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Research Article

Smooth constrained mortality forecasting

Carlo G. Camarda1

Abstract

BACKGROUND
Mortality can be forecast by means of parametric models, principal component methods,
and smoothing approaches. These methods either impose rigid modeling structures or
produce implausible outcomes.

OBJECTIVE
We propose a novel approach for forecasting mortality that combines a well established
smoothing model and prior demographic information. We constrain future smooth mor-
tality patterns to lie within a range of valid age profiles and time trends, both computed
from observed patterns.

METHODS
Within aP -spline framework, we enforce shape constraints through an asymmetric penalty
approach on forecast mortality. Moreover, we properly integrate infant mortality in a
smoothing framework so that the mortality forecast covers the whole age range.

RESULTS
The proposed model outperforms the plain smoothing approach as well as commonly
used methodologies while retaining all the desirable properties that demographers expect
from a forecasting method, e.g., smooth and plausible age profiles and time trends. We
illustrate the proposed approach to mortality data for Danish females and US males.

CONCLUSIONS
The proposed methodology offers a new paradigm in forecasting mortality, and it is an
ideal balance between pure statistical methodology and traditional demographic models.
Prior knowledge about mortality development can be conveniently included in the ap-
proach, leading to large flexibility. The combination of powerful statistical methodology
and prior demographic information makes the proposed model suitable for forecasting
mortality in most demographic scenarios.

1 Institut National d’Études Démographiques, Paris, France. Email: carlo-giovanni.camarda@ined.fr.
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1. Introduction

Mortality modeling and forecasting are crucial in epidemiology and population studies, as
well as in the insurance and pensions industries. In recent decades, several methodologies
have been proposed, and many demographers, actuaries, and statisticians have suggested
approaches for projecting mortality. (See Booth and Tickle (2008) and Cairns, Blake, and
Dowd (2008) and the references therein.)

In addition to scenario- and expert-based approaches in this growing body of meth-
ods, we can broadly distinguish three classes based on their assumptions. A traditional
procedure relies on using parametric models to describe mortality age patterns and then
extrapolating the estimated parameters to reconstruct future mortality (see, among others,
Tabeau, Willekens, and van Poppel (2002)). When dealing with adult mortality, para-
metric models are extremely parsimonious, but a large number of parameters are often
necessary when the whole age range is considered. Although these models present the
advantage of a clear-cut interpretation of their parameters, this feature is not particularly
useful in a forecasting approach. Moreover, when dealing with the whole age range, it is
generally hard to disentangle the meaning attached to each parameter and simultaneously
forecast plausible mortality patterns based on their time series.

Overparametrized models such as that of Lee and Carter (1992) and its variants
have been widely used and have become a benchmark for many newly proposed method-
ologies. They describe mortality development over age and time using their principal
components. They reduce a two-dimensional problem to a fixed-age effect with a uni-
variate time index. The time index condenses the mortality changes in past years and is
thus used to forecast future mortality. This class of models presents several drawbacks,
however. A simple univariate time series results in mortality improvements at all ages
being perfectly correlated. Due to a fixed-age effect over time, lack of smoothness in the
estimated mortality pattern is evident, especially in the forecast years. A large number of
parameters are implicitly assumed in this class of model. Given the regular structure of
human mortality development, this overparameterization may seem unnecessary. Various
solutions for these issues have been proposed in successive papers, including a general-
ization with multiple time indices (Currie 2011, 2013; D’Amato, Piscopo, and Russolillo
2011; Delwarde, Denuit, and Eilers 2007; Hyndman and Ullah 2007; Li, Lee, and Ger-
land 2013; Renshaw and Haberman 2003). In a Bayesian setting, Girosi and King (2007)
enforce smoothness in the age pattern by informative prior. However, they also underline
that “almost no matter what one’s prior is for a reasonable age profile, Lee–Carter fore-
casts although they may be reasonable over the short run will eventually violate it as time
passes” (p. 17).

A combination of Lee–Carter and parametric approaches could be found within
recently developed Bayesian methods for probabilistic population projections (Raftery
et al. 2013; Ševčı́ková et al. 2016). First, they performed a Bayesian hierarchical model
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for forecasting life expectancy at birth, considering available data for all countries in
the world. A second step consists of converting overall levels by means of a variant
of the Lee–Carter model (Li, Lee, and Gerland 2013) and an adjusted parametric model
(Thatcher, Kannisto, and Vaupel 1998). Additionally, coherence in forecasting more pop-
ulations simultaneously is accounted for. These methods have been used to produce the
most recent “World Population Prospects” released by the United Nations (Gerland et al.
2014).

Another class of models used for forecasting mortality is the Age–Period–Cohort
(APC) approach. Developed to separate the changes of incidence data with the three
demographic coordinates, APC models have been largely adopted to forecast rates in
epidemiological instances (Knorr-Held and Rainer 2001; Lopez et al. 2006; Martı́nez-
Miranda, Nielsen, and Nielsen 2014; Riebler and Held 2017; Smith and Wakefield 2016;
Tzeng and Lee 2015; Wong et al. 2013). Actuaries and demographers have implemented
several variants within this class of models for forecasting mortality (Cairns et al. 2009a,
2011; Haberman and Renshaw 2009; Mammen, Martı́nez-Miranda, and Nielsen 2015). In
this framework, smoothness of the outcomes could be obtained within a Generalized Ad-
ditive Model framework within a Bayesian setting (Hilton et al. 2019; Ogata et al. 2000),
or in a frequentist context (Carstensen 2007; Currie 2013; Heuer 1997). Additional sta-
tistical aspects of the APC models in relation to forecasting have been investigated (see,
among others, Holford (2006); Kuang, Nielsen, and Nielsen (2008); Nielsen and Nielsen
(2014)). A widely recognized issue in APC models concerns identifiability. Since their
introduction by Clayton and Schifflers (1987), it is known that estimated coefficients de-
pend on the particular constraints that are used to force a unique solution. Consequently,
estimated age, period, and cohort effects cannot be clearly interpretable (Grotenhuis et al.
2016). Nevertheless, forecast values are invariant with respect to the choice of constraint
systems when an autoregressive integrated moving average (ARIMA) model is used to
forecast period and cohort effects (Currie 2019).

However, both parametric, Lee–Carter and APC approaches are based on rigid mod-
eling structures that are often unable to capture certain features of mortality change.

An alternative compromise method was proposed by Currie, Durbán, and Eilers
(2004). They employed a two-dimensional penalized B-splines approach (P -splines)
to smooth mortality over age and time without any specific model structure, allowing
for a parsimonious description of mortality development. They treated forecasting of
future values as a missing-value problem and estimated the fitted and forecast values
simultaneously. Moreover, routines for estimating and forecasting mortality based on
this approach are freely available (Camarda 2012).

P -splines have been extensively used for smoothing observed mortality develop-
ments in demographic, ecological, and epidemiological studies. See, for instance, Colchero
et al. (2016); Goicoa et al. (2012); Jones et al. (2014); Lindahl-Jacobsen et al. (2016);
Minton et al. (2017); Ouellette and Bourbeau (2011); Trias-Llimós, Bijlsma, and Janssen
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(2016); Ugarte, Goicoa, and Militino (2010). Few studies, however, produced mortality
forecasts using this methodology (Bohk-Ewald and Rau 2017; Carfora, Cutillo, and Or-
lando 2017; Ribeiro 2015; Ugarte et al. 2012). More extensive literature can be found in
actuarial science, where smoothness is relevant to future mortality trends (Barrieu et al.
2012; Blake, Cairns, and Dowd 2006; Cairns, Blake, and Dowd 2006; Currie 2016; Dje-
undje and Currie 2011; Huang and Browne 2017; Lu, Wong, and Bajekal 2014; Pitacco,
Denuit, and Haberman 2009; Richards, Kirkby, and Currie 2006; Richards, Currie, and
Ritchie 2014; Wang, Yue, and Tsai 2016).

