstrates that the model performs better in states such as Connecticut, Massachusetts,
New Jersey, and New York than in Arizona, Nevada, and Texas.
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Figure 8: CDF plots based on total population grids

Figure 9: CDF plots based on urban and rural population grids
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These plots and Table A-3 point to several observations. First, the model’s
performance is generally lower for rural populations. Rural blocks are usually larger that
urban blocks with fewer residents, leading to higher uncertainty associated with rural
population grids. Specifically, this different performance is more striking in states such
as Florida, California, New Jersey, Massachusetts, New York, and Connecticut (see also
Table A-3 in the Appendix). This may also result from high urbanization levels in these
states, where higher absolute values of percentage differences in rural population do not
influence the measure in total population. Second, for some states, although absolute
percentage differences are mostly low, the existence of a few populated areas with
relatively large errors lead to abrupt widening of their cdf. This, for example, explains
the shape of the distribution for North Dakota in Figure 8. According to Table A-3, the
absolute percentage difference corresponding to 90% of the state’s population is six times
higher than the value at 50% of the population. Third, the model’s performance in Texas,
Nevada, and Arizona is lower, which probably results from the model’s inability to
capture different patterns of spatial population change that had taken place in these
expansive states. This contrasts with populous but relatively small states in the Northeast,
where performance is generally high.

Overall, the results indicate that many states (plus the District of Columbia) have
low absolute percentage differences at 50% and 90% of their population (Figure 10).
Particularly, 34 and 49 states out of the total 51 are associated with absolute percentage
differences lower than 10% and 20% at 50% of their population, respectively.
Furthermore, the value is lower than 20% and 30% at 90% of the population in 18 and
38 states, respectively. This indicates this model’s potential, tailored to incorporate US-
specific input data, for generating more accurate high-resolution spatial distributions of
population projections at the US state level than global models that have not been
designed for subnational applications.
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Figure 10: Absolute percentage differences at 50% and 90% of the total
population in each state

3.4 Temporal stability

To analyze the temporal stability of rural/urban α and β parameters, we also estimated
them using population grids in 1990 and 2000. Figure 11 shows the scatterplots of the
estimated parameters from both decades with selected states labelled. Because reversal
in the sign of the aggregate population change between the two decades inherently leads
to disparate sets of parameters representing divergent narratives (see Section 2.5), we
excluded such states from this analysis, reducing the number of states to 31 and 48 for
the rural and urban population, respectively.

According to Figure 11, parameters are temporally stable for some states. Texas,
Arizona, Montana, Alaska, and New Mexico are examples of states with stable rural
parameters. Kentucky, New Hampshire, Nevada, North Dakota, and South Carolina
represent those with stable urban parameters. On the other hand, the difference between
resulting parameters for several states is substantial. For example, the rural parameters of
New Jersey, Massachusetts, California, and Colorado, as well as the urban parameters of
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North Carolina, Massachusetts, California, and Texas show substantial changes across
the two decades.

Figure 11: Scatterplots of rural and urban parameters from both periods with
some states labelled

Table 1 summarizes the temporal stability analysis of the participating states.
According to Table 1, the stability is higher for urban parameters. Around 88% and 79%
of urban α and β values have changed less than 25% across the two decades, while these
values are 58% and 45% for rural parameters. Some factors contribute to temporal
changes in parameters in addition to the reversal in aggregate population change. First,
the criteria for the urban definition employed by the US Census have evolved (Balk et al.
2018). This leads to temporally inconsistent depictions of rural/urban historical
population grids in 1990, 2000, and 2010, which in turn might impact the estimation of
parameters (Section 7 in the Appendix). This is aggravated for the rural population, as it
is treated as the residual after the urban population is determined. Second, even when the
sign of the aggregate population change remains intact, the settlement pattern inside the
state might have varied, leading to temporal inconsistency in its parameters. For example,
Figure 12 shows that the rural population decline in Massachusetts and New Jersey had
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been more severe over the first decade than the second decade. This might have translated
to the two separate patterns (high-density and consolidation-oriented decline) determined
by the model across the two time periods.

Table 1: The number of states with parameter changes below 10% and 25%
between the two decades

Population type α Change < 10% β Change < 10% α Change < 25% β Change < 25%
Rural1 11 12 18 14
Urban2 23 27 42 38

Number of participating states: 31.
Number of participating states: 48.

