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Abstract

BACKGROUND
Discrete-time event history analysis (EHA) is the standard approach taken when
modelling fertility histories collected in surveys, where the date of birth is often recorded
imprecisely. This method is commonly used to investigate the factors associated with the
time to a first or subsequent conception or birth. Although there is an emerging trend
towards the smooth incorporation of continuous covariates in the broader literature, this
is yet to be formally embraced in the context of birth events.
OBJECTIVE
We investigate the formal application of smooth methods implemented via generalized
additive models (GAMs) to the analysis of fertility histories. We also determine whether
and where GAMs offer a practical improvement over existing approaches.
METHODS
We fit parity-specific logistic GAMs to data from the UK Household Longitudinal Study,
learning about the effects of age, period, time since last birth, educational qualification,
and country of birth. First, we select the most parsimonious GAMs that fit the data
sufficiently well. Then we compare them with corresponding models that use the existing
methods of categorical, polynomial, and piecewise linear spline representations in terms
of fit, complexity, and substantive insights gained.
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RESULTS
We find that smooth terms can offer considerable improvements in precision and
efficiency, particularly for highly non-linear effects and interactions between continuous
variables. Their flexibility enables the detection of important features that are missed or
estimated imprecisely by comparator methods.
CONTRIBUTION
Our findings suggest that GAMs are a useful addition to the demographer’s toolkit. They
are highly relevant for motivating future methodological developments in EHA, both for
birth events and more generally.

1. Introduction

Surveys provide a rich source of fertility data through collecting retrospective birth
histories from individuals alongside personal, family, and neighbourhood characteristics.
As the time of birth tends to be recorded imprecisely to the nearest month or year,
methods that treat time as discrete are typically required (Steele 2005). To this end,
discrete-time event history analysis (EHA) is the standard approach taken in the literature,
commonly using a logistic setup (Steele 2005; Van Hook and Altman 2013). Modelling
the log-hazard is also common (Fiori, Graham, and Feng 2014; Kravdal and Rindfuss
2008; Kulu and Washbrook 2014).

Research published in this area typically focuses on investigating the factors
associated with entry into parenthood and progression to subsequent births. Covariates
examined include:

 education (Begall and Mills 2013; Kravdal 2001; Piotrowski and Tong 2016; Zang
2019)

 parental fertility behaviour (Kim 2014; Morosow and Trappe 2018; Riise,
Dommermuth, and Lyngstad 2016)

 region or residential context (Fiori, Graham, and Feng 2014; Hank 2002; Kulu 2013;
White et al. 2008)

 receipt of welfare benefits (Erlandsson 2017)
 marital dissolution (Ivanova, Kalmijn, and Uunk 2014).

Methodological developments in the EHA of births include computing summary
fertility measures (Retherford et al. 2010; Van Hook and Altman 2013), accounting for
unobserved differences between women (Kravdal 2001), taking a Bayesian approach
(Lewis and Raftery 1999; McDonald and Rosina 2001), and implementing sophisticated,



Demographic Research: Volume 47, Article 22

https://www.demographic-research.org 649

data-driven methods to select parametric representations of covariates (Muggeo,
Attanasio, and Porcu 2009; Raftery et al. 1996).

This paper presents a methodological examination of the different ways in which
continuous time-varying and time-invariant covariates5 can be incorporated into fertility
analyses, focusing on the relevant “clock” variables (Raftery et al. 1996), i.e., age, period,
cohort, and time since last birth. Following a review of the existing approaches in Section
2, in Section 3 we identify an important avenue for development, namely the use of
smooth methods. Such methods allow more precise estimation of effects by making less
restrictive assumptions and more effective use of the data. However, despite their
increasing usage in the broader literature, they are yet to be formally adopted in the
context of birth events.

To this end, the aims of this paper are twofold. First, we investigate the formal
application of smooth methods to the analysis of birth event histories. Second, we
quantify and visualise the impact of representing continuous covariates using smooth
methods versus existing methods in terms of fit, complexity, and substantive insights
gained, and assess how this varies with parity.

2. Review of literature regarding ways of representing continuous
covariates

2.1 Categorical representations

The simplest approach is to discretise the continuous variable to create a categorical
variable. This is termed a ‘piecewise constant’ representation, as the effect is the same
within each interval but can differ between intervals. The method is very common in the
literature. For example, 5-year categories are often used for age (Jefferies, Berrington,
and Diamond 2000; Morosow and Trappe 2018). Justification for this includes
insufficient data for stable single-year estimates and the frequent use of 5-year age groups
in age-specific fertility rates (Van Hook and Altman 2013).

In terms of cohort, group widths of 5 years (Lewis and Raftery 1999; Muggeo,
Attanasio, and Porcu 2009; Zang 2019), 10 years (Begall and Mills 2013; Kim 2017),
and varying sizes (Piotrowski and Tong 2016; White et al. 2008) have been chosen.
Similarly, 5-year groups (Kulu and Washbrook 2014; Raftery et al. 1996) and single-year
categories (Erlandsson 2017; Torrisi 2020) have been used to represent period. Riise,

5 We do not consider categorical variables because the only flexibility that they afford is the choice of the
categories themselves.
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Dommermuth, and Lyngstad (2016) specify 10-year groups relating to the period of the
woman’s first birth.

Various categorical representations of time since last birth (TSLB) can be found in
the literature. Sometimes TSLB is truncated. For example, Retherford et al. (2010) and
Erlandsson (2017) use single-year categories with maxima of 10 and 7 years respectively;
Retherford et al. (2010) justify the omission of births occurring after 10 years by their
rarity.6 Often TSLB is top-coded. Ivanova, Kalmijn, and Uunk (2014), Jefferies,
Berrington, and Diamond (2000), and Torrisi (2020) top-code TSLB at 7, 10, and 11
years respectively; the preceding values are grouped into several categories with widths
of 1–4 years.

Torrisi (2020) states that the choice of categories (<2, 3–6, 7–10, 11+ years) was
informed by the fast-changing nature of the underlying hazard early in the birth interval,
compared to the slower declines exhibited later. The parameter estimates across these
papers imply an increasing hazard peaking at 2–3 years after the previous birth, followed
by a sustained decrease. This is consistent with Timæus and Moultrie (2008, 2020).

2.2 Polynomial representations

We henceforth consider approaches that treat the clocks as continuous, in order of
increasing complexity. The assumption of a linear effect only requires one parameter,
which is highly restrictive. Therefore, it is unsurprising that applications to age and
TSLB, which are known to have complex, non-linear associations with fertility, are rare.
Raftery et al. (1996) experiment with a linear term for cohort, while linear period effects
are chosen by Kulu (2013), Muggeo, Attanasio, and Porcu (2009), and Lewis and Raftery
(1999).

A quadratic representation allows the covariate effect to exhibit curvature. This is
pertinent when estimating the effect of age, where the natural age-related decline in
fecundability gives rise to a biological deadline, and the existence of social age deadlines
and age norms limit childbearing even further (Billari et al. 2011; Van Bavel and Nitsche
2013). The ability to detect the resulting standard bell-shaped pattern of age (e.g., see
Peristera and Kostaki (2007)) makes quadratic parameterisations appealing (e.g., see Kim
2014, Piotrowski and Tong 2016, White et al. 2008; and Zang 2019). Piotrowski and
Tong (2016) and Zang (2019) additionally model TSLB quadratically, thereby capturing
the peaking behaviour.

More complex polynomial specifications have also been proposed, such as the cubic
age effect in Raftery et al. (1996): the presence of two turning points allows not only the

6 A similar justification for a 10-year cut-off is used by Ní Bhrolcháin (1987) in the context of calculating period
parity progression ratios (see footnote 23). Also see p.112 of Hinde (1998).
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peak but also a change in the rate of decline at older ages to be detected. Despite
continuous non-linear representations of cohort and period being uncommon in the
literature, they could allow demographic phenomena such as baby booms and busts to be
captured.

2.3 Spline representations

Although higher-degree polynomials offer greater flexibility than linear terms, their
assumptions are still quite restrictive and they may lack parsimony. Piecewise linear
splines approximate the effect with a series of line segments joined at knots, the number
and locations of which are user-specified (Kulu 2013). In this way the required
parameters are slopes for each interval, and an overall intercept (Kulu 2013); this may be
less parsimonious than the corresponding categorical approach or polynomial
specifications, but allows underlying patterns to be detected with greater precision.