The reason for this mixed recognition of two-dimensional P -splines lies in their lack
of robustness for forecasting mortality (Cairns et al. 2009b). Even though P -splines out-
perform all competitors in modeling mortality, this approach suffers from all the issues
that encumber a purely data-driven approach when employed for forecasting purposes.
Forecast mortality simply follows estimated trends with a blind adherence to extrapo-
lation, and mortality structure over age is not fully considered in the forecast values.
Moreover, the penalty structure, which ensures smoothness in the fitted values, critically
affects future mortality forecasts. Unreasonable trends from a demographic perspective
could then emerge: increasing mortality over time for specific ages and hence crossover
of mortality trends for adjacent ages in future years (cf. Section 2.1).

This paper aims to enhance two-dimensional P -splines through incorporating de-
mographic knowledge into the model, allowing for a better performance in forecasting
mortality trends. We retain all features of two-dimensional penalized B-splines and,
additionally, we ensure that future mortality over the age range follows a known and
well-behaved profile, estimated from past years. This prior knowledge is incorporated
by means of asymmetric penalties into the P -spline system (Bollaerts, Eilers, and van
Mechelen 2006; Eilers 2005). Since we constrain as well as penalize splines, we call the
proposed approach a CP -spline model.

Finally, in the original paper by Currie, Durbán, and Eilers (2004), no solution was
proposed for modeling and forecasting mortality for the whole age range. In the following
we will also propose a solution for smoothing and forecasting mortality from infancy to
oldest old ages.

The remainder of this paper is structured as follows: Section 2 presents basic as-
sumptions and describes the original P -spline methodology which lays the groundwork
for further steps. Section 3 is then devoted to the proposed CP -spline approach for in-
corporating demographic knowledge into the model. Inferences on estimated patterns are
also provided. Trends in age-specific death rates and in summary measures such as life
expectancy at birth and lifespan variations are presented in Section 4. A critical discus-
sion of the methodology and possible extensions concludes the paper. Throughout the
paper and solely for illustrative purposes, two datasets are used: Danish females and US
males. Additional supplementary materials will serve as a means to further assess the per-
formance of the proposed method by out-of-sample forecast using eight populations and
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in comparison with five alternative forecasting methods. We also validate the influence
of the time window and robustness with respect to the parameters used in the model.

2. P -splines for mortality data

The proposed model requires two simple datasets as input data: deaths and exposures to
the risk of death, arranged in two m× n1 matrices, Y = (yij) and E = (eij):

Y =


y11 y12 · · · y1n1

y21 y22 · · · y2n1

...
...

. . .
...

ym1 ym2 · · · ymn1

 E =


e11 e12 · · · e1n1

e21 e22 · · · e2n1

...
...

. . .
...

em1 em2 · · · emn1

 . (1)

Rows and columns are classified by single age at death, a, m× 1 and single year of
death, t1, n1 × 1, respectively.

We assume that the number of deaths yij at age i in year j is Poisson-distributed
with mean µij eij (Keiding 1990):

yij ∼ P(eij µij) . (2)

The value of µij is commonly named force of mortality and its estimation is the
object of all mortality models. For instance, the matrix of the empirical mortality rates,
which are the fully nonparametric estimations of the force of mortality, can be easily
computed as µij ≈ mij = yij/eij . Forecasting approaches aim to reconstruct trends in
µij for n2 future years, t2,n2 × 1.

In the following we will illustrate the proposed method on two populations - Dan-
ish females and US males - which differ in terms of their epidemiological history. A
more extensive application can be found in the supplementary materials. The left panel
in Figure 10 plots observed life expectancy at birth for both populations. (It also plots es-
timates and forecasts, which should be ignored for now.) From the life expectancy trend,
the Danish female population shows a clear mortality stagnation in the 1970s, followed
by rising in the last two decades. Cohort effects and high smoking prevalence have been
shown to be the main driving factors behind this peculiar pattern (among others, Jacob-
sen et al. 2004; Lindahl-Jacobsen et al. 2016). US males have shown a clear stagnation
of mortality in the 1960s, a rapid improvement in the 1970s, and again a stagnation in
recent available years. Several determinants stood out in the literature: smoking behav-
ior (Thun et al. 2013), obesity (Masters et al. 2013), and the performance of the health
care system (Muennig and Glied 2010), as well as the recently observed drug epidemic
among young adults (Dowell, Noonan, and Houry 2017). A good performance on these
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two populations for a newly proposed forecasting method is a clear sign of the robustness
and flexibility of the approach. Moreover, using data for both females and males serves
as a challenge for the proposed methodology on diverse mortality age patterns. For both
populations, we use data from the Human Mortality Database (2019), from ages 0 to 105
over the period 1960–2016, forecasting up to 2050.

We will now give an overview of the P -spline approach for Poisson-distributed data
in both one- and two-dimensional settings. A more extensive description of the method
can be found in the seminal paper of Eilers and Marx (1996) as well as in the review
article by Eilers, Marx, and Durbán (2015). A demographic perspective is provided in
Camarda (2008).

In a simple one-dimensional setting, we extract either a column or a row of the
original matrices of death counts and exposures, i.e., y and e. In modeling mortality, one
aims to portray the expected values of the Poisson distribution as follows:

ln[E(y)] = ln(e) + ln(µ) = ln(e) + η, (3)

where η is the linear predictor and, dealing with Poisson data, a logarithm is used as a
link function. The logarithm of the exposures, ln(e), is commonly called “offset”.

In a parametric setting we would model the linear predictor by a simple structure.
For instance, a Gompertz law over age can be written as follows:

η = Xα, (4)

where X = [1 : a] and α = [α1,α2]. Commonly, these two parameters are used to
describe the starting level of mortality and rate of aging, respectively.

In a smoothing context, instead of deciding a prior mortality shape, we describe the
log mortality as a linear combination of B-splines and associated coefficients:

η = Bα , (5)

whereB are k equally spaced B-spline bases: bell-shaped curves composed of smoothly
joined polynomial pieces of degree q. In the following we will use cubic B-splines,
q = 3. The positions on the horizontal axis, where the pieces come together, are called
“knots.” Details on B-splines and related algorithms can be found in de Boor (1978), and
examples of B-spline bases are provided on the top panels in Figure 1.

