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Research Article

Elaboration of the Coale-McNeil Nuptiality Model
as the Generalized Log Gamma Distribution:
A New Identity and Empirical Enhancements

Ryuichi Kaneko 1

Abstract

The Coale-McNeil nuptiality model is a particular case of the generalized log gamma
distribution model. In this paper, we demonstrate that recognition of this connection
allows an expansion of the possible applications of the Coale-McNeil model.  As
examples, we propose a procedure to develop country specific standard schedules, and
illustrate the utility in regression analysis (directly and via the competing risk
framework). In addition, we employ this identification to enhance the ability of the
models with empirical adjustment to trace the trajectory of the lifetime schedule for
cohorts which have not completed the process. We illustrate an application to Japanese
female cohorts. We also propose an application to fertility projection by modeling the
fertility schedule by birth order.
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1. Introduction

The Coale-McNeil (CM) nuptiality model is a mathematical expression of regularity in
age patterns of first marriage. It is a standard demographic tool for the estimation and
projection of age schedules of first marriage and birth by birth order. However, it is not
generally recognized by researchers that the CM model without a prevalence parameter
is precisely the log version of the generalized gamma distribution with limited
parameter space (Kaneko 1991a). Clear recognition of this connection is useful because
it enables the utilization of the rich body of knowledge about the statistical properties of
the generalized gamma distribution when pursuing demographic applications.
Conversely, some of the analysis of the structure of the CM model (such as the
interpretation of the convolution structure) can be applied to understanding the
generalized log gamma distribution. The first purpose of this article is to demonstrate
some of the demographic applications that benefit from this new description of the CM
framework. We present algorithms for formalized development of country-specific
standard schedules. In addition, we provide an analysis of the effects of covariates on
marriage timing, both with and without application of the competing risk framework for
different types of marriages.

The second purpose of this article is to present enhancements to the ability of the
model to trace the trajectories of lifetime marriage and fertility schedules by
incorporating an empirical model of the residual pattern. This provides more precise
estimation even for cohort experiences of the processes that have not been completed.
Period measures of nuptiality and fertility are subject to compositional and
distributional "distortions" such as those from flux in marital and parity composition
and tempo effects. Although some effective remedies have been proposed to correct for
these distortions (Bongaarts and Feeney 1998, Kohler and Philipov 2001, Kohler and
Ortega 2002, Ryder 1964, 1980), cohort nuptiality and fertility measures which are free
from those effects are of primary importance in understanding what is taking place in
people's life course in the demographic sense. The only drawback of cohort measures is
that they cannot be evaluated until the life course processes of the events are completed,
and therefore they do not provide information on the current situation of uncompleted
phenomena. It is impossible to “measure” cohort experiences that are not completed
(Ryder 1964, van Imhoff 2001). However, a model embodying lifetime regularities of
the events (i.e. the "law" of nuptiality and fertility) may provide useful predictions of
the current situation. Our empirical enhancement of the GLG model is a very practical
effort in this line. We demonstrate its usage in estimation and prediction of first
marriage schedules by providing long-term estimations of lifetime measures for
marriage behavior relevant to recent marriage and fertility developments in Japan. We
also discuss fertility projection as an application of the empirically enhanced model.
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2. Coale-McNeil Model and the Generalized Log Gamma
Distribution

2.1 Coale-McNeil Model

Following the finding by Coale (1971) that age specific rates of first marriages for
female cohorts from different countries showed virtually identical patterns if location,
scale, and eventual proportion of ever marrying are adjusted, Coale and McNeil derived
a statistical distribution that described observed distributions of age at first marriage
(Coale and McNeil 1972). The closed form description of the probability density
function (PDF) for this distribution is:

( ) ( ){ }( ) exp exp
( )

g x x x
β α µ β µ

α β
� �= − − − − −� �Γ

(1)

where Γ  denotes the gamma function ( 1

0
( ) x tx t e dt

∞ − −Γ = � ), ( 0)α > , ( 0)β > , and

( )µ µ−∞ < < ∞  are three parameters (Coale and McNeil 1972). For practical

application, they provided a standard marriage schedule model from a location-scale
family of this distribution by fixing the shape according to the experiences of Swedish
female cohorts. The following is an adjusted version of the standard model with mean
zero, and variance unity by Rodriguez and Trussell (1980), obtained by setting

1.145, 1.896α β= = , and 0.805µ = −  in equation (1):

( ) ( ){ }( ) 1.2813exp 1.145 .805 exp 1.896 .805� �= − + − − +� �sg z z z . (2)

Let ( )g x  denote a distribution of age at first marriage of any female cohort with

its observed mean, u , standard deviation, b. Using the standard model above, it is
given by:

1
( ; , ) ( )

−≅ s

x u
g x u b g

b b
(3)

The marriage schedule that embodies the probability density of marrying at exact age x
for all members of the cohort (Note 1), ( )f x , is represented by:
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( ) ( )=f x C g x (4)

where C denotes proportion eventually marrying in the cohort. Thus, the age
distribution underlies the age schedule (the age specific rate) with parameter of
prevalence measure, C.