In the literature, Begall and Mills (2013), Fiori, Graham, and Feng (2014), Kravdal
and Rindfuss (2008), and Kulu and Washbrook (2014) use piecewise linear splines to
estimate their age effects. In their models of progression to first birth, knots are at
intervals of around 5 years, with those estimating age effects for higher parities choosing
fewer knots; this reflects the prior knowledge that the age effect simplifies as parity
increases. The models of first birth and higher-order births strongly support this assertion
– a quadratic age term for entry into motherhood may be reasonable, but for higher
parities the effect tends to change to a decline alone, making the choice questionable.

Papers utilising piecewise linear splines for the age effect also use them for TSLB:
three or four knots are specified, typically at intervals of 2–3 years. Muggeo, Attanasio,
and Porcu (2009) take the same approach in their model of progression to second birth,
advancing the method by estimating the knot locations and selecting the number of knots
within the modelling process. In all cases the estimates reflect the established form of the
hazard (see Section 2.1).

2.4 Interactions

Interactions between a discretised variable and another categorical variable are often used
(Erlandsson 2017; Morosow and Trappe 2018; Torrisi 2020). The more complex methods
for representing age and TSLB also easily extend to interactions. For example, Kravdal
(2001) and Zang (2019) allow their age effects to vary with educational attainment by
respectively estimating piecewise linear spline and quadratic effects of age for each
education category. The predicted hazard plots in the latter clearly demonstrate how this
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interaction captures the effect of postponement for more highly educated women.
Rondinelli, Aassve, and Billari (2006) do something similar to Kravdal (2001) in their
multi-spell random effect model, but with TSLB and wage level replacing age and
education, and Retherford et al. (2010) modify their baseline hazard by additionally
estimating quadratic functions of time for women with medium or high education levels,
and those living in urban areas.

Muggeo, Attanasio, and Porcu (2009) again provide more advanced examples,
including allowing the slopes and knots of their piecewise linear baseline hazard (see
Section 2.3) to change linearly with cohort category. In conclusion, although
sophisticated interactions are implemented in the literature, they tend to involve a single
continuous variable with a non-linear representation. Interacting more than one would
require advanced methodologies, but could allow intricate relationships such as changes
in the effect of age over time to be captured precisely.

3. Towards a smooth framework for discrete-time EHA for birth
events

Our review of the discrete-time EHA literature for birth events in Section 2 has identified
varying levels of complexity in the incorporation of continuous clocks. Polynomial terms
treat the variable as continuous but make restrictive global assumptions about the form
of the effect; piecewise linear splines make the less restrictive local assumption of a
constant rate of change within each interval, but do not exploit the inherent smoothness
of the underlying effect. There is no borrowing of strength across the intervals – each
slope is estimated independently, constrained only by the need to join at the knots.
Furthermore, the number of parameters required is user-specified and cannot be easily
informed by the data. In these ways the method does not make the most effective use of
the information in the data.

To represent the effect as a smooth function, non-parametric methods are used. They
do not assume a particular parametric form, only smoothness. Rather than being pre-
specified, the complexity of the effect is data-driven and quantified by the effective
degrees of freedom (EDF). This measure exists due to the enforced smoothness, meaning
that parameters borrow strength from each other and are not estimated independently.
Therefore, the EDF is smaller than the actual parameter count, and is a continuous
measure. In summary, the flexibility of smooth methods allows underlying effects to be
estimated more precisely, while their efficiency maintains parsimony.

Section 2 identifies examples in the context of birth events where such properties
might be advantageous. These include curvature in the effects of age and TSLB, non-
linearity in period and cohort effects, and the complexity of the age–time interaction.
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Next, we summarise developments in the discrete-time EHA literature regarding non-
parametric methods, which are yet to be embraced in the context of births.

Non-parametric methods have gradually become more common in the wider
discrete-time EHA literature. Fahrmeir (1994), Fahrmeir and Knorr-Held (1997), and
Fahrmeir and Wagenpfeil (1996) estimate smooth effects of duration and time-varying
effects of other covariates. Studying the transition to motherhood, Galimberti (2002)
achieves something similar by implementing and extending the work of Hastie and
Tibshirani (1990, 1993). Fahrmeir and colleagues argue that parametric forms such as
piecewise polynomials run the risk of missing “unexpected patterns” in these effects, and
propose non-parametric methods as an exploratory technique to inform parametric
specifications (Fahrmeir and Knorr-Held 1997); such sentiments are echoed by Wu
(2003). A consequence of this shift in focus towards the use of smooth methods in EHA
is the greater appeal of established data-driven approaches in the statistical literature (Wu
2003).

One such approach is that of generalized additive models (GAMs), proposed by
Hastie and Tibshirani (1986, 1990); their work is referenced by Fahrmeir and Knorr-Held
(1997) and Wu (2003). GAMs provide a statistical framework in which the main effect
of each covariate, as well as interaction effects, can be estimated as non-parametric
smooth functions. This formalises the challenges of determining both the construction of
the functions and their level of smoothness (Wood 2017). Such issues have been
addressed extensively in the statistical literature, with a plethora of extensions and
efficient computational methodologies developed over the last 30 years (Wood 2020).
GAMs have been applied in fields as diverse as ecology, health, air quality,
geomorphology, statistical learning, finance, and economics.7 The models of Fahrmeir
and Galimberti can be viewed as GAMs with a smooth main effect of duration and
smooth interactions of duration with various categorical variables.

More recently in discrete-time EHA, GAMs have been formally applied in contexts
such as unemployment duration (Berger and Schmid 2018), organisation survival
(Rousselière 2019), and seat reservation (Shao, Kauermann, and Smith 2020). Only
smooth main effects are considered; however, Bender, Groll, and Scheipl (2018) allow
for interactions between duration and another continuous variable, where each can
contribute smoothly or linearly. The authors exploit the theory of generalized additive
mixed models (GAMMs), which incorporate random effects, to provide an alternative to
the Cox model. Therefore, the application of GAMs exists but is not commonplace in the

7 Readers who are familiar with the economics literature may note similarities with the literature on production
and cost functions, namely the comparison between the simple log-linear Cobb-Douglas functional form and
the more complex transcendental logarithmic or ‘translog’ form, which additionally allows interactions. GAMs
have been applied extensively as an alternative to these existing methods, with their flexible, non-linear
specification often found to be advantageous (e.g., see Reyes Santías, Cadarso-Suárez, and Rodríguez-Álvarez
2011 and Ferrara and Vidoli 2017).
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discrete-time EHA literature. The extent of their usage appears limited, with
opportunities to estimate smooth interactions between any pair of continuous variables
remaining unexplored.

This paper presents an application of GAMs to the discrete-time EHA of births. To
the best of our knowledge GAMs have not been used for this purpose, and therefore our
work represents a novel extension in this field which is consistent with the trend exhibited
in the broader literature. We fit logistic GAMs for progression to first, second, third, and
fourth or higher-order births using data from the UK Household Longitudinal Study
(UKHLS), examining the smooth effects of age, period, and TSLB. To determine whether
and where the increased precision and efficiency of GAMs offers a practical
improvement over existing approaches, we then compare our chosen GAMs with
corresponding models fitted using standard methods, both quantitatively and graphically.
The remainder of the paper proceeds as follows: in Sections 4 and 5 we describe the
dataset and our modelling approach respectively, while in Sections 6 and 7 we present
the results and discuss our findings.

4. Data

The UKHLS is a large-scale longitudinal survey of 30,169 UK households (Knies 2018)
which requests birth histories from respondents aged 16 and over (Institute for Social and
Economic Research (ISER) 2020). The survey also collects information on family
background and topics such as education and country of birth (ISER 2020), providing the
opportunity to investigate the dependence of birth events on a range of covariates.

4.1 Analysis sample

We use data from Wave 1 (University of Essex 2017) collected in 2009–2011 (ISER
2020), as it removes the need to deal with the selective attrition present in subsequent
waves (Lynn and Borkowska 2018). Our sample of 22,020 women (457,125 person-
years) includes women who completed a valid fertility history, resided in England or
Wales when interviewed, and lived at least one person-year in the UK during the
observation period (January 1950 – November 2008). Appendix A gives further details
about the sample selection process.
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4.2 Birth events

We arrange our dataset into “person-period” records (Steele 2005). Although we could
take our periods to be months, for computational efficiency we choose to work on the
scale of years (of age) and so consider person-year records in our analysis. We take the
reproductive age range to be 15–44, giving a maximum of 30 records per woman. The
dependent variable in our analyses is a binary response: it takes the value 1 if the woman
had a birth event during that year of age, and is 0 otherwise. The person-year record then
also contains the values of the clocks and any additional covariates. We model
progression to each birth order separately, which means that women can potentially
contribute to more than one model. We discuss the implications of this modelling
decision in Section 7.