The basic idea of the P -splines is to combine (fixed knot) B-splines with a rough-
ness penalty. A relatively large number of B-splines ensures enough flexibility to cap-
ture trends in the mortality patterns, and a roughness penalty acting on the associated
coefficients enforces the desirable amount of smoothness. Specifically, the number of
B-splines, as well as their degree, is irrelevant on final results (Eilers, Marx, and Durbán
2015).
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Figure 1: Unpenalized (left) and penalized (right)B-splines on Danish
female mortality at age 70 from 1960 to 2016
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A penalized version of the iteratively reweighted least squares (IRLS) algorithm
(McCullagh and Nelder 1989) is sufficient for estimating coefficients α ∈ Rk:

(B′W̃B + P )α̃ = B′W̃ z̃, (6)

where z̃ = (y − e ∗ µ̃)/e ∗ µ̃+ η̃ is the working dependent variable.
The tilde symbol and ∗ denote current approximations to the solution and element-

wise product, respectively. W̃ is a diagonal matrix of weights, W̃ = diag(e ∗ µ̃) .
The only difference from the standard procedure for fitting a Generalized Linear

Model (GLM) with B-splines as regressors is the modification of B′W̃B by a penalty
factor given by

P = λD′D , (7)

where the matrixD constructs differences in the coefficients over either ages or years.
As examples, when we have only six coefficients and we use second-order differ-

ences,D is given by:

D =


1 −2 1 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1

 . (8)
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When using a standard P -spline approach, the choice of the order of difference is
crucial only for forecasting (cf. Section 2.1). Second-order difference will be used in the
following: The smoothing parameter λ regulates the trade-off between goodness of fit
and effective dimension used in the model. On the one hand, higher values will lead to a
higher penalty term and, consequently, smoother fitted values. On the other, λ = 0 results
in a straightforward GLM estimation with B-splines as regressors.

Figure 1 presents the P -splines logic applied to a one-dimensional example: Dan-
ish females aged 70 from 1960 to 2016. On the top panels we have k = 25 B-splines
multiplied by associated coefficients that determine the height of each B-spline. The bot-
tom panels present empirical and estimated log mortality. On the left panels we have the
outcomes from a simple GLM estimation (λ = 0). The right panels show the penalized
version in which the coefficients are forced to change smoothly. The heights of the asso-
ciated B-splines therefore do not show wiggling behavior and, consequently, neither do
the fitted values.

Our aim is to model and forecast mortality over both age and time, so we need to
set up a P -splines model in a two-dimensional setting. For the purpose of regression,
we arrange the complete matrices as a column vector, that is, y = vec(Y ) and e =
vec(E). Then we can directly use Equation (6) to estimate coefficients over age and
years by generalizing both the basis and the penalty term.

LetBa,m×ka andBt1 , n1×kt1 be theB-splines over ages and years, respectively.
The regression matrix for our two-dimensional model is given by

B = Bt1 ⊗Ba , (9)

where ⊗ denotes the Kronecker product of two matrices. Following the same idea as
for the one-dimensional case, we will use a relatively large number of equally spaced B-
splines over both domains (ka = 24, kt1 = 14). Figure 2 shows a subset of the Kronecker
product basis for ages 0–105 and years 1960–2016. The age–year grid is populated by
a dense set of overlapping hills that are placed at regular intervals as in an “egg carton.”
Associated with each hill we will have a coefficient that will determine the height of its
hill. Generalizing in 2D the concept illustrated in Figure 1, the fitted surface will be the
sums of these two-dimensional heights.

Concerning the 2D generalization of the penalty term, from the definition of the
Kronecker product, Currie, Durbán, and Eilers (2004) show that α can be independently
penalized over ages and years. Let Da and Dt1 be the difference matrices acting on the
two domains. A two-dimensional penalty is given by

P = λa(Ikt1 ⊗D
′
aDa) + λt1(D′t1Dt1 ⊗ Ika) , (10)

where λa and λt1 are the smoothing parameters used for age and year, respectively. Ika
and Ikt1 are identity matrices of dimension ka and kt1 , respectively.
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Figure 2: A subset of two-dimensional Kronecker product cubicB-spline
basis
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By changing λa and λt1 , smoothness can be tuned to balance smoothness and model
fidelity. In the following λa and λt1 will be selected by minimizing the Bayesian Infor-
mation Criterion (BIC, Schwarz 1978) that penalizes model complexity more heavily and
is more suitable for mortality data (Camarda 2008; Currie, Durbán, and Eilers 2004).

As in the one-dimensional setting, B-splines provide enough flexibility to capture
surface trends. The additional penalty reduces the effective dimension, leading to a
wisely parsimonious model with a smoothed fitted surface. The advantage of using two-
dimensional P -splines lies also in the fact that different smoothing parameters can be
chosen over ages and years, leading to considerable model flexibility. Furthermore, P -
splines in 2D can be embedded in the class of Generalized Linear Array Models, saving
computational time and reducing storage problems in the estimation of the model (Currie,
Durbán, and Eilers 2006).

2.1 Forecasting with P -splines

In the original paper by Currie, Durbán, and Eilers (2004), forecasting is treated as a
missing-value problem and the smooth surface is simply extrapolated into future years.
Keeping the same age range and forecasting over the years, we augment data andB-spline
bases as follows:

Y̆ = [Y : Y2] , Ĕ = [E : E2] , B̆ = [Bt1 : Bt2 ]⊗Ba ,
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where Y2 and E2 are m × n2 matrices filled with arbitrary future values. In this paper,
the complete B-spline basis over years will extend the original basis with an additional
eight B-splines.

Finally, let us denote by 1m×n1
an all-ones matrix over ages and first n1 observed

years. Similarly 0m×n2
is a zero matrix over ages and future n2 years. If we define a

weight matrix V :
V = diag(vec(1m×n1

: 0m×n2
)) , (11)

we can adapt the algorithm in (6) as follows:

(B̆′V W̃ B̆ + P )α̃ = B̆′V W̃ z̃, (12)

with z̃ = V (y̆ − ĕ ∗ µ̃)/ĕ ∗ µ̃ + η̃ . The penalty is also augmented to account for
future years by difference matrices Da and Dt1+t2 . This unified structure allows us to
simultaneously model and forecast mortality. Moreover, the structure of V makes it clear
that, first, we use all observed data, and second, we assume nothing about the future,
i.e., weights equal to one for the observed years and zero for the forecast horizon.

It is noteworthy that the form of the penalty determines the form of the forecast.
Whereas the order of the penalty is negligible in the model section, it has a crucial role in
the forecasting section. As suggested by Currie, Durbán, and Eilers (2004), second-order
differences in Dt1+t2 are preferable because the forecast coefficients will be approxi-
mately linear over the future years, and this choice is more appropriate when working
with mortality data. However, this aspect will lose its relevance when prior demographic
knowledge is incorporated into the model (cf. Section 3).

Figure 3 presents the outcomes of a two-dimensional P -splines approach in model-
ing and forecasting mortality data for Danish females and US males. The top panels show
empirical and fitted as well as forecast trends for selected ages (0, 50, 80). Concerning
estimation on observed data, P -splines show a rather good fit, though unsmooth patterns
are visible around age 10 in both populations (bottom panels in Figure 3). Nevertheless,
an odd mortality increase in future years is visible for some ages in the US male data,
and the forecast mortality improvement at age 80 for Danish females is probably too fast.
These outcomes are obviously implausible given the observed mortality trends of the past
years. The bottom panels in Figure 3 mirror the above mentioned results from a different
perspective. For the future years, mortality age profiles are obviously improbable given
the knowledge we already have on the phenomenon: Unreasonable wiggling behavior is
evident from age 20 onward in both populations. This outcome can be seen as a conse-
quence of a low smoothing parameter selected by the BIC for the age domain. A small λa
is necessary in any case to allow flexibility in properly describing the whole age pattern
with its notable peak at age 0.
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Figure 3: Empirical, model and forecast mortality. Two-dimensional
P -spline approach. Selected ages over years (top panels) and
selected years over ages (bottom panels)
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Note: Danish females and US males, ages 0–105, years 1960–2016, forecast up to 2050.
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3. The CP -spline model

In the last section, we noted that several issues may occur when two-dimensional P -
splines are applied without any demographic consideration in a plain data-driven ap-
proach. Specifically, we need to deal with infant mortality preserving smoothness in
the following ages. Moreover, previous outcomes call for inclusion in forecast years of
prior knowledge on typical mortality age profiles and time trends.