Figure 12: Proportional rural and urban population change of all states during
1990–2000 and 2000–2010 periods
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4. Conclusion and future directions

In this paper we documented, calibrated, and evaluated a gravity-based population
downscaling model for each US state. We completed this process for both rural and urban
population over the 2000–2010 period based on the assumption that splitting the model
into two parts would lead to more accurate total population grids, which will be the
primary output of the model for integrated human-environment analysis in the United
States. We contextualized parameters in terms of the type of spatial population change
that has occurred in states, establishing a semantic framework and mapping pairs of state-
level rural and urban parameters to distinctive categories of spatial population change
such as consolidation, low-density, small-settlement, and sprawl. This interpretation
depends on the direction of the aggregate population change.

We evaluated the model’s performance in producing the observed spatial
distribution of population in 2010. We found that for most states the absolute percentage
difference, at 10km by 10km windows, is lower than 20% and 30% at 50% and 90% of
their population. We also analyzed the temporal stability of parameters when estimated
on data for the decade from 1990 to 2000. We observed higher temporal stability in urban
parameters with changes mainly lower than 25% over time.

The evaluation of the model shows different levels of performance across states.
There are several factors that impact the performance of the model in some states:

 Although we used the smallest set of census units, deriving historical population
grids from these units is error-prone, especially in large rural blocks with low
population. Moreover, spatial boundaries of census blocks change over time,
resulting in different levels of uncertainty in allocating population to their
constituent cells from one census year to another.

 The census’s underlying urban/rural definition has not been consistent over time.
Therefore, observed urbanization changes can occur through two different
processes, one based on the actual urbanization growth and the other resulting from
some areas being classified as urban according to the newer set of criteria. This
makes it hard for the model to capture the net result of both with available
parameters. This is aggravated for rural population as the census classification
emphasizes urban areas and treat residuals as rural.

 Possible variation in the spatial population change at the sub-state level that cannot
be represented with a single pair of parameters.

 Relationships between population change and other spatial development patterns
such as land-use and economic activity that cannot be explained by the population-
driven gravity model.
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Overall, the model’s ability to project a decade of spatial population change, its
adaptability, and its interpretability in terms of archetypical patterns of spatial population
change all lend confidence to its suitability for applications to generate alternative future
spatial development scenarios, that encompass uncertainty in the range of possible future
developments. This points to the model’s potential implementation in integrated
assessment applications such as risk assessment in relation to environmental hazards,
resource allocation, and land-use/land-cover change analysis at the subnational scale. The
parsimonious structure of the model allows for easy incorporation of different scenarios
of spatial population change.

Our future work focuses on potential solutions to improve the model and generate a
set of grid-level population projections according to distinctive socioeconomic scenarios
such as the SSPs. There are several approaches that could improve the model’s
performance. First, instead of transferring the population of blocks to grid cells merely
based on their overlapping areas, using large-scale ancillary variables such as Historical
Settlement Data Compilation for the United States (HISDAC-US) (Leyk and Uhl 2018)
and Microsoft building footprint layer1 will lead to more precise population allocation,
especially in large rural blocks. Second, developing consistent data-driven definitions of
urban and rural land will alleviate the uncertainty arising from their current temporal
incompatibility and provide more reliable historical urban and rural population grids.
Third, including exogeneous contributors to the spatial population change, such as land-
use, proximity to coastal areas, and economic activity, will enhance the model’s
performance. However, any modification in that direction should maintain the model’s
ability to easily adjust to alternative scenarios. Finally, based on this paper’s explanatory
framework that maps model parameters to different patterns of spatial population change,
we will define scenarios and generate projections of the spatial distribution of population
accordingly.
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Appendix

1. Spatial mask

The model considers exogenous factors that influence the suitability value of a cell. These
factors are topography, land-use/land-cover, and policy mandates, which have varying
effects on the potential settlement of a cell. Therefore, we first collected datasets that
represent these determinants in each state. We then applied spatial overlay, aggregation,
and polygon-to-raster operations to produce a 1km resolution combinatory spatial mask
raster for each state. Table A-1 shows the datasets that were used to create the spatial
mask layer, as well as their characteristics and sources. Moreover, Figure A-1 illustrates
the process for generating the layer for each state.