4.3 Additional covariates

The focus of this paper is primarily methodological, in that it aims to demonstrate how
GAMs can be used to perform discrete-time EHA of birth events, and to determine for
which variables and parities the use of smooth terms outperforms existing methods. We
are not attempting to provide a comprehensive analysis of the possible determinants of
fertility in England and Wales. Therefore, in addition to the clocks, we consider just two
important characteristics in our analysis: educational attainment and country of birth.
Although these variables will both have categorical representations in our analyses,
theory suggests that they are likely to interact with age and would therefore impact the
estimation of smooth terms.

4.3.1 Educational attainment

There is a large body of literature concerning the predictive nature of educational
enrolment and attainment on fertility. Childbearing is less likely when enrolled in
education for many reasons, including the practical challenge, financial implications, and
social norms (Blossfeld and Huinink 1991; Lappegård and Rønsen 2005). For the most-
educated women, this postponement is likely to continue while they focus on their career
progression and professional goals (Liefbroer and Corijn 1999; Ní Bhrolcháin and
Beaujouan 2012).

The distinction between enrolment and attainment is also reflected in the discrete-
time EHA literature. Attainment is usually represented through a categorical variable
which can be time-constant, typically the highest level at the time of interview (Muggeo,
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Attanasio, and Porcu 2009; Retherford et al. 2010; Torrisi 2020) or time-varying
(Erlandsson 2017; Fiori, Graham, and Feng 2014; Zang 2019). In addition to this, current
enrolment can be accounted for through a time-varying indicator variable (Kravdal 2001,
2007; Piotrowski and Tong 2016; White et al. 2008). The corresponding parameter
estimates are almost always negative – often significantly so.

Our highest educational qualification variable has four categories: Less than General
Certificate of Secondary Education (GCSE) (‘< GCSE’); GCSE; Advanced (A) Level
(‘A Level’); Degree.8 Following Berrington, Stone, and Beaujouan (2015), we reclassify
degree-educated women as ‘A Level’ if their age at leaving full-time education suggests
a break in continuous education; we also impute missing responses. The youngest women
are likely to exceed their highest qualification at interview and so have censored
observations. We develop an imputation model to assign them more appropriate values,
the key assumptions being that the older (pre-1983) cohorts have uncensored
observations, and the probability of being in a given category depends on cohort and
country of birth. Extrapolating the model for the younger cohorts, we adjust the number
of women originally observed in each category to match the implied counts as closely as
possible. Further details can be found in Ellison (2021).

4.3.2 Country of birth

Various hypotheses have been proposed addressing the degree to which immigrants adapt
their fertility behaviour to that of their host nation (Kulu and González-Ferrer 2014).
Substantial support for such hypotheses (Kulu 2005), combined with the large proportion
of live births in England and Wales to non-UK-born women (Office for National
Statistics (ONS) 2020a) justifies the inclusion of country of birth.

We group the responses using the Human Development Index (HDI), which
quantifies the development level of a country by combining health, education, and
standard of living indicators (United Nations Development Programme (UNDP) 2018).
For examples of uses of the HDI in the fertility literature, see Myrskylä, Kohler, and
Billari (2009) and Robards and Berrington (2016). We use the 2018 values (UNDP 2019)
to assign each woman an HDI, assigning appropriate averages to ambiguous or missing
responses. We then use the country groupings (low, medium, high, and very high human
development) to categorise the HDI values, extracting the UK-born women into their own
category.

8 Note that GCSEs are taken at the end of compulsory schooling (age 16); A Levels are taken at age 18 and are
typically a requirement for university admission.
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5. Modelling

5.1 GAM specification

We model progression to first, second, third, and fourth or higher-order births and so
consider current parities 𝑝 ∈ {0,1,2,3+}. We take a period approach in the main text, and
outline the findings from a cohort approach in Section 7. Here, for a parity 𝑝 we specify
the most complex model that includes all of the covariates under consideration, noting
that in practice we can include any subset of these:

 Clocks: 𝐴 = age, 𝑌 = year (period), 𝑇 = TSLB top-coded at 11 years9 (available for
𝑝 > 0)

 Additional covariates: 𝑄 = highest educational qualification, 𝐻 = HDI

Let there be 𝑁 distinct covariate patterns (combinations of the covariate values)
observed in the sample of person-years. For the group of records sharing the 𝑖th covariate
pattern, let 𝑛𝑖 be the group size and 𝑍𝑖 the sum of the 𝑛𝑖 binary responses, i.e., the number
of birth events. We assume a binomial distribution for 𝑍𝑖 with probability 𝑟𝑖, i.e.,
𝑍𝑖~Binomial(𝑛𝑖 , 𝑟𝑖), noting that 𝑟𝑖 is the conditional probability of a birth event given
the included covariates and 𝑝.

Our parity-specific binomial logistic GAM then sets the logit of 𝑟𝑖 equal to the sum
of a series of terms:

 Fixed effects, denoted by 𝐗𝑖𝜷 where 𝐗𝑖 is the 𝑖th row of the fixed effects model
matrix with corresponding parameters 𝜷.

 One-dimensional (1D) smooth functions (i.e., curves), denoted by 𝑓𝑈(𝑢𝑖) for a
generic continuous variable 𝑈 with 𝑖th observed value 𝑢𝑖.

 Smooth functions of the interaction between two variables, denoted by 𝑓𝑈𝑉(𝑢𝑖 ,𝑣𝑖)
for generic variables 𝑈 and 𝑉. Figure 1 summarises the different forms that this can
take, depending upon whether 𝑈 and 𝑉 are categorical or continuous. We note that
if 𝑈 and 𝑉 are continuous, it is a two-dimensional (2D) smooth function (i.e., a
surface); if 𝑉 is categorical (here, 𝑄 or 𝐻), it is a 1D smooth function of 𝑈 for each
level of 𝑉 (and vice versa); and if 𝑈 and 𝑉 are categorical, it is a fixed effect and
therefore absorbed into 𝐗𝑖𝜷.

9 We top-code TSLB because in the preliminary modelling we found that its smooth functions exhibited
noticeably more variability after around 11 years due to a lack of data; the choice is also consistent with
Retherford et al. (2010) (see Section 2.1).
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Figure 1: Decision tree to illustrate the different forms that 𝒇𝑼𝑽(𝒖𝒊, 𝒗𝒊), the
interaction between generic variables𝑼 and 𝑽, can take

Following on from this, we present the most complex form of our GAM:

logit(𝑟𝑖) = 𝐗𝑖𝜷+ 𝑓𝐴(𝑎𝑖) + 𝑓𝑌(𝑦𝑖) + 𝑓𝑇(𝑡𝑖) +
𝑓𝐴𝑌(𝑎𝑖 , 𝑦𝑖) + 𝑓𝐴𝑇(𝑎𝑖 , 𝑡𝑖) + 𝑓𝑌𝑇(𝑦𝑖 , 𝑡𝑖) +
𝑓𝐴𝑄(𝑎𝑖 , 𝑞𝑖) + 𝑓𝑌𝑄(𝑦𝑖 ,𝑞𝑖) + 𝑓𝑇𝑄(𝑡𝑖 ,𝑞𝑖) +
𝑓𝐴𝐻(𝑎𝑖 , ℎ𝑖) + 𝑓𝑌𝐻(𝑦𝑖 ,ℎ𝑖) + 𝑓𝑇𝐻(𝑡𝑖 ,ℎ𝑖). (1)

In Section 4.3 we introduced our covariates 𝑄 and 𝐻 as categorical variables with
four and five categories respectively. For model selection (see Section 5.2), we want to
allow more parsimonious models to be chosen if they fit the data sufficiently well.
Therefore, in addition to testing the inclusion of these original variables (which we
henceforth denote by𝑄4 and𝐻5), we also consider simpler versions formed by combining
adjacent categories; we illustrate these variants in Figure 2. At its most complex, 𝜷
includes the intercept term and parameters representing one of each of the 𝑄 and 𝐻
variants as well as their interaction. The first level of each categorical variable is set as
the baseline category. Following on from Section 4.3.1, for subsequent analyses we
replace 𝑄 with the ‘mean imputation’ from our imputation model.
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Figure 2: Illustration of the variants of the categorical variables

Note: 𝑄 = highest educational qualification; 𝐻 = HDI. Numbers and colours indicate the levels of each variant; for example, ‘𝑄3𝑏’
indicates that the 𝑄 variant is the second one (b) with three categories.