3.1 Addressing infant mortality

The first year of life is usually treated in a different manner when life tables are con-
structed (Chiang 1984). Therefore, we decided to follow this practice by modifying the
basis related to the age domain. The new basis will then be:

B0
a =

[
1 01×ka

0(m−1)×1 Ba

]
, (13)

whereBa is now a (m− 1)× ka matrix of B-splines.
Moreover we replace the first cell inDa with a zero, which implies that infant mor-

tality is not connected with variation in subsequent coefficients. In other words, we sep-
arate development of infant mortality from the remaining ages.

Using this new basis and a new penalty ensures that a single and specialized co-
efficient will be attached to infant mortality values. In a one-dimensional setting, this
additional coefficient will be exactly the log of death rates at age 0. In a two-dimensional
framework, we allow for a smooth change in infant mortality over time.

On the one hand, we increase the number of coefficients in the model. On the other,
we allow a certain freedom in describing mortality at age 0 via its specific series of co-
efficients over years. This ensures that the smoothness of the surface from age 1 onward
will not be affected by the evident disruption due to infant mortality.

Figure 4 shows the outcomes for our Danish and US datasets when mortality levels
at age 0 are explicitly considered. Although the forecast trends are still unreasonable,
especially for US males, considering infant mortality as a peculiar phenomenon helps to
improve goodness of fit during the observed period: BIC reduces from 79,308 to 34,795
for US males and from 8,135 to 7,701 for Danish females. The specifically optimized
smoothing parameter for the age domain (λa) becomes larger with respect to the origi-
nal approach. As a result, we achieve smoother outcomes over ages, avoiding wiggling
behavior around age 10 in both populations.

1102 http://www.demographic-research.org

http://www.demographic-research.org


Demographic Research: Volume 41, Article 38

Figure 4: Empirical, model and forecast mortality. Two-dimensional
P -spline approach including a specialized coefficient for infant
mortality. Selected ages over years (top panels) and selected years
over ages (bottom panels)
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3.2 Enforcing mortality patterns over age and time

As we have seen in Section 2.1, the original P -spline approach is purely data-driven and
the extrapolated trends are based on the last estimated coefficients solely constrained by
a certain amount of smoothness. However, following Gompertz (1825), demographers
started observing well-defined regularities in the shape of mortality over ages. Moreover,
past mortality trends present a certain predictability that must guide any model. It would
be unreasonable to disregard information on mortality patterns over ages and time in a
forecasting method.

Regarding the age dimension, Figure 5 shows the 95% confidence interval over age
based on the mortality surface, smoothed by P -splines with the additional specialized
coefficient for infant mortality (cf. Section 3.1). A rather stable mortality behavior over
ages is evident. In general, at infant ages, mortality decreases steeply, dropping rapidly
within the first few years (Levitis 2011). A minimum is commonly reached at about ages
10–15. Afterward, especially for men, mortality rates show a hump at young adult ages
(Goldstein 2011; Remund 2015). Mortality then rises exponentially after approximately
age 30 and levels off at ages above 80 (Preston 1976; Thatcher, Kannisto, and Vaupel
1998).

Figure 5: 95% pointwise confidence intervals of mortality age profiles from
fitted two-dimensional P -splines approach
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Note: Model includes a specialized coefficient for infant mortality. Danish females (left panel) and US males (right
panel), ages 0–105, years 1960–2016.

We aim to incorporate the information about this stable profile within the forecast
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period without modifying fitted values which are based on observed and past data. Instead
of borrowing mortality profiles from model life tables or parametric models, we constrain
forecast age profiles lie within the 95% confidence interval of the fitted age profiles.

Since we aim to carry out our analysis referring to the mortality shape and regardless
of its level, our constraints must be based on the relative derivatives of the age mortality
profile, commonly named rate of aging. Given the estimated linear predictor η̂ = Bα̂,
the rate of aging for each year can be computed by a linear combination of a modified
version of the B-splines and the estimated coefficients:

∂
∂a µ̂

µ̂
=

∂

∂a
ln(µ̂) =

∂

∂a
η̂ = Dt1

a α̂ , (14)

where the matrix Dt1
a computes the first difference of the estimated coefficients for each

year and simultaneously multiplies them by B-splines of lower degree. In the formula,

Dt1
a = Bt1 ⊗Ca , (15)

where

Ca =
1

h

[
q−1Bν

a − q−1Bν−1
a

]
, (16)

with h, q and ν being knot distance, degree, and positions of the original B-spline basis,
Ba.

In this way, using directly estimated coefficients, we can compute the instantaneous
rate of aging over all ages and for each year. This allows us to modify the algorithm
in (12) for incorporating possible constraints. Moreover, when working on smooth mor-
tality surfaces, estimated relative derivatives over age will not show the wiggling behavior
produced by simple differentiation of observed death rates.

Figure 6 presents 95% confidence intervals of the instantaneous rate of aging over
all ages above 0 for Danish females and US males. We denote by δaL and δaU the lower
and upper bounds of these confidence intervals, respectively.

For better readability of the graph, relative derivatives for infant mortality are not
displayed. A steep decrease in mortality at age 0 will enormously expand the limits of
the ordinate of the associated rate of aging. Specifically, the 95% confidence interval of
the relative derivatives with respect to age 0 is [−2.76,−2.39] for Danish females and
[−2.82,−2.56] for US males.

In Figure 6 we can read the mortality age patterns of our data without referring to
their level. In general, values above zero correspond to mortality increase and, conversely,
ages with mortality reduction coincide with negative values of the rate of aging.

The rather constant values, about 0.1 after age 30 in both datasets, correspond to
the exponential mortality increase in adult and old ages, commonly described by a single

http://www.demographic-research.org 1105

http://www.demographic-research.org


Camarda: Smooth constrained mortality forecasting

parameter in the Gompertz model, α2 in Equation (4). However, we do not predefine a
constant rate of aging for adult mortality, and can are also capture a possible leveling-off
of mortality at oldest old ages. See the declining relative derivatives above age 80.

Figure 6: 95% pointwise confidence intervals of relative derivatives of force
of mortality with respect to age, i.e., rate of aging, (δaL, δaU ). Fitted
values computed from fitted two-dimensional P -splines approach
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Note: Shown only for ages 1–105. Model included a specialized coefficient for infant mortality. Danish females (left
panel) and US males (right panel), ages 0–105, years 1960–2016.

The rate of aging also shows clear sex differences in young adult mortality: Danish
females present a U-shape pattern about age 20 that is much less pronounced than for US
males. This latter population also reaches relative derivatives equal to zero around age
25, which means a corresponding constant mortality. This sex difference points out the
young adult excess mortality that is particularly evident for males (see Figure 5). In both
populations, the decreasing mortality trend during childhood is clear: The associated rate
of aging shows a steeply increasing pattern with negative values.