Table A-1: Datasets that were used to create the state-level spatial mask layer
Factor Dataset Type Source

Elevation and
Slope

National
Elevation
Dataset

Raster
(30m
resolution)

https://datagateway.nrcs.usda.gov/

Land-cover National
Land-Cover
Database

Raster
(30m
resolution)

https://www.mrlc.gov/

Federal
mandates

Federal Lands Polygon https://hifld-geoplatform.opendata.arcgis.com/datasets/federal-lands

State
mandates

State Lands Polygon https://www2.census.gov/geo/tiger/TIGER2016/AREALM/

https://datagateway.nrcs.usda.gov/
https://www.mrlc.gov/
https://hifld-geoplatform.opendata.arcgis.com/datasets/federal-lands
https://www2.census.gov/geo/tiger/TIGER2016/AREALM/
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Figure A-1: Steps to create the state-level spatial mask layer
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Finally, Figure A-2 demonstrates the estimation of the mask value for a given cell.

Figure A-2: Schematic illustration of the calculation of the spatial mask value for
a cell

2. Historical population grids

We used blocks – as the smallest aggregation unit disseminated by the US Census – to
generate historical population grids at 1km resolution. By contrast, Jones and O’Neill
(2013) use census tracts, census populated places, and county-level data, but transferred
to 1/8 degree resolution, and Jones and O’Neill (2016) use the GRUMP and GPW V3
data, which are based on census tracts in the United States, also at 1/8 degree resolution.
GRUMP takes a different approach to defining rural and urban population than we used
in this paper. It employs global nighttime imagery to delineate urban lands, whereas our
approach utilizes the US Census criteria applied to blocks.

Census blocks are statistical areas bounded by visible features such as roads,
streams, and railroad tracks, as well as by non-visible boundaries such as property lines,
city, township, school district, county limits, and short line-of-sight extensions of roads
(Rossiter 2011). Although census blocks are generally small, their boundaries vary
spatially. In urban areas they typically correspond to a city block bounded by surrounding
streets. In rural areas, on the other hand, their spatial extent may be much larger, and in
very remote areas they can encompass hundreds of square miles. The total population of
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census blocks is also diverse, ranging from 0 in many cases to several hundred or even
thousands in blocks located in densely populated cities. The number of census blocks has
risen significantly in response to changes in population development and urbanization,
increasing from just over 7 million in 1990 to over 11 million in 2010 (Balk et al. 2018).

Blocks are the only census spatial units that are either urban or rural, reflected in
their rural/urban classification attribute. Therefore, it is possible to create two mutually
exclusive sets of urban and rural blocks for both 2000 and 2010 using the tabular and
spatial datasets provided by the Minnesota Population Center (2016). We rasterized these
sets of urban and rural blocks to provide 1km resolution population grids, and then
disaggregated them by state. Each grid cell can have both rural and urban population
values. Figure A-3 demonstrates the process for generating historical rural/urban
population grids.
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Figure A-3: Steps to create historical rural/urban population grids in 2000 and
2010
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3. The Beta effect on suitability

Figure A-4 shows the effect of high beta values on estimating the suitability value of a
focal cell. It demonstrates that as the value of β increases, the influence of surrounding
cells is more limited to those that are close-by. When β equals 2, contiguous cells
represent almost the whole distance effect, overshadowing others.

Figure A-4: The distance decay effect with different β values

4. Spatial autocorrelation analysis

A highly significant global Moran’s I for each of the rural α, rural β, urban α, and urban
β parameters indicates that the process that has generated its spatial distribution is not
random. The LISA measure, on the other hand, focuses on each state, assessing if
statistically significant hot spots (states with higher than average values surrounded by
neighbors with also higher than average values) or cold spots (states with lower than
average values surrounded by neighbors also with lower than average values) exist.
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According to Figure A-5, none of the global Moran’s I measures is statistically significant
at the 0.05 significance level.

Figure A-5: Moran scatterplots for rural/urban α and β parameters

Figure A-6 demonstrates that a few statistically significant local hot spots and cold
spots exist for all the parameters except the urban β. Hot spots and cold spots for the rural
parameters in Figure 6 only indicate clusters of high and low values, respectively, and
their interpretation could be different based on the sign of the rural population change.
For example, both Idaho and Louisiana belong to clusters of high rural α, but the
interpretation of this parameter is different for Idaho, where the rural population is
growing, than for Louisiana, where the rural population is declining. This is also the case
within the large northeastern cold-spot cluster for the same parameter in that the
interpretation of low rural α is different for a state such as Pennsylvania (with rural
population decline) than for Connecticut (with rural population gain). On the other hand,
when the sign of the population change is consistent across a region, a single narrative
can be assigned. For example, South Dakota and its neighbors in the urban α map
represent a region with high dominance of current population agglomerations to attract
the growing urban population.
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Figure A-6: Hot-spot and cold-spot maps for rural/urban α and β parameters