Clear definition of terms is essential. In this paper, the probability density ( )f x
given by (4) is called first marriage schedule, the underlying distribution ( )g x  in the

same equation is called distribution of age at first marriage, and the normalized

distribution with fixed shape ( )sg x  given by (2) is the (global) standard distribution of

age at first marriage. Thus, ( )sC g x   is the (global) standard schedule.

An interesting feature of the CM distribution is that it is a limiting probability
distribution of convolution of infinite set of mean-related exponential distributions.
Thus, it is regarded as a convolution of distribution of its own form and some numbers
of related exponential distributions as well. This structure provides a mathematical
model for the multistage process, by which we mean a process that consists of multiple
processes required for the target event to happen. In fact, Coale and McNeil (1972),
inspired by Feeney (1972), viewed first marriage as a multistage process in which entry
into marriageable state, meeting of the eventual spouse, and engagement are required to
take place prior to the marriage.

Suppose we form the convolution of the m exponential distribution with parameter
α , +α β , 2+α β , …, + mα β , where α  and β  are two parameters with

positive real values, and let ( ; )Th t m  denote PDF of the resulting distribution, then the

CM distribution given in equation (1) is the convolution of two distributions whose
PDFs are:

{ }( ; ) exp ( )( ) exp ( )
( )

= − + − − − −� �� �Γ +Xg x m m x x
m

β α β µ β µ
α β

(5)

( ){ } ( )1( )
( ; ) 1 exp exp

( )( 1)!

−Γ += − − −
Γ −

m

T

m
h t m t t

m

β α β β α
α β

(6)

where α , β , and µ  are three parameters of the CM distribution found in (1) (Coale

and McNeil, 1972). Here ( ; )Xg x m  represents the distribution of times of entering a
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stage from when the process starts, and ( ; )Th t m  is the distribution of the waiting time

that is composed of m exponentially distributed waiting times. The mean and variance

of distribution ( ; )Xg x m  are respectively 
1 � �

− +� �
� �

m
αµ ψ

β β
, and

2

1 � �′ +� �
� �

m
αψ

β β
, where ψ  and ′ψ  are the digamma and trigamma functions. Those

of distribution ( ; )Th x m  are respectively { } 1

1

( 1)
−

=

+ −�
m

j

mα β , and

{ } 2

1

( 1)
−

=

+ −�
m

j

mα β .

The exponential distribution with the three largest means convoluted in

distribution ( ; )Th t m  have the parameters α , +α β , and 2+α β . For the first

marriage process, Coale and McNeil supposed that these are distributions of duration
from entry into the marriage market to the meeting of future husband, dating duration,
and engagement duration. According to parameter values of the CM standard age
distribution (2), which are derived from the experiences of Swedish female cohorts, the
mean duration from entry into the marriage market to the meeting of future husband is

estimated as (1 0.174  ) or 5.75 years. Similarly, means of the second and third

waiting durations are 2.16 years (1 (0.174 0.2881)+ ) and 1.33 years

(1 (0.174 2 0.2881)+ × ) respectively (Coale and McNeil, 1972). However,

empirical evidence on female first marriage process in Japan indicates that age at the
meeting and durations between meeting and marriage are highly correlated (Kaneko
1991a) (Note 2). This implies that the assumption of independence of the convolved
distributions is violated in actual processes, and the estimated mean durations above
should be biased. Nonetheless, the convolution structure of the CM distribution may
provide a structured approximation of the complicated multistage model. Moreover, it
should serve as an important prototype in developing models with process dependences
which make parameters of sub-processes dependent on the timing of the outcomes of
previous stages.
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2.2 Coale-McNeil Model as The Generalized Log Gamma Distribution

Some authors have discussed relationships of the Coale-McNeil distribution to other
well-known probability distributions. Coale and McNeil themselves pointed out that the
CM distribution is the extreme value distribution (of type I, or equivalently the
Gompertz distribution for non-negative random variables) when =α β  (Coale and

McNeil, 1972). Rodriguez and Trussell discussed its relationships with the gamma
distribution (Rodriguez and Trussell, 1980). Liang (2000) discussed its relationships to
the extreme value, log-gamma, and the normal distribution based on discussion of the
log-gamma distribution by Johnson et al. (1994). The conclusive observation on these
relationships is that the CM distribution is precisely equivalent to the generalized log
gamma (GLG) distribution with a somewhat different parameter space (Kaneko 1991a).
This explains the relationships of the CM distribution to the extreme, the log gamma,
and the normal distributions, since these arise as special cases of the generalized log
gamma distribution.