Concerning time trends, we can compute relative derivatives with respect to time as
we did for the age domain:

∂
∂t1
µ̂

µ̂
=

∂

∂t1
ln(µ̂) =

∂

∂t1
η̂ = Dt1

t1 α̂ . (17)

Again matrix Dt1
t1 computes first difference of estimated coefficients by differenti-

ating the associated B-spline basis over years for each age. The rate of change over time
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fluctuates more than the age profile, as one can see by looking at a particular age (65) for
both Danish females and US males in Figure 7. Whereas the trend is generally smooth
and downward, there are periods of mortality increase: during the 1980s for Danish fe-
males and the most recent years for US males. Mortality stagnation in US males is also
evident during the 1960s.

Figure 7: Empirical and smooth log mortality for age 65 over time (top
panels) and associated rate of change (bottom panels). Horizontal
blue lines depict 50% confidence intervals of the rate of change.
Fitted values computed by two-dimensional P -splines approach
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These features are immediately visible in the associated relative derivatives with
respect to time for mortality at age 65 in both populations (bottom panels in Figure 7),
which express mortality improvement over time regardless of the actual level. Likewise
for the rate of aging, negative values correspond to downward mortality trends, which
represents the majority of the observed relative derivatives for this specific age. Positive
values are observed when mortality stagnates and/or deteriorates.

Although values for mortality rate of change over time are smaller than the observed
rate of aging, variation is wider: Every mortality fluctuation over time - even minor -
is amplified in the associated relative derivatives. Note, for example, the time trend in
US males aged 65 in the most recent years: A rather small estimated increase translates
into a disproportionate jump in the rate of change (right panels in Figure 7). This is a
well-known issue in statistics: Derivatives will always show undersmooth behavior with
respect to the associated estimated function (Erickson, Fabian, and Marik 1995).

On the one hand, we aim to constrain future mortality developments to lie within
observed mortality rates-of-change. On the other, we intend to avoid in future years the
peculiar past mortality trends that we assume to be solely due to specific and unlikely
events. For this reason we decide to use only 50% confidence intervals of the observed
mortality rate of change, i.e., the interquartile range of past experienced mortality devel-
opment.

We recommend the interquartile range based on several experiments conducted on
numerous populations from the Human Mortality Database (2019) (not shown here).
However, it is important to note that this value (50%) is simply a way to express the
forecaster’s prior knowledge of how past mortality should inform future development.
As a result, different attitudes toward the future or the peculiar mortality history of a spe-
cific population may guide forecasters to different values in computing δt1L and δt1U . In
the Supplementary Materials C we evaluate this choice for Danish females and US males.
Outcomes do not change markedly, as long as extreme mortality fluctuations over time
are not considered. Moreover, we present an out-of-sample forecast exercise which could
be eventually used to select population-specific percentages for computing δt1L and δt1U .

The horizontal green stripes in the bottom panels of Figure 7 depict the 50% confi-
dence intervals of the observed mortality rate of change for age 65 in both populations.

Figure 8 shows the 50% confidence intervals of the relative derivatives of the force
of mortality with respect to time for each age. The lower and upper levels of these confi-
dence intervals are denoted by δt1L and δt1U , respectively.

In Figure 8 we can easily see which ages have experienced greater improvements
(larger negative values) as well as with greater variations in terms of observed mortality
changes (broader confidence bounds).

The idea is to inform our model about rate of aging and mortality changes over
time, i.e., constrain future mortality to lie within a range of plausible age patterns and
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time trends expressed by estimated values and portrayed in Figures 6 and 8. Hence, we
propose the Constrained Penalized spline (CP -spline) model.

Figure 8: 50% pointwise confidence intervals of relative derivatives of force
of mortality with respect to time for each age, i.e., age-specific rate
of change. Fitted values computed from fitted two-dimensional
P -splines approach
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Note: Model included a specialized coefficient for infant mortality. Danish females (left panel) and US males (right
panel), ages 0–105, years 1960–2016.

Although specific values are suggested for computing δ, forecasters can adapt the
model to their needs and to prior knowledge about future mortality development. In gen-
eral, the lower the percentages in estimating the vectors of δ, the closer future mortality
will be to mean age patterns and time trends, as observed in past years. In other words,
extremely low percentages for δ lead to a fixed age profile, along with an invariant age-
specific rate of mortality improvement, i.e., something similar to the Lee–Carter model,
but with a nonlinear time index based on the amount of smoothness. Conversely, large
confidence levels leads to an extremely flexible CP -spline model without much prior
knowledge about future mortality, i.e., a plain P -splines approach. Additionally, differ-
ent levels of mortality improvement can be set for different ages, making the model highly
flexible. Finally, the choice of the percentage for computing δaL and δaU is less important
than for δt1L and δt1U . Derivatives are computed on previously smooth rate values, and
commonly, human mortality shows a rather regular pattern over ages. Consequently, val-
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ues higher than 95% for constraining the age profile will only slightly modify the final
outcomes.

We must warn the forecaster on two important issues. First, allowing high flexibility
may lead to unreasonable outcomes (see Figure 3), whereas the other, a rigid model
will forecast patterns that slavishly reproduce the structure of the model in future years.
Second, recommended levels for computing δ in CP -splines should be adopted with
care: Although they have been tested for many datasets in the Human Mortality Database
(2019), specific populations might need distinct confidence levels to either account for or
neglect unique patterns over age and/or years.

3.2.1 Incorporating prior knowledge into the model

Once the constraints are set, we retain them for all years by augmenting the values in δ
over both dimensions:

gaL = 1n1+n2
⊗ δaL

gaU = 1n1+n2
⊗ δaU

and
gtL = 1n1+n2

⊗ δt1L
gtU = 1n1+n2

⊗ δt1U
(18)

We enforce our shape constraints by adding asymmetric penalties within the system
introduced in (12):

(B̆′V W̃ B̆ + P + P a + P t)α̃ = B̆′V W̃ z̃ + pa + pt , (19)

where
P a = P a

L + P a
U

P t = P t
L + P t

U
and

pa = paL + paU
pt = ptL + ptU

. (20)

As an example, we present the penalty terms for the lower bounds over ages. The
other terms are constructed in a similar fashion. In formulas

P a
L = κDt1+t2′

a diag(s ṽaL) Dt1+t2
a

paL = κDt1+t2′
a diag(s ṽaL) gaL

with vaL =

{
0 if Dt1+t2

a α̃ > gaL
1 if Dt1+t2

a α̃ < gaL
,

and s is a 0/1 vector equal to 1 when the constraint is to be applied (future years).
Note that, being asymmetric, these penalties act on both the left and right sides

of the system of equations, and values in vaL, vaU , vtL and vtU are computed iteratively.
In other words, for each new value of α̃ during the iteration (19), the shape penalties
exert an influence only when the shape constraint is violated. The size of κ regulates
how strictly the constraints are enforced. In this paper, we chose κ = 104, which is
an intermediate value in this setting. We inform the model about our shape constraints,
but meanwhile their effects should not overwhelm the smoothness behavior of the fitted
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values as expressed in the roughness penalty P . More details on asymmetric penalties
and their statistical properties can be found in Eilers (2005) and Bollaerts, Eilers, and van
Mechelen (2006).