5. State-level urban and rural parameters

Table A-2: Estimated rural and urban alpha and beta parameters for all states
and the District of Columbia

State Alpha (Rural) Beta (Rural) Alpha (Urban) Beta (Urban)
Alabama 1.03 0.06 1.47 2.00
Alaska 0.60 1.03 1.36 2.00
Arizona 0.25 2.00 0.84 2.00
Arkansas 0.52 0.17 1.69 1.39
California –1.79 2.00 0.81 2.00
Colorado 0.77 0.02 1.13 1.66
Connecticut –0.33 0.50 1.20 2.00
Delaware –1.33 2.00 0.73 2.00
DC - - 2.00 1.50
Florida –1.54 2.00 0.78 1.95
Georgia 1.53 –0.07 1.17 1.40
Hawaii 0.18 2.00 1.00 2.00
Idaho 0.40 1.82 1.48 1.52
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Table A-2: (Continued)
State Alpha (Rural) Beta (Rural) Alpha (Urban) Beta (Urban)
Illinois –1.18 2.00 1.03 2.00
Indiana –0.19 2.00 1.37 1.76
Iowa 0.59 0.03 1.81 1.50
Kansas –0.41 2.00 1.52 1.81
Kentucky 1.20 –0.06 1.46 2.00
Louisiana 1.54 0.62 1.14 2.00
Maine 1.17 0.09 2.00 2.00
Maryland –0.28 2.00 1.04 2.00
Massachusetts –2.00 2.00 1.06 1.07
Michigan –2.00 2.00 –2.00 2.00
Minnesota –0.87 0.02 1.25 1.94
Mississippi 0.74 0.07 2.00 1.06
Missouri 0.17 0.74 1.28 2.00
Montana 0.78 0.30 1.58 2.00
Nebraska –0.65 2.00 1.84 0.95
Nevada –0.75 2.00 1.50 0.20
New Hampshire 0.99 –0.20 1.48 0.90
New Jersey –1.85 2.00 0.85 2.00
New Mexico 0.46 0.79 1.33 2.00
New York –1.82 2.00 1.39 2.00
North Carolina –0.13 2.00 1.75 0.39
North Dakota –0.44 2.00 2.00 1.03
Ohio –1.91 2.00 1.26 1.07
Oklahoma 0.72 0.06 1.66 2.00
Oregon 0.44 0.43 1.40 2.00
Pennsylvania –1.49 2.00 1.26 2.00
Rhode Island –0.34 1.00 2.00 0.46
South Carolina –2.00 2.00 1.46 1.13
South Dakota –0.47 2.00 2.00 1.12
Tennessee 0.79 –0.01 1.33 1.71
Texas 0.74 –0.01 1.21 0.96
Utah 2.00 0.08 0.87 2.00
Vermont 0.08 1.42 2.00 1.78
Virginia –0.09 0.20 1.35 2.00
Washington 2.00 –0.06 1.13 2.00
West Virginia –0.76 2.00 1.85 1.13
Wisconsin 2.00 –0.02 1.27 2.00
Wyoming 0.54 1.22 1.81 2.00
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6. Absolute values of percentage differences

Table A-3: Absolute values of percentage difference at 50% and 90% of the
urban, rural, and total population