5.2 GAM selection and fitting

Our selection process chooses one ‘best’ model for each parity 𝑝. We use forward
selection, which involves fitting and comparing various forms of Equation (1). We
perform the following steps:

1. Starting with the null model, separately include the main effect of each variable,
i.e., 𝐴, 𝑌, 𝑇 (for 𝑝 > 0), 𝑄 and𝐻, considering all of the variants in Figure 2.

2. Add the variable that gives the greatest improvement in the Bayesian Information
Criterion (BIC). This is a model selection criterion that balances goodness of fit
with complexity.

3. Repeat this process using the remaining variables (excluding all other 𝑄/𝐻 variants
if one has been added) until none provide any further improvement.

4. Test for the inclusion of interactions between all pairs of the chosen variables, again
adding them in a stepwise fashion.

There is conjecture as to the most appropriate value for the ‘number of observations’
𝑛 to use to calculate the BIC for discrete-time EHA. Raftery et al. (1996) and Lewis and
Raftery (1999) choose the number of person-years, whereas Muggeo, Attanasio, and
Porcu (2009) follow Raftery (1995) and choose the number of events. We opt for the
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latter and set 𝑛 as the number of events, as the dependence among person-years from the
same woman makes the former unsatisfactory.

We fit the models in R (R Core Team 2020) using the gam function within the mgcv
package (Wood 2017). For a comprehensive introduction to GAMs and their
computation, see Wood (2017); for less technical descriptions in the context of EHA see
Berger and Schmid (2018) and Bender, Groll, and Scheipl (2018). We use the restricted
maximum likelihood (REML) estimation method as it automatically corrects the EDF
(see Section 3) to account for uncertainty in the smoothing parameters (Wood 2017).
Also, we weight the person-years using cross-sectional Wave 1 weights, standardised to
the sample size.

5.3 Quantitative comparison with standard approaches

One aspect of our second aim is to quantify, for each parity, the impact of estimating
smooth terms compared to using existing methods. We do this for the chosen models
determined from Sections 5.1–5.2, with the following steps:

1. If the model has one continuous variable, refit it with a range of methods taken from
the literature reviewed in Section 2 (see Appendix B).

2. If the model has two or more continuous variables not interacting with each other,
repeat Step 1 for each variable in turn, varying its estimation method while keeping
the other effects as smooth terms.

3. If the model has at least one interaction between any pair of these continuous
variables, for each interacting pair refit the model with each combination of their
representations from Step 2, while again keeping the other effects as smooth terms.

4. Compare the set of model variants using the BIC to assess which (combinations of)
representations perform best for the different variables for each parity.

We fit all of the variants using the gam function.

6. Results

In this section we describe our findings from applying the methodology described in
Section 5 and examine the results graphically. Implementing the model selection process
detailed in Section 5.2, in Section 6.1 we present our chosen GAMs, providing a visual
illustration of the smooth terms in Section 6.2. In Section 6.3 we discuss the results of
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the quantitative comparison with existing methods explained in Section 5.3, while in
Section 6.4 we contrast the fitted probabilities graphically to support the conclusions.

6.1 Chosen GAMs

In Table 1 we present the chosen models – we will refer to the chosen model for parity 𝑝
as M𝑝, for 𝑝 ∈ {0,1,2,3+}. We represent each model as the sum of the main effects and
interactions (written𝑈 and𝑈𝑉 respectively for variables𝑈 and𝑉) that are included, using
the same covariate initials as those in Section 5.1. Table 1 also displays the EDF corrected
for smoothing parameter uncertainty (see Section 5.2), which we break down by model
term. Appendix C summarises the steps for fitting the chosen GAMs in R.

Table 1: Chosen models of progression to first birth (M0), second birth (M1),
third birth (M2), and fourth or higher-order birth (M3+)

Model Model description Corrected effective degrees of freedom

M0 𝐴 + 𝑄4 + 𝑌 + 𝐴𝑄4 + 𝐴𝑌 (1.00) + 7.67 + 3.00 + 5.90 + 12.85 + 32.67 = 63.10
M1 𝑇 + 𝐴 + 𝑌 + 𝑄2𝑐 + 𝐴𝑄2𝑐 + 𝑇𝑄2𝑐 (1.00) + 7.83 + 6.32 + 6.45 + 01.00 + 04.60 + 5.30 = 32.49
M2 𝐴 + 𝑇 + 𝑌 + 𝑄2𝑐 (1.00) + 5.62 + 7.51 + 6.19 + 01.00 = 21.32
M3+ 𝐴 + 𝑌 + 𝑇 + 𝐻2𝑑 + 𝑄2𝑎 (1.00) + 5.51 + 5.97 + 7.64 + 01.00 + 01.00 = 22.12

Note: The corrected effective degrees of freedom are estimated by gam and disaggregated by model term (with the intercept in
parentheses); values are given to 2 decimal places so sums may not be exact. 𝐴 = age, 𝑄 = highest educational qualification, 𝑌 = year,
𝑇 = time since last birth, 𝐻 = HDI; see Figure 2 for 𝑄 and 𝐻 variant definitions. Single letters are main effects, pairs of letters are
interaction effects. The terms are specified in the order that they were added in the forward selection.

We observe that all chosen models include the available clocks, i.e., age, period, and
TSLB (for 𝑝 > 0). These variables are added first in the forward selection process, apart
from in M0 where qualification is added between age and period, providing strong
support for their importance. There is also a simplification of the models across parity:
M0 is the only model to include a 2D interaction (between age and period), while
qualification is involved in interactions with age and TSLB in M0 and M1 but only
appears as a main effect in M2 and M3+. Further testing suggests that this decreasing
complexity can be partly explained by the declining number of birth events with parity.
Therefore, care should be taken not to overinterpret the simpler models as indicators of
simpler drivers of the decision-making processes for higher-order births.



Ellison et al.: Application of generalized additive models to discrete-time event history analysis for birth events

662 https://www.demographic-research.org

6.2 Graphical representation of smooth terms from chosen GAMs

6.2.1 Model of progression to first birth (M0)

We consider M0 separately due to the presence of the 2D interaction, which complicates
the interpretation of the other smooth terms. In Figure 3 we present the estimated main
effects and interactions, both in isolation and combination (these are on the logit scale).
We note that trends in the effects correspond to trends in the likelihood of a first birth
under M0.

The first row in the figure shows the main effects of age (𝐴) and year (𝑌), the 𝐴𝑌
interaction, and their sum. The roughly symmetric rise and fall in the age effect is clear,
giving rise to the standard bell-shaped curve on the probability scale (see Section 2.2).
The mid-1960s peak in both the year effect and the𝐴𝑌 interaction for women in their 20s
allows the 1960s baby boom (e.g., see Phillipson 2007 and ONS 2015) to be captured in
the combined plot. This plot also highlights the declining fertility at these ages in the
years since and the rises above age 30 (see ONS 2020b), and the recent emergence of the
slight “hump” that had previously appeared for younger women (Chandola, Coleman,
and Hiorns 1999).

The second row of Figure 3 shows the additive effect of age, qualification (𝑄4), and
the 𝐴𝑄4 interaction for the qualification categories. As described in Section 4.3.1, we
expect to see greater postponement for the more highly educated women. Indeed, the
smooth effects change form from an asymmetric curve peaking at 𝐴 ≈ 23 for the
‘< GCSE’ category, to roughly symmetric curves peaking in the late 20s for the ‘GCSE’
and ‘A Level’ categories, to a highly peaked asymmetric curve peaking at 𝐴 ≈ 30 for the
‘Degree’ category.