3.2.2 Confidence intervals by bootstrap

No forecasting method can be completely satisfactory without an estimation of the un-
certainty affecting the forecast quantities. Estimation of confidence intervals is thus par-
ticularly necessary. It is noteworthy that CP -splines intrinsically constrain future log
mortality within defined ranges of possible outcomes, and these constraints hold within
the estimation of the associated standard errors. The consequences are twofold: On the
one hand, confidence intervals for future years will always contain values that lie within
the defined shape constraints and, on the other, the interval will often be narrower with
respect to alternative methods. Relaxation of the shape constraints by smaller values of κ
and larger confidence levels for computing δ, or accounting for the overdispersion that is
generally found in mortality data may mitigate this drawback. These generalizations of
the current approach will be avenues for future research.

In practice, without shape constraints, plain two-dimensionalP -splines are a straight-
forward extension of a regression model, and methods for computing the covariance ma-
trix and associated standard errors can be borrowed from regression theory. However,
with our CP -spline model, we depart from this setting with the inclusion of asymmetric
penalties in the system of equations.

In the absence of analytical solutions for the estimation of uncertainty in our model,
we opt for confidence intervals constructed via a bootstrap approach. We are thus able to
combine all sources of uncertainty in the model and simultaneously compute confidence
intervals for summary measures, which are complicated nonlinear functions of the esti-
mated coefficients. Details on bootstrap methods in general can be found in Efron and
Tibshirani (1993). While bootstraps have been used by Brouhns, Denuit, and Van Keile-
gom (2005) and Koissi, Shapiro, and Högnäs (2006) in the Lee–Carter context, Ouellette,
Bourbeau, and Camarda (2012) have adapted this methodology to a two-dimensional P -
spline model.

Following Koissi, Shapiro, and Högnäs (2006) and Ouellette, Bourbeau, and Ca-
marda (2012), we carried out a residual bootstrap of our fitted model. Specifically, de-
viance residuals are the standard measures to assess the discrepancy between empirical
and fitted data (McCullagh and Nelder 1989: 39–40):

r = sign(y − ŷ)

√
2

[
y ln

(
y

ŷ

)
− y + ŷ

]
. (21)

These residuals should be independent and identically distributed (provided the model
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is well specified). Hence, we sample from them (with replacement) an entire new set of
residuals r(b) called the bootstrapped residuals. Replacing deviance residuals r with
bootstrapped residuals r(b) in (21) and rearranging the equation leads to

ŷ − y ln(ŷ) + r2(b) + y − y ln(y) = 0 . (22)

Given r(b) and actual death y, equation (22) can be solved numerically with respect
to ŷ, thus obtaining a new matrix of bootstrapped deaths ŷ(b). Together with the original
exposures e, we can estimate the proposed CP -spline model on the bootstrapped deaths
ŷ(b), obtaining new bootstrapped coefficients α̂(b).

The procedure described above, starting with the residual sampling step, was re-
peated 1,000 times. This led to a bootstrapped distribution of constrained and penalized
coefficients. From this distribution, we extract empirical percentiles and compute confi-
dence intervals for force of mortality µ and linear predictor η, as well as for any desirable
summary measure, e.g., life expectancy at birth.

Whereas common approaches focus on the variability in the (univariate) time index
(see both Lee–Carter and Hyndman–Ullah variants), residual bootstrap incorporates the
variability from all model parameters. This approach is more suitable in a nonparamet-
ric framework, and it allows us to account for uncertainty due to the Poisson stochastic
process in (2), i.e., larger populations would tend to have narrower confidence intervals
in the fitting periods.

When we apply any distinct forecasting model we do not question uncertainty due
to model misspecification. Similarly, within a CP -spline framework, we specify a cer-
tain model structure: Values of optimized smoothing parameters and confidence levels
for computing δ are kept fixed in the bootstrapping procedure. However, unlike other
approaches, complexity of the model structure is data-driven in the estimation procedure.
See columns with effective dimension (ED) in Table A-1 and A-2 in Supplementary Ma-
terials.

To sum up, a forecaster that intends to estimate and forecast mortality byCP -splines
needs to adopt the following procedure:

1. Collect as in (1) deaths and exposures in two matrices over age and years;
2. Estimate a two-dimensional P -spline model over the observed period with the al-

gorithm in (6) and a specialized basis for infant mortality as in (13);
3. Optimize smoothing parameters in the penalty term (10);
4. Evaluate rate of aging and rate of change for each age using (14) and (17);
5. Portray previous relative derivatives as in Figures 6 and 8 to decide on level of

confidence for future rate of aging (δaL, δaU ) and rate of change (δt1L , δt1U ). Here,
eventual prior knowledge about mortality developments in a specific population
could modify the recommended 95% and 50% levels;
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6. Solve the system of equations in (19), which adds in the forecasting algorithm (12)
the asymmetric penalty terms;

7. Carry out the residual bootstrap presented above to obtain confidence intervals of
the fitted model.

Routines for running all previous steps and forecast mortality with CP -splines were
implemented in R (R Development Core Team 2019). Available on the journal’s website
are routines that do not require stringent package installations. In terms of computational
time, for a single population, fitting the model takes about 20 seconds, and it takes less
than 80 minutes to run the bootstrap procedure with 1,000 simulations (portable personal
computer, Intel i5-6300U processor, 2.4 GHz × 4 and 16 Gbytes random-access mem-
ory). Concerning computer data storage, a file of about 125 MB can store the Rworkspace
with all outcomes for a single population.

4. Application

Figure 9 shows the outcomes of the proposed smooth constrained forecasting model. In
order to better visualize uncertainty around estimated values, we portray outcomes by
means of fanplot (Abel et al. 2013). Colored bands are limited by 10% and 90% of
the empirical percentiles.

Moreover, in this section, we compare the outcomes from the suggested CP -splines
with a variant of the Lee–Carter model. Specifically, we apply the Lee–Carter model
estimated in a smooth setting as described in Delwarde, Denuit, and Eilers (2007). Both
the CP -spline model and this Lee–Carter variant are embedded in a Poisson framework,
and smoothing of the coefficients is ensured in both settings. Hence, differences between
models will be solely due to differences in model structure.

It is evident in Figure 9 how fitted values from CP -splines follow empirical patterns
adequately and forecast values from CP -splines present reasonable trends over both ages
and years. Specifically, there is no wiggling behavior because we enforce a specific shape
via the asymmetric penalties, which also ensures no crossover of adjacent ages in the long
term. Moreover, future mortality of US males no longer shows increasing trends.

In addition to yielding an accurate modeling performance due to its flexibility, the
proposed approach ensures smooth mortality age patterns for future years. This is ex-
tremely important in both demographic and actuarial studies because it means that fore-
cast mortality can be treated in a continuous setting.
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Figure 9: Empirical, model and forecast mortality along with their
bootstrapped distributions. Constrained Penalized spline model
including a specialized coefficient for infant mortality. Estimates
from a smooth Lee–Carter variant are given for comparative
reasons
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2050.
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At first glance, the boundary of the confidence intervals in Figure 9 is extremely
close to the fitted values in the observed period (1960–2016). This is mainly due to the
large expected values in the Poisson distribution (2) which are the products of force of
mortality and population exposure, remarkably large for US males. Consequently, we see
relatively larger confidence bands at oldest ages over the years. In this area, high force of
mortality is compensated by exposures with moderate counts. Similarly, slightly wider
variability is observed at young ages (see pattern at age 20). This results from low force
of mortality along with a large exposure population. The relatively larger uncertainty at
age 0 is due to its peculiar treatment within the model: Smoothness is enforced only over
time and therefore larger variability is expected. Moreover, variability increases for all
ages the further we move toward future years.