State Urban Error
at 50%

Urban Error
at 90%

Rural Error at
50%

Rural Error at
90%

Total Error at
50%

Total Error at
90%

Alabama 13.60 45.06 8.87 28.92 9.91 29.44
Alaska 5.20 35.79 16.56 56.67 7.11 32.69
Arizona 21.35 75.42 22.01 70.45 20.82 71.82
Arkansas 13.90 35.38 10.02 25.83 10.54 30.03
California 7.66 21.27 13.67 48.99 7.66 19.29
Colorado 17.47 34.82 11.70 40.11 15.84 32.07
Connecticut 3.25 8.14 8.93 25.06 2.76 6.00
Delaware 11.32 42.29 18.18 39.86 11.35 23.30
DC 6.66 16.64 - - 6.66 16.64
Florida 14.18 35.90 18.40 52.50 13.91 33.70
Georgia 17.78 44.75 12.54 34.52 14.53 33.49
Hawaii 11.40 19.37 31.70 54.52 12.62 18.11
Idaho 12.72 27.94 9.80 31.93 10.85 28.79
Illinois 7.42 23.08 6.83 25.65 7.17 21.09
Indiana 11.48 26.88 6.51 20.92 8.34 22.83
Iowa 8.13 22.49 6.04 22.09 6.33 17.41
Kansas 9.72 32.12 8.67 22.85 9.07 25.92
Kentucky 8.10 34.34 7.36 21.47 6.49 22.85
Louisiana 10.07 36.56 11.91 35.82 9.02 30.63
Maine 4.56 18.11 5.28 19.44 4.78 11.72
Maryland 7.10 17.12 10.19 30.19 6.20 17.13
Massachusetts 2.93 9.63 12.03 32.58 2.27 7.67
Michigan 6.70 27.73 6.66 23.39 6.18 22.23
Minnesota 10.57 24.64 8.15 25.14 9.86 22.23
Mississippi 17.24 44.37 9.72 32.77 11.84 29.87
Missouri 9.23 28.19 8.09 24.17 8.59 22.51
Montana 9.64 23.33 10.53 35.45 8.29 25.51
Nebraska 12.21 27.56 8.00 24.88 9.11 22.19
Nevada 23.89 52.85 19.61 58.92 23.89 51.97
New Hampshire 7.38 19.35 8.67 25.57 6.48 13.63
New Jersey 4.01 10.17 16.22 49.25 3.66 8.34
New Mexico 13.16 30.75 12.32 43.72 11.97 29.52
New York 2.71 9.97 5.42 21.67 2.71 9.04
North Carolina 16.54 40.75 10.05 27.95 10.49 31.13
North Dakota 2.89 42.00 10.39 33.53 6.44 38.55
Ohio 9.11 23.48 6.22 20.25 6.64 19.34
Oklahoma 8.72 21.18 8.49 26.45 8.11 20.41
Oregon 5.96 14.14 7.60 27.98 5.75 13.67
Pennsylvania 6.93 19.01 7.83 25.66 6.83 14.69
Rhode Island 2.23 12.08 5.54 24.88 2.26 12.33
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Table A-3: (Continued)
State Urban Error

at 50%
Urban Error

at 90%
Rural Error at

50%
Rural Error at

90%
Total Error at

50%
Total Error at

90%
South Carolina 18.18 45.38 9.70 29.44 12.44 35.48
South Dakota 13.23 27.32 9.41 33.08 11.89 23.09
Tennessee 10.91 34.58 7.95 23.59 7.80 28.55
Texas 16.59 37.41 11.86 37.94 15.83 33.73
Utah 14.55 39.32 13.76 43.31 14.58 31.45
Vermont 3.90 32.83 4.46 19.97 3.53 13.19
Virginia 11.53 25.23 9.66 29.94 11.04 21.33
Washington 7.87 18.73 12.60 36.13 7.41 17.20
West Virginia 11.22 34.30 8.39 25.21 7.33 21.67
Wisconsin 7.34 21.22 6.68 21.83 5.94 16.04
Wyoming 5.42 17.50 12.13 44.57 6.67 21.16

7. US Census inconsistency in defining ‘urban’

The US Census has not employed a single set of criteria to classify blocks as either rural
or urban. As Table A-4 indicates, the census criteria grow to be more urban-inclusive
over time (Balk et al. 2018). Therefore, the reason why some states lose rural population
rapidly might be partially due to the census reclassifying some blocks that were rural in
2000 to urban in 2010. One way to disentangle the actual rural population decline from
the reclassification-induced part is to establish a consistent set of criteria to define rural
and urban, which is not the focus of this current work.

Table A-4: Summary of the US Census definition of ‘urban’ over time
Spatial Product Year Urban Proxy Definition Population Spatial

Resolution

U.S. Census Blocks
1990 Population density and count dependent.

Variable Variable based
on population

2000 Population count, density, and proximity dependent.
2010 Population count, density, proximity, and urban land-use dependent.

8. Maps of total population and mean population difference

Figure A-7 shows observed (block-based) and estimated total population grids for New
York (a state with relatively low error) and North Carolina (a state with relatively high
error) in 2010. It also shows mean population differences (estimated – observed) for these
states.
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Figure A-7: (a) Block-based total population distribution, (b) estimated total
population distribution, and (c) mean population difference for New
York in 2010, and (d) Block-based total population distribution, (e)
estimated total population distribution, and (f) mean population
difference for North Carolina in 2010
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