Adding 𝑌 + 𝐴𝑌 to these effects gives the row 3 plots, which are equivalent to the
logit of the fitted probabilities shifted by the negative of the M0 intercept. We note that
as the 𝐴𝑌 interaction is independent of qualification level, the recent bimodal age pattern
(two peaks, one at younger ages and one at older ages) propagates through to the fitted
probabilities. The shifting shapes of the age curves in row 2 mean that the earlier peak
will dominate for the ‘< GCSE’ category, while the later peak will dominate for the
‘Degree’ category. Appendix D provides plots of the fitted probabilities by calendar year
and cohort year of birth, which demonstrate the weakening of this bimodality with
qualification level.
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Figure 3: Estimates of smooth terms from the model of progression to first
birth (M0)

Note: Estimates are solid lines while dashed lines are approximate 95% confidence intervals. The scale represents an additive effect
on the logit of the conditional probability of a birth event under M0 given the included covariates and being in parity 0. The effects are
plotted against age (𝐴, in years) or calendar year (𝑌, second subplot in row 1 only), and in some cases for a given highest educational
qualification (𝑄) or value of 𝑌 (coloured plots). Single letters are main effects, pairs of letters are interaction effects. Ranges of covariate
values/covariate combinations match those observed in the data.
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6.2.2 Models of progression to second birth (M1), third birth (M2), and fourth or
higher-order birth (M3+)

Next, in Figure 4 we present the estimates of the smooth terms in M1, M2, and M3+.
This is straightforward due to the absence of 2D interactions. As with M0, trends in the
effects correspond to trends in the likelihood of a second (M1), third (M2), and fourth or
higher-order birth (M3+). First, we consider the age effects from each model (row 1),
where for M1 we plot the additive effect 𝐴 + 𝑄2𝑐 + 𝐴𝑄2𝑐 similarly to row 2 of Figure 3.
The M1 ‘< Degree’ curve is positive from the youngest ages and reasonably flat initially;
this is very different to the steep increase for M0. However, the ‘Degree’ curve increases
gradually to peak at 𝐴 ≈ 32 before proceeding to decline more steeply. This support for
the delaying of second births by degree-educated women is consistent with their
postponement of motherhood (see Section 6.2.1).

The effect for M2 and M3+ is an almost linear decline, with a steeper drop-off at
older ages and large uncertainty at younger ages due to sparse data. This decreasing
complexity of the age effect with parity is supported by its decreasing EDF values in
Table 1. The general age patterns also correspond well with analyses such as Andersson
(2004).

In the second row of Figure 4 we present the effect of time since last birth (𝑇). The
underlying effect is highly non-linear and complex, having the largest EDF in M1–M3+
(Table 1). Consistent with Section 2.1, for each model the likelihood of a subsequent
birth peaks at 𝑇 = 2 or 𝑇 = 3 and then declines. The peaks weaken as parity increases,
becoming more compact for M3+ where we note a resurgence in the decline for birth
intervals of 6–9 years. This increased likelihood of a fourth or higher-order birth after a
longer birth interval is likely due to repartnering (e.g., see Andersson 2021). The M1
curves indicate that degree-educated women are more likely than less-educated women
to have a shorter first birth interval, and less likely to have a longer interval. This
acceleration of childbearing is an illustration of the ‘time-squeeze’ phenomenon
(Kreyenfeld 2002; Klesment et al. 2014) that has been detected for England and Wales
(Rendall and Smallwood 2003).

We consider the period effects in the third row of Figure 4, which are consistently
the second most complex after TSLB (Table 1). There is a clear distinction between M1
and M2/M3+. While the curve of the former increases steeply from a negative effect and
peaks in the mid-1960s before slowly declining, the latter curves start from positive
effects and peak earlier in around 1960 before declining steeply, with this drop more
extreme for M3+. These differential trends are consistent with the work of Ní Bhrolcháin
(1987, Figure 1). All of the effects then exhibit a second, smaller peak between the late
1970s and late 1990s, which again increases in intensity with parity before rising again
in the early 2000s. These features are evident in the trend of the total fertility rate (ONS
2020b).
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Figure 4: Estimates of smooth terms from the models of progression to second
birth (M1), third birth (M2), and fourth or higher-order birth (M3+)

Note: Estimates are solid lines while dashed lines are approximate 95% confidence intervals. The scale represents an additive effect
on the logit of the conditional probability of a birth event under the specified model given the included covariates and current parity.
The subplots in rows 1–3 relate to 𝐴 = age (in years), 𝑇 = time since last birth (in years), and 𝑌 = calendar year respectively; 𝑄 = highest
educational qualification; subplots within rows are ordered by model number, i.e., M1, M2, M3+. Single letters are main effects, pairs
of letters are interaction effects. Ranges of covariate values/covariate combinations match those observed in the data.
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6.3 Quantitative comparison with standard approaches

6.3.1 Model of progression to first birth (M0)

As M0 includes two interacting continuous variables (age and year), in accordance with
Section 5.3 we refit it with all possible combinations of their representations (see
Appendix B). Figure 5 presents the increases in the BIC from the minimum value (i.e.,
the preferred combination), which is a smooth age effect and piecewise linear (PWL)
year effect. Note that in this and subsequent figures we plot the alternative representations
in order of increasing complexity. Note also that we omit the categorical age effect values
as they are large (≈ 2000 here). To aid interpretation, we note that Raftery (1995) defines
a “significant” improvement in BIC, where a decrease of 6–10 is strong and above 10
very strong.

Figure 5: BIC increases for the model of progression to first birth (M0)
comparative analysis

Note: Each subplot relates to a different representation of age (in years); each colour relates to a different representation of calendar
year. For ease of comparison, the vertical axis is the increase in the BIC from the minimum across all combinations of age and year
representations, which has value 0 (age smooth, year piecewise linear).

There is clearly more variability in the BIC increase for a given year representation
compared to a given age representation. Therefore, the choice of a smooth age effect,
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which is strongly preferable across the possible year representations, is highly
consequential. The choice of year effect is less important; however, for a smooth age
effect there are still large increases in BIC for anything other than a PWL year effect. If
age is not smooth, a smooth effect for year is preferred. Repeating the analyses excluding
the age–period interaction from M0, we find that smooth and PWL year effects are
equally preferable across the age representations, followed by a categorical effect.

Following on from the discussion in Section 5.2, we also repeat this quantitative
comparison using two alternative information criteria: the BIC with 𝑛 as the number of
person-years rather than the number of events, and the Akaike Information Criterion
(AIC) (results available upon request). These penalise model complexity more and less
severely, respectively, compared to the original BIC. Using the alternative BIC does not
change the findings; however, the AIC prefers a smooth year effect if age is smooth, and
otherwise prefers smooth and PWL year effects roughly equally. Linear and quadratic
effects also perform worse on the whole, due to their minimal parameter requirements.

6.3.2 Models of progression to second birth (M1), third birth (M2), and fourth or
higher-order birth (M3+)

As none of the chosen higher-order models interact pairs of continuous variables, we vary
the representation of one effect while estimating the others as smooth terms (see Section
5.3). We present the BIC increases in Figure 6 for each variable–model combination.
Considering age first (row 1), we again exclude the categorical values due to their
magnitude. We note that the increases are substantially smaller than those in Figure 5,
likely due to the lack of a 2D interaction. For M1 a quadratic age effect is preferred,
followed closely by a smooth representation. PWL splines are least desirable here;
however, for M2 they give the lowest BIC, with the quadratic form not far behind. For
M3+ a linear effect is preferred, with the more complex methods performing increasingly
worse. This is consistent with the simplification of the smooth age effect with parity (see
Section 6.2).

In Section 6.2 we saw that the effects of TSLB and period were more consistent
across parity, and this is reflected here. For TLSB (Figure 6, row 2) a smooth effect is
preferred for M1, and PWL splines for M2 and M3+, with a strong improvement of
around 20 in each case. The quadratic and categorical effects perform very poorly. A
smooth representation is preferred for the year effect across the parities, with PWL
splines second (albeit marginally for M1). Interestingly, the categorical year effect
outperforms both polynomial forms.



Ellison et al.: Application of generalized additive models to discrete-time event history analysis for birth events

668 https://www.demographic-research.org

Figure 6: BIC increases for the model of progression to second birth (M1),
third birth (M2), and fourth or higher-order birth (M3+)
comparative analyses

Note: For each variable–model combination, the effects of the other variables in the model are estimated as smooth terms. For ease
of comparison, within each subplot the vertical axis is the increase in BIC from the minimum, which has value 0. The subplots in
columns 1–3 relate to M1, M2, and M3+ respectively; the subplots in rows 1–3 relate to 𝐴 = age (in years), 𝑇 = time since last birth (in
years), and 𝑌 = calendar year, respectively. The bars corresponding to the categorical age representations are omitted due to their
magnitude. Note the different scales.
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The additional comparisons using the alternative BIC (see Section 6.3.1) do not
change the preferred representations, apart from reversing the marginal case for period
under M1; however, for M2 we find that quadratic and PWL age effects are now equally
preferable, followed by the linear representation. Under the AIC the preferred age effects
change quite drastically, with smooth representations chosen for all models and the less
complex methods performing increasingly worse; smooth effects for TSLB also perform
comparatively better for M2 and M3+.

6.4 Graphical comparison with standard approaches

6.4.1 Model of progression to first birth (M0)

In this section we illustrate the findings from Section 6.3 by plotting fitted probabilities
from the model variants. Starting with M0, in Figure 7 we present fitted probabilities by
age, qualification, and selected years for the variants with a smooth year effect, allowing
us to contrast the alternative age representations. We present the second PWL variant due
to its lower BIC.