In Figure 9 it is evident how the proposed CP -spline approach clearly outperforms
the Lee–Carter model in fitting past trends: For US males, the deviance that measures
goodness of fit in a Poisson setting is equal to 32,906 for CP -splines and 175,726 for the
smooth Lee–Carter variant. For Danish females, the deviance is equal to 7,728 (12,831)
for CP -splines (smooth Lee–Carter). A larger comparison with other forecasting meth-
ods is available in the supplementary materials to this paper.

Concerning patterns for future years, the Lee–Carter model is not able to capture all
observed mortality changes of the past decades, and its forecast trends are often unrea-
sonable, i.e., a simple linear extrapolation of fitted values, which are a poor description
of empirical trends. It is noteworthy that, although embedded in a smooth setting, the
rigidity of the Lee–Carter structure leads to unsmooth fitted values. On the contrary, the
proposed model does not suffer from this drawback and is able to accommodate diverse
trends.

A direct consequence of these differences is visible in the age profiles in 2050 (bot-
tom panels of Figure 9). Whereas the CP -spline model yields smooth and plausible
future mortality age-patterns, the Lee–Carter produces unrealistic wiggling behavior of
the age-profile in 2050 for both populations.

We decided to assess the performance of the proposed CP -spline model by means
of two complementary summary measures. Life expectancy at birth is used as a classic
measure of average lifespan. Lifespan variation describes differences in the length of
life across members of a population and, among the large number of possible measures,
we opt for the average number of life years lost at birth (Vaupel and Canudas-Romo
2003; Zhang and Vaupel 2009), commonly denoted by e†0. Easy to interpret as a potential
increase in life expectancy at birth, this measure has already been used to evaluate the
performance of mortality forecasts (Bohk-Ewald, Ebeling, and Rau 2017).

The results in terms of these summary measures are presented in Figure 10. As in the
case of log mortality, the CP -spline model fits the development of e0 over the past years
rather well in both populations. The largest difference in e0 between empirical and fitted
values is equal to 0.26 and 0.65 years for US males and Danish females, respectively.
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Figure 10: Empirical, model, and forecast values for life expectancy at birth
(left panel) and a measure of lifespan variability (e†0e

†
0e
†
0, right panel).

Constrained Penalized spline model including a specialized
coefficient for infant mortality
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Note: Colored bands depict 80% of the empirical percentiles. Estimates from a smooth Lee–Carter variant are given
for comparative reasons. Danish females and US males, ages 0–105, years 1960–2016, forecast up to 2050.

In 2050 the proposed method results in a life expectancy at birth of 86.97 years
with a 95% confidence interval (86.66–87.30) for Danish females, and of 80.36 years
for US males (79.88–80.92). We compare our results to those released by the United
Nations in the 2019 World Population Prospects, medium variant (United Nations 2019).
For Danish females, for the periods 2045–2050 and 2050–2055, the results provide a life
expectancy at birth equal to 86.13 and 86.68, respectively. These values are slightly lower
than our forecast 95% confidence intervals. On the contrary, we produce more pessimistic
outcomes for US males: United Nations forecast e0 equal to 81.40 and 82.17 for the two
periods, about 2050.

Lifespan variability measured by e†0 is captured extremely well by the CP -spline
model for the period 1960–2016: The largest errors in estimating the average number
of life years lost at birth is equal to 0.12 (0.24) years for US males (Danish females).
Forecast trends also appear to be reasonable. For US males, we forecast an average
of 11.69 life years lost at birth in 2050 with a 95% confidence interval (11.46–11.92).
Danish females already start with a lower level of e†0 and smoothly move to a value of 9.07
in 2050 (8.99–9.17), with a leveling-off trend. The relationships between both summary
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measures are also adequately described and forecast by the proposed model (not shown
here).

Despite a similar final value in 2050, the development of future life expectancy at
birth is different from that of the Lee–Carter model, which simply extrapolates a linear
trend from erroneously estimated values. The proposed CP -spline model, on the other
hand, is able to capture curved trends over time and consequently to provide more reliable
forecasts.

Unlike the proposed approach, which is capable of reproducing all changes in lifes-
pan variability measures, the Lee–Carter approach poorly estimates observed trends in
e†0, and then linearly extrapolates its fitted values.

In the supplementary materials, we further assess the performance of the proposed
model in additional ways. We compare CP -splines with alternative methods (Supple-
mentary Material A), and we test stability with respect to the time window over which
the model is estimated, an important and often neglected choice in all forecasting methods
(Supplementary Material B).

Specifically, we present a large and detailed comparison study in which CP -splines
have been analyzed with five alternative forecasting methods: the mentioned smooth vari-
ant of the Lee–Carter model (Delwarde, Denuit, and Eilers 2007); the Lee–Carter variants
proposed Lee and Miller (2001) and by Booth, Maindonald, and Smith (2002), and two
of the approaches proposed within a functional data framework by Hyndman and Ul-
lah (2007). We model four countries (United States, Denmark, France, and Japan), both
males and females, for the period 1960–2016 and forecast up to 2050. For the observed
years, we assess goodness of fit (balanced with model complexity) using the Bayesian In-
formation Criterion. In all datasets the proposed CP -splines outperformed the alternative
approaches.

To evaluate the performance against observed mortality trends, we performed an
out-of-sample forecast study. We estimate all models on the period 1960–2006, forecast
up to 2016 and compare to observed values in 2005–2016. Models are compared using
three different measures computed on e0, e†0 and the whole mortality surface (η). Given
four populations, two sexes, three accuracy measures, and three demographic indicators,
we compare six alternative approaches over 72 values. The proposed CP -splines outper-
formed its competitors 39 times (54%), followed by a variant of Hyndman–Ullah model
with only 16 times. A subset of the whole out-of-sample forecast exercise is presented
here in Table 1. Additional details are shown in Supplementary Materials A (Table A-1
and A-2).

http://www.demographic-research.org 1117

http://www.demographic-research.org


Camarda: Smooth constrained mortality forecasting

Table 1: Root Mean Square Errors from the out-of-sample forecast exercise
computed on e0e0e0, e†0e

†
0e
†
0 and ηηη. Lower values (in bold) correspond to

greater accuracy. Fitting period 1960–2006, forecast up to 2016 and
compared to observed values in 2007–2016

CPCPCP-S LCsmo LM BMS HU HUrob

e0 0.154 0.203 0.184 0.200 0.369 0.302

e
†
0 0.224 0.229 0.204 0.200 0.313 0.276USAf
ηηη 0.079 0.128 0.123 0.123 0.103 0.086

e0 0.690 1.420 0.793 1.299 1.237 1.033

e
†
0 0.235 0.850 0.658 0.708 0.516 0.248DNKf
ηηη 0.324 0.420 0.367 0.373 0.344 0.328

e0 0.404 1.049 0.777 0.986 0.319 0.601

e
†
0 0.105 0.317 0.505 0.455 0.298 0.126JPNf
ηηη 0.121 0.287 0.241 0.265 0.123 0.122

e0 0.368 0.431 0.358 0.438 0.172 0.258

e
†
0 0.047 0.263 0.244 0.267 0.101 0.048FRAf
ηηη 0.107 0.180 0.157 0.157 0.120 0.109

e0 0.192 0.269 0.297 0.264 0.306 0.304

e
†
0 0.349 0.614 0.570 0.600 0.469 0.399USAm
ηηη 0.092 0132 0.126 0.128 0.110 0.099

e0 1.069 1.440 1.457 3.804 1.047 1.345

e
†
0 0.308 0.247 0.409 0.861 0.097 0.250DNKm
ηηη 0.358 0.372 0.427 0.809 0.364 0.373

e0 0.152 0.391 0.311 0.389 0.226 0.300

e
†
0 0.095 0.088 0.092 0.098 0.260 0.196JPNm
ηηη 0.104 0.154 0.163 0.168 0.101 0.097

e0 0.297 0.463 0.305 0.617 0.166 0.540

e
†
0 0.081 0.130 0.089 0.160 0.205 0.053FRAm
ηηη 0.101 0.209 0.455 0.433 0.134 0.138