Figure 5 shows that the complex approaches perform best, and this is evident here.
The categorical representation is clearly inappropriate, given the highly peaked nature of
the underlying effect, thus having the worst fit despite its large EDF. With half the EDF
and an improved fit the quadratic assumption is more reasonable; however, it is unable
to capture the recent bimodality (see Section 6.2.1). PWL splines have the flexibility to
do this, although the success strongly depends on the suitability of the knot locations,
where the probability curves can change direction sharply and unnaturally. The smooth
representation has the largest EDF, best fit, and lowest BIC, highlighting its ability to
estimate non-linear patterns and complex interactions precisely and efficiently.

Next, we compare the alternative year representations, recalling from Section 6.3.1
that there was less to choose between them. We plot the fitted probabilities by year,
qualification, and selected ages (25, 30, 35) for the variants with a smooth age effect in
Figure 8, together with approximate 95% confidence intervals. The 1960s baby boom
(see Section 6.2.1) is clearly experienced most strongly by those around age 25, with the
age 30 pattern relatively flat across the entire period. The subsequent decline and rise for
ages 25 and 35 respectively lead to all three intervals overlapping in the most recent years
for the sub-Degree qualifications.
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Figure 7: Fitted probabilities for the model of progression to first birth (M0)
comparative analysis, varying the representation of age

Note: The effect of year is estimated as a smooth term throughout. Fitted probabilities are conditional probabilities of a birth event
under M0 given the included covariates and being in parity 0; they are plotted against age (in years) for a given calendar year (colour),
highest educational qualification (column) and representation of age (row). Ranges of covariate combinations match those observed
without gaps in the data.
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Figure 8: Fitted probabilities and approximate 95% confidence intervals for
the model of progression to first birth (M0) comparative analysis,
varying the representation of year

Note: The effect of age is estimated as a smooth term throughout. Fitted probabilities are conditional probabilities of a birth event under
M0 given the included covariates and being in parity 0; they are plotted against calendar year for a given age (colour), highest
educational qualification (column), and representation of year (row). Ranges of covariate combinations match those observed without
gaps in the data. The shaded areas indicate the approximate 95% confidence interval associated with the corresponding fitted
probability.
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The PWL approach captures the main features of the smooth representation, with
slight differences where there is sparse data, such as at the start of the year curves. The
relative flatness of the year effect means that the aforementioned angularity of the PWL
curves appears less stark here. These observations, together with the method having a
considerably smaller EDF and only a slightly poorer fit, support its preference under the
BIC. The increased EDF for the categorical representation over the polynomials allows
it to detect peaks and troughs that they cannot, resulting in an improved fit and therefore
BIC. Appendix E provides further analyses by age, year, and qualification level that
estimate various simplified effects by taking appropriate weighted averages of the
probabilities.

6.4.2 Models of progression to second birth (M1), third birth (M2), and fourth or
higher-order birth (M3+)

In Figure 9 we graphically present the fitted probabilities from the higher-order models,
overlaying the effects for each variable–model combination and fixing the other variables
(see caption). The age curves (row 1) align very closely across the alternative methods,
aside from the categorical representation, which performed considerably worse (see
Section 6.3.2). The largest discrepancies occur where data is sparse, namely at young
ages in the M1 ‘Degree’ plot and the M2 and M3+ plots. This explains why the simple
quadratic form is preferred for M1, as it can approximate the smooth ‘< Degree’ curve
very well, and the smooth ‘Degree’ curve well for older ages. Although the PWL
representation has a similar EDF to the smooth effect, the considerably worse fit makes
it less preferable; this is likely caused by its inability to precisely capture the ‘Degree’
peak. For M2, the smooth effect fits only slightly better than the PWL representation,
despite an increase in EDF of 1.6 (required to estimate the initial peak), which is why the
latter is preferred. For M3+ it is clear that little is gained from choosing anything more
complex than a linear effect.

For TSLB (Figure 9, row 2), the smooth and PWL probabilities align closely,
explaining their similar performance in Figure 6. The smooth effect is likely preferred for
M1, as it captures the strong peak at 𝑇 = 3 which the PWL splines, with even knot
locations, cannot; the 𝑇𝑄2𝑐  interaction probably intensifies this advantage. PWL splines
approximate the M2 and M3+ smooth terms better, aided by the less pronounced peak of
the former and the change points of the latter aligning well with the knot locations. The
categorical and quadratic curves are clearly poor approximations of the underlying effect,
explaining the much larger BIC values.

For period (row 3), the PWL representation approximates the M1 smooth term very
well, performing worse for the higher parities where the knot locations correspond less
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closely with the earlier peaks (see Section 6.2.2). The ability of the categorical
representation to capture the undulations of the underlying effect better than the less
flexible polynomial forms, but worse than the more complex representations, is also
evident (see Appendix E).

Figure 9: Fitted probabilities for the model of progression to second birth
(M1), third birth (M2), and fourth or higher-order birth (M3+)
comparative analyses

Note: For each variable–model combination, the effects of the other variables in the model are estimated as smooth terms. The subplots
in rows 1–3 relate to 𝐴 = age (in years), 𝑇 = time since last birth (in years), and 𝑌 = calendar year, respectively; subplots within rows
are ordered by model number, i.e., M1, M2, M3+. Fitted probabilities are conditional probabilities of a birth event under the specified
model given the included covariates and current parity; they are plotted against the indicated covariate for a given model, covariate
representation, and in some cases highest educational qualification. Note that we set 𝐴 = 25, 𝑇 = 1, and 𝑌 = 1970 when they are not
the indicated covariate, and fix any categorical variables at their first levels unless specified otherwise. Also note the different scales.
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7. Discussion

In this paper we present an application of GAMs to discrete-time EHA in the context of
birth events, which to the best of our knowledge is the first of its kind in the literature.
Our flexible approach allows every continuous variable to be incorporated as a smooth
term, its shape and complexity being completely data-driven. Fitting a smooth function
which is not restricted to a narrow class (e.g., polynomial) actually reflects what we
believe about how continuously indexed quantities vary in the real world; i.e., smoothly
but not necessarily coinciding with mathematical convenience.

This latter point is evident when we consider the substantive insights that we gain
through our approach, such as accurately detecting the recent bimodality in the
progression to first birth age curve caused by the earlier childbearing of less-educated
women (see Appendices D and E); identifying the most likely first birth interval; and
appropriately capturing the undulations in the time-pattern of fertility for higher parities.
These advantages all lead to strong improvements in the BIC and therefore have
quantitative as well as visual support. The inability of piecewise linear splines to capture
these features with sufficient precision appears to be largely due to a lack of
correspondence between the knot locations and the change points in the underlying effect.
This could be improved with prior knowledge. However, in the absence of this, the
relative insensitivity of GAM fits to knot location is an undoubted advantage that makes
GAMs simple from a modeller perspective.

Our comparative analysis (Sections 6.3–6.4) comprehensively assesses the impact
of using GAMs against the existing methods of discretisation, polynomials, and
piecewise linear splines. There are four key findings:

1. Smooth terms offer the greatest gains when estimating highly complex and non-
linear underlying effects and interactions (in our case, these involve age and period).

2. Relatively complex underlying effects, e.g., for time since last birth (TSLB), can
sometimes be estimated appropriately using less sophisticated methods like
piecewise linear splines, but the success depends on their specification.

3. Simpler underlying effects, e.g., higher-order age effects, can be very well
approximated using more restrictive parametric forms like polynomials.

4. Categorical representations perform very poorly for age and TSLB, which is
concerning given their ubiquitous adoption in this field.

These findings hold when we use an alternative BIC that penalises complexity more
harshly, while the AIC prefers smooth higher-order age effects, opposing point 3.
However, the highly consistent fitted probabilities across method (Figure 9, row 1)
suggest that the smooth representations overfit to the data and are therefore unnecessary.
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A key strength is the selection of comparator methods to coincide with examples
from the literature, making our results highly relevant for informing future
methodological development in discrete-time EHA both for births and more generally.
However, we emphasise that these findings relate to a single dataset and a subset of all
possible alternative methods and their specifications. As such, it will be vital to perform
similar comparisons using other datasets and representations to test the applicability of
our conclusions in a range of contexts. We anticipate that our findings regarding age and
TSLB will persist, as their broad patterns are consistent across time and space, while for
period they may vary, as the degree of non-linearity strongly depends on the chosen
country and historical period.

A further advantage is the estimation of bivariate smooth terms, which are largely
unexplored in the broader literature. Their consideration proves beneficial here, with the
smooth 2D age–period interaction selected for inclusion in our model of first birth (M0).
This elevates the sophistication of our inference, allowing us to get a visual handle on the
complex age–period relationship. With the age–qualification interactions also preferably
estimated using smooth methods, the ability of GAMs to efficiently estimate interactions
is clearly a valuable property.

Despite this efficiency, we acknowledge that GAMs are more computationally
expensive than existing methods, particularly when 2D interactions are present. As such,
for the models compared in Section 6.3 the biggest time differential (of around 30
seconds) occurs for M0. This is not unreasonable, but would naturally scale with the
number of 2D interactions. We argue that this is not problematic, first because this
number is likely to be small: indeed, across our chosen models only one is included.
Interactions between clocks are also likely to dominate as they are fundamental
demographic variables, so alternative 2D interactions are unlikely to be selected. Second,
GAMs are flexible in terms of the inclusion of smooth terms, with a combination of
smooth main effects and linear interactions being perfectly acceptable and carrying much
less computational cost.

This latter point highlights the fact that the models in our comparative analysis are
all special cases of GAMs and so can be directly compared. As such, our proposal
encapsulates the existing methods and expresses them in a more general framework that
allows for smoothness in a formal, systematic way. Thus, GAMs retain the
interpretability and transparency of the well-known generalized linear model framework,
but with the advantage of greater flexibility. The resulting intuitiveness of the software
(see Appendix C for example code) means that achieving competency requires a minimal
time investment from the user, with simple decision trees such as Figure 1 providing
guidance as to which interactions are suitable for different variable combinations. This is
in contrast to less interpretable machine learning techniques such as random forests and
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neural networks, where the learning curve is much steeper and the main focus is on
predictive performance rather than the explanatory power of the model.

We recognise that there are limitations to modelling progression to each birth order
separately; for example, for the interpretation of educational effects (Kravdal 2001).
Modelling the transitions jointly and accounting for unobserved differences between
women via random effects would have been possible using GAMMs (see Section 3).
However, the additional complexity would have increased computation time
considerably and likely made it infeasible to understand the relative importance of the
smooth terms for each parity. Consequently, given that the aim of this paper is to
investigate the applicability and usefulness of GAMs for birth event analyses, it is
preferable to model each transition separately.

Next, we discuss our use of covariates. Referring to the “five clocks” of Raftery et
al. (1996), we incorporated all of them except cohort (using age, period, TSLB, and
parity). We also considered taking a cohort approach (results available upon request). On
performing these alternative analyses we find that similar models are chosen and a
smooth cohort effect is preferred for most parities. The effect is simpler than that of
period, with fewer undulations especially for the model of second birth where a quadratic
term suffices. For higher parities, the smooth terms capture peaks for the mid-1920s and
1960s cohorts, and a trough for those cohorts born around 1950. We note that including
both period and cohort as smooth terms is problematic due to the age–period–cohort
identification problem (e.g., see Fienberg 2013).

In terms of education, we recognise the potential for our highest qualification
variable to be endogenous; however, including education in this way is a standard
approach in the demography literature, despite this known issue. Constructing time-
varying enrolment and attainment variables is preferable (see Section 4.3.1), but in our
case this would require imputation due to incomplete education histories, which has its
own drawbacks (see Kravdal 2004). An instrumental variable strategy to correct for
endogeneity is possible with GAMs (e.g., see Marra and Radice 2011), but this is beyond
the scope of this paper.

In conclusion, our investigation into the application of GAMs to discrete-time EHA
provides quantitative evidence that smooth methods are required to estimate complex
underlying effects with sufficient precision and efficiency. We therefore strongly
recommend the use of GAMs in this context – for initial exploratory analyses at the very
least. This reiterates the guidance of Fahrmeir and Knorr-Held (1997), utilising recent
computational developments to propose a transparent and systematic approach for
selecting the most appropriate representation of each effect. The properties and benefits
of GAMs could also prove useful in countries with sparse or less accurate data, or for
estimating complex effects in other demographic processes (e.g., Hilton et al. (2019)
applies GAMs to mortality modelling). This discussion strongly motivates our belief that
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GAMs have the potential to become commonplace not only in the discrete-time EHA
literature but also in the demographer’s toolkit.
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Appendix A: Sample selection process

The process of obtaining our sample of 22,020 women from the initial 27,792 interviewed
in Wave 1 of the UKHLS is outlined in Figure A-1. We justify the numbered exclusion
criteria below.

1. We needed the respondent to report their details and hence only included full
respondents.

2. We are keen to extend the modelling presented in this paper to incorporate the
parity-specific fertility rates provided by ONS (2020c), which are for England and
Wales only. Therefore, in order for our UKHLS sample to be as representative as
possible of this population, we exclude women living in Scotland and Northern
Ireland.

3. Self-explanatory.
4. As our interest is in the timing of parity progression, we need to be confident that

each fertility history is accurate. If a woman reaches a parity above 1 and has a
missing child year of birth (CYOB) there is no way of knowing the child’s position
in the birth order; hence the accuracy of the entire fertility history is severely
compromised. Even if the woman only reaches parity 1, in which case the birth
order is trivially known, with the CYOB missing there is still great uncertainty about
when the single transition actually occurred. Therefore, we believe that the safest
course of action is to exclude women with missing CYOBs.

5. We classify a child date of birth (CDOB) as invalid if the age of the mother at the
CDOB is less than 12. We treat the invalid CDOBs as missing, instead assuming
that the births occurred some time after the mother’s 12th birthday but before the
first birth with a valid CDOB (if this exists); we then only include the woman in our
analysis from the parity reached following this birth. However, if the mother is aged
12 at the first valid CDOB then our assumption is invalidated (the CDOB is implied
invalid) and the woman is excluded.

6. The years after 1955 have person-years observed for the whole reproductive age
range (15–44); those immediately prior to this cover all but the oldest ages, where
fertility rates are low. Therefore, January 1950 is a suitable choice for the start of
our observation period. It makes sense for our observation period to end at a fixed
point prior to the start of the Wave 1 interviews in 2009 – choosing December 2008
would mean that for the cohorts still being observed, their last fully observed age
could only be reached by the January-born women and therefore the number of
person-years corresponding to the 2008 period would be small. Moving the endpoint
back by a month to November 2008 means that this age cannot be fully observed
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for any cohort members, and so the last fully observed age (corresponding to the
2007 period) can be reached by all members as desired.

7. Foreign-born respondents are asked for the year they came to Britain – where this
is provided, we remove all person-years up to and including the implied age at
moving, to make our sample of person-years more representative of the United
Kingdom.

Figure A-1: Exclusion flowchart to illustrate the selection of the women in our
sample

We note that the 4,107 women satisfying criteria 2, 6, or 7 are outside the scope of
our study, while the 1,665 women satisfying criteria 1, 3, 4, or 5 would ideally have been
included (as long as they did not also satisfy any of criteria 2, 6, or 7). Whereas the 1,093
proxy respondents in this latter group can reasonably be considered missing at random,
the remaining 572 women satisfying criteria 3–5 cannot, as the reasons for their removal
are fertility-related.

Also, we note that for the women with missing years and/or months of birth (103 of
the 22,020), we computed approximate values using the woman’s age at the time of
interview and the date of interview. Where only the month of birth was missing but these
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two pieces of information were not consistent with the year of birth provided, we imputed
the month of birth at the midyear; we did the same for any missing child months of birth.
We also decided to ignore the presence of birth intervals of length 1–8 months, occurring
for 139 of the women in our sample, as we felt that the benefits of their inclusion
outweighed the potentially negative impact that slight inaccuracies in their fertility
histories could have on our inferences. For any women with repeated CDOBs, we treated
these as multiple births and adjusted the parity accordingly.