Note: Populations: United States, Denmark, Japan, and France; females and males. Models: CP-splines (CP-S),
smooth Lee–Carter (LCsmo), Lee-Miller (LM), Booth-Maindonald-Smith (BMS), Hyndman–Ullah (HU), and a robust
version of Hyndman–Ullah (HUrob). Larger comparison is shown in the Supplementary Materials.

5. Conclusions

Our paper starts from a simple consideration about established forecasting methods for
mortality. We recognized that widely used methodologies are either too rigid to properly
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capture mortality developments over age and time, or too flexible to impose certain well-
known structures in absence of observed data.

Among the rigid models, one can certainly list parametric models such as Gompertz
and Heligman-Pollard. These models predefine a mortality law over age, and forecast
estimated parameters will reproduce with a blind adherence these laws in future years.
However, several Lee–Carter variants suffer from equivalent drawbacks describing all
the mortality developments within a bilinear model and fixing an age-specific rate of
mortality improvement. To free mortality models from rigid structures, nonparametric
methods have been suggested. Superior in describing observed patterns, these approaches
do not account for demographic knowledge in guiding forecast mortality developments.

Our study bridges the gap between these seemingly distant approaches. We enhance
a powerful nonparametric statistical methodology, incorporating observed demographic
information from the past years into the model. Under a P -spline approach we obtain
good fit, flexibility, and smooth outcomes. Nevertheless, we show that a plain smoothing
approach results in unreasonable outcomes when used to forecast mortality. This purely
data-driven approach is not able to reproduce past mortality experience because it ex-
trapolates last estimated trends with blind adherence. A certain amount of smoothness
is the only restriction integrated into the model, and it is not sufficient when no data are
available, as in the case for future years.

Thus, our proposal accomodates the P -splines approach, constraining future mor-
tality to lie within trends estimated from observed data. We thus propose a Constrained
Penalized spline (CP -spline) model. Initially, we consider infant mortality as a specific
age and attach to age 0 a specialized coefficient. This improves the estimation of past
trends but is insufficient to correct inconsistent trends in future years. Consequently, we
also incorporate information about past mortality experience. Instead of working on ob-
served log mortality, we operate in terms of rate of aging and rate of change over time.
In practice, we enforce shape constraints by asymmetric penalties based on observed rel-
ative derivatives of the force of mortality with respect to age and time. Uncertainty on
estimated and forecast quantities is then computed by a residual bootstrap approach. In
this way we are able to simultaneously smooth past trends and forecast mortality in a
sensible manner.

Results on two distinct populations in terms of mortality development (Danish fe-
males and US males) show that the CP -spline method performs well. Low deviance
indicates that we are able to accurately capture past trends. Moreover, forecast mortality
patterns and age profiles are reasonable given the past observed development. Fitted and
forecast summary measures are also presented, and these results confirm that the pro-
posed forecasting model performs remarkably well with very small errors in the observed
period. Moreover, we show how the suggested CP -splines outperforms a smooth variant
of the Lee–Carter model and, in the supplementary materials, a wider comparison shows
the better performance of CP -splines with respect to other forecasting methods.
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In the paper, we specified levels of confidence for rate of aging and rate of change
aiming to constrain future mortality to observed shapes. These levels can be adapted to
express diverse prior knowledge about future mortality for a distinct population and/or
for specific ages. Specifically, our model might provide a means for guiding expert-based
forecast approaches. Whereas it is hard to explicitly foresee future values for age-specific
mortality rates, experts in the field may have more precise opinions on (un)feasible ranges
of mortality improvements for ages, or groups of ages, looking to what has been observed
in the past. This is obviously a population-specific procedure, and it will help to forecast
populations that experienced exceptional patterns such as HIV epidemics, wars, and gen-
eral mortality crises. We plan a generalization of the proposed CP -splines for these
peculiar situations. Moreover, we envisage a large use of the CP -splines on all avail-
able and comparable mortality data. This will allow researchers to calibrate the choice
of possible future age patterns and time trends based on broader past experiences, and
eventually guide forecasters toward a more informed selection of possible constraints. In
a Bayesian framework, and for forecasting cohort fertility, a similar approach was pro-
posed by Schmertmann et al. (2014).

Specific cohort effects can be observed in certain populations and, in these situations,
forecasters search for a procedure to incorporate these effects in the forecast horizon.
Shape constraints over the diagonal of the mortality surface can be employed for accom-
modating peculiar cohort behaviors without influencing neighboring cohorts. Similarly,
the proposed model may provide a flexible and rigorous approach for deriving the age
pattern of mortality given a predicted level of life expectancy and/or lifespan variability
measures. We plan to extend our model along both lines.

Finally, we think that the CP -spline model can be generalized to produce coherent
forecasts for both sexes, or more populations, following a recent strand of research on
mortality forecasting (Ahmadi and Li 2014; Bergeron-Boucher et al. 2016; Hyndman,
Booth, and Yasmeen 2013; Li and Lee 2005; Shang 2016; Ševčı́ková et al. 2016). Con-
straining future mortality to observed age profiles and time trends can also be viewed as
a way of constraining different subpopulations to behave analogously in terms of mortal-
ity shape and trend. This idea can be also adapted to estimate, and eventually forecast,
mortality patterns for small areas where prior knowledge is often necessary to obtain rea-
sonable outcomes. CP -splines would also be a useful tool for creating future mortality
scenarios that borrow known mortality experiences from other populations and/or peri-
ods, and for eventually answering to the often relevant question “What if?” We shall
pursue these ideas in future research.
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Renshaw, A.E. and Haberman, S. (2003). Lee–Carter mortality forecasting with
age-specific enhancement. Insurance: Mathematics and Economics 33: 255–272.
doi:10.1016/S0167-6687(03)00138-0.

1128 http://www.demographic-research.org

https://doi.org/10.1111/j.1467-9868.2006.00543.x
https://doi.org/10.1111/j.1467-9868.2006.00543.x
https://doi.org/10.1136/jech-2016-207379
https://doi.org/10.1377/hlthaff.2010.0073
https://doi.org/10.1155/2014/347043
https://doi.org/10.1111/1467-9469.00198
https://doi.org/10.4054/DemRes.2011.25.19
https://doi.org/10.25336/P61P53
http://www.R-project.org
https://doi.org/10.1007/s13524-012-0193-x
https://doi.org/10.1016/S0167-6687(03)00138-0
http://www.demographic-research.org


Demographic Research: Volume 41, Article 38

Ribeiro, F. (2015). Statistical analysis and forecasting of cause of death data: Novel
approaches and insights [PhD Thesis]. Évora: Universidade de Évora.
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