Appendix B: Selected alternatives to smooth terms

Table B-1: Selected categorical representations for the variables age (𝑨),
calendar year (𝒀), and time since last birth (𝑻)

Term Range Current parity Categories References

𝐴 15–44
0, 1, 2 15–19, 20–24, 25–29,

30–34, 35–39, 40–44 Jefferies, Berrington, and Diamond (2000),
Van Hook and Altman (2013), Stone and
Berrington (2017)

3+ 18–24, 25–29,
30–34, 35–39, 40–44

𝑌 1950–2007 0, 1, 2, 3+ 1950–1959, 1960–1969, 1970–1979,
1980–1989, 1990–1999, 2000–2007 Riise, Dommermuth, and Lyngstad (2016)

𝑇 1–11 1, 2, 3+
1: 1–2, 3, 4, 5, 6, 7+ Stone and Berrington (2017)

2: 1–2, 3–6, 7–10, 11+ Torrisi (2020)

Table B-2: Selected polynomial representations for the variables age (𝑨),
calendar year (𝒀), and time since last birth (𝑻)

Term Range Current parity Polynomial  References

𝐴 15–44

0, 1, 2, 3+ Quadratic Erlandsson (2017), Hank (2002), Kim (2014, 2017), Kim and Park
(2009), Piotrowski and Tong (2016), White et al. (2008), Zang (2019)

2, 3+ Linear –

𝑌 1950–2007 0, 1, 2, 3+

Linear Kulu (2013), Lewis and Raftery (1999), Muggeo, Attanasio, and Porcu
(2009)

Quadratic –

𝑇 1–11 1, 2, 3+ Quadratic Piotrowski and Tong (2016), Zang (2019)
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Table B-3: Selected piecewise linear spline representations for the variables age
(𝑨), calendar year (𝒀), and time since last birth (𝑻)

Term Range Current parity Knots References

𝐴 15–44

0

1: 20, 23, 27, 32, 37 Kravdal (2007), Kravdal and Rindfuss (2008), Begall and
Mills (2013)

2: 20, 25, 30, 35, 40 Kravdal (2001), Kulu (2013), Kulu and Washbrook (2014)

1 20, 25, 30, 35 Kravdal (2007), Kravdal and Rindfuss (2008)

2, 3+ 25, 30, 35 Kravdal (2007), Kravdal and Rindfuss (2008), Begall and
Mills (2013)

𝑌 1950–2007 0, 1, 2, 3+ 1960, 1970, 1980, 1990,
2000 -

𝑇 1–11 1, 2, 3+ 2, 4, 6, 8 Kravdal (2001, 2007), Kravdal and Rindfuss (2008), Begall
and Mills (2013)

Appendix C: Fitting the chosen GAMs using the gam function in R

Following on from Section 6.1, here we provide the data structure and code for fitting the
chosen GAMs, M0-M3+, in R.

M0 (𝐴 + 𝑄4 + 𝑌 + 𝐴𝑄4 + 𝐴𝑌):

The data frame dat0 has the following structure:
age year q4 n z r
15 1950 1
16 1950 1

44 2007 4

The age and year columns are self-explanatory; the q4 column is the qualification
variable, taking values 1–4 according to Figure 2 (note that it needs to be encoded as a
categorical variable or ‘factor’ before fitting the model). Following on from Section 5.1,
n gives the weighted number of person-year records sharing the corresponding covariate
pattern, while z gives the weighted number of these records which have a binary response
of 1 and r is the quotient of z and n; i.e., z/n. The code to fit M0 is given below:



Ellison et al.: Application of generalized additive models to discrete-time event history analysis for birth events

690 https://www.demographic-research.org

M0 <- gam(r ~ s(age, bs = "ps", k = 9, m = c(2, 1)) + q4 +
s(year, bs = "ps", k = 9, m = c(2, 1)) +
s(age, by = q4, bs = "ps", k = 9, m = c(2, 1)) +
ti(age, year, bs = c("ps", "ps"), k = c(9, 9),
d = c(1, 1), m = list(c(2, 1), c(2, 1))),
family = binomial, weights = n, data = dat0,
method = "REML")

We note the following:

 The s() terms denote 1D smooth functions, with the ‘by = q4’ argument in the
third line of the above code telling the model to estimate a smooth function of age
for each level of q4.

 The ti() term denotes a 2D smooth function.
 The bs, k, and m arguments within the s() and ti() terms allow the user to

specify the construction of the functions and how their smoothness is determined.
 The family argument indicates the distribution being assumed (here, binomial –

see Section 5.1).
 The method argument indicates the method by which the smoothing parameters

are estimated (here, REML – see Section 5.2).

Once the model is fitted, useful functions include:

 summary(M0): gives a summary of the fitted model, including fixed effect
estimates and EDF values for the smooth functions.

 plot(M0): plots the smooth terms fitted in the model.
 predict(M0): produces predictions from the fitted model with associated

uncertainty, on the probability scale (type = "response"), logit probability
scale (type = "link"), and even the scale of the smooth terms (type =
"terms").

M1-M3+:

The simpler models for the higher-order parity progressions can be fitted similarly,
by creating data frames likedat0 which include columns relating to each of the variables
in the chosen model, and then adjusting the M0 code appropriately.
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Appendix D: Fitted probabilities from the model of progression to
first birth (M0)

To facilitate the substantive interpretation of M0, in Figure D-1 we plot the fitted
probabilities estimated under M0 by calendar year (row 1) and cohort year of birth (row
2). As described in Section 6.2.1, we note the intensification of the earlier peak in
childbearing and subsequent strong bimodality in the recent age curves for the lower
qualification categories, and the intensification of the later peak and subsequent unimodal
pattern for the ‘Degree’ category. We also observe that despite M0 not directly
accounting for cohort, it clearly captures key features of cohort fertility such as the peak
for women born in the mid to late 1930s and the delaying of childbearing to older ages
for the more recent cohorts (see ONS 2020d).

Figure D-1: Fitted probabilities from the model of progression to first birth (M0)
by year and cohort

Note: Fitted probabilities are conditional probabilities of a birth event under M0 given the included covariates and being in parity 0; they
are plotted against age (𝐴, in years) for a given calendar year (𝑌, row 1) or cohort year of birth (row 2), and highest educational
qualification (𝑄, columns), and are identical in the two rows. Ranges of 𝐴𝑌𝑄 combinations match those observed in the data.
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Appendix E: Further simplified graphical comparisons for the
model of progression to first birth (M0) by age, year, and
qualification level

To simplify fertility changes over age and time, for each age representation and decade
we compute the weighted average of the fitted probabilities across qualification, plotting
the age curves in Figure E-1. This allows us to compare the success with which the
comparator methods capture the recent hump in early fertility (see Section 6.2.1) which
has led to the emergence of bimodality in the age curve. It is hard to identify the hump
among the step functions in the categorical plot and it is non-existent in the quadratic
representation. The piecewise linear and smooth methods perform best, consistent with
their ability to estimate the peaks in early and late fertility in Figure 7. However, for the
piecewise linear approach the location of the hump is restricted by the change points,
resulting in an angular appearance.

Figure E-1: Fitted probabilities averaged over highest educational qualification
for the model for progression to first birth (M0) comparative analysis

Note: The effect of year is estimated as a smooth term throughout. Fitted probabilities are conditional probabilities of a birth event
under M0 given the included covariates and being in parity 0; they are plotted against age (in years) for a given range of calendar years
(colour) and representation of age (subplot). Ranges of covariate combinations match those observed in the data.

To simplify fertility changes across age and qualification, we also compute the
weighted average across calendar year, overlaying the age curves corresponding to the
various methods for each qualification category in Figure E-2, as well as the observed
probabilities for comparison. This provides further support for our conclusions, as the
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smooth curves approximate the observed patterns most closely. Inappropriate knot
locations clearly force the piecewise linear effect to deviate from the smooth curve near
these points, while the quadratic and categorical effects can only achieve increasingly
poorer approximations.

Figure E-2: Fitted probabilities averaged over calendar year for the model for
progression to first birth (M0) comparative analysis

Note: The effect of year is estimated as a smooth term throughout. Fitted probabilities are conditional probabilities of a birth event
under M0 given the included covariates and being in parity 0; they are plotted against age (in years) for a given highest educational
qualification (subplot) and representation of age (colour). Observed probabilities are overlaid. Ranges of covariate combinations match
those observed in the data.

Lastly, to simplify fertility changes over time, in Figure E-3 we plot the year curves
computed from taking a weighted average of the fitted probabilities across age and
qualification for each year representation. The period features identified in Section 6.2,
namely the 1960s baby boom, the second, smaller peak in the 1980s and 1990s, and the
more recent rise in the 2000s are all captured by the smooth and piecewise linear
approaches. The categorical method performs well at times, but fails when there are
sustained fertility increases or decreases within a category such as the 1950s, 1970s, and
2000s. Finally, we note the striking deficiencies of using simple polynomials to estimate
the year effect.
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Figure E-3: Fitted probabilities averaged over age and highest educational
qualification for the model for progression to first birth (M0)
comparative analysis

Note: The effect of age is estimated as a smooth term throughout. Fitted probabilities are conditional probabilities of a birth event under
M0 given the included covariates and being in parity 0; they are plotted against calendar year for a given representation of year.
Observed probabilities are overlaid.
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