The generalized gamma (GG) distribution was defined by Stacy (1962),
introducing an additional parameter into the gamma distribution (Note 3). If a random
variable follows the GG distribution, then the log-transform of the random variable
follows the GLG distribution (some authors such as Johnson et al. 1994, call it the log
generalized gamma distribution), which is a mirror image of the CM distribution
reflected at the origin ( 0=x ). Prentice (1974) proposed an alternative
parameterization of the GLG distribution which extends the parameter space so as to
express both mirror images of the distribution corresponding to random variable X and
-X by one model. Hence, it includes the CM distribution as a constrained version with
half of the extended parameter space. Here we refer to Prentice's extended version
simply as the GLG distribution.

The PDF and the cumulative distribution function (CDF) of the GLG distribution

are given by:

22 1 2
2( ) ( ) exp exp

( )

−− − −
−

� �− � − �� � � �= − � �	 
� � � �Γ 
 � 
 �� �� �

x u x u
g x

b b b
λλ

λ λ λ λ
λ

(7)

2 2( ) 1 , exp− −� − �� �= − � �� �
� �� �

x u
G x I

b
λ λ λ (8)
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where ( , 0), ( ), ( 0)−∞ < < ∞ ≠ −∞ < < ∞ >u u bλ λ  are three parameters, and

Γ  and I  denote the gamma function and the incomplete gamma function respectively
(Note 4). Parameter λ  determines the shape of the distribution; if it is positive, the
distribution is skewed to the left, and if it is negative, it is skewed to the right. The
distribution is not defined for 0=λ , but as 0→λ , the distribution approaches the
normal distribution. u  is a location parameter which determines the location of the
mode of the distribution. b  is the scale parameter of the distribution.

The following alternative parameterization of the CM distribution allows
representation of the full range of the parameter space as the GLG distribution:

( ) ( ){ }( ) exp exp
( )

� �= − − − − −� �Γ
g x k x x

k

β
β µ β µ (9)

where ( 0)>k  is a new parameter, and β  is now allowed to take a negative value

(Note 5).
Since the original CM distribution corresponds to the GLG distribution with a

negative value of λ , and we consider only situations in which λ  takes on a negative
value, we can regard the GLG distribution as equivalent to the CM distribution
throughout the paper.

One of the advantages of the GLG formulation is that it has only one shape
parameter, i.e. λ . Describing the shape of the distribution by a single value is quite
useful in applications. Since it identifies a distribution once location and scale are
controlled for, it can be regarded as an index of schedule shape specific to cohorts of a
country or region, for instance. In fact, the essential nature of the CM global standard
nuptiality schedule is constancy across population groups of the shape parameter at a
value of λ  –1.287. Substantial implication of the shape value is discussed later. In the
next section, we describe a simple procedure to develop country specific standard
schedules which takes advantage of the single shape parameter. The single shape
parameter is quite effective in developing fertility schedules by birth order as well,
since the shape value varies by birth order.

The mean and variance of the GLG distribution are respectively given as:

2 2( ){ ( ) ln }+ +u b λ ψ λ λ (10)

2 2( ) '( )−b λ ψ λ (11)
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The mode is simply u, with the maximum of PDF given by:

2 22
2 ( )

( )

− −− −
−=

Γ
�

g e
b

λ λλ
λ

λ
.

As mentioned earlier, the GLG distribution includes many of the fundamental
distributions as special cases. Specifically, it specializes to the extreme value
distribution when 1=λ , the (standard) log-gamma distributions when

, 2ln= = −b uλ λ , and even the normal distribution as a limiting case when

0→λ . These relations are a reflection of relationships between the GG distribution
and the exponential, the Weibull, the gamma, and the log normal distributions, and it
guarantees that the GLG distribution describes age distribution of first marriages better
than those specialized distributions.

The correspondence between the parameters of the CM and GLG distributions can
be expressed as:

1= −
b

α
λ

, = −
b

λβ , 2ln= − b
uµ λ

λ
(12)

or equivalently,

1
2

−
� �

= −� �
� �

αλ
β

, ( )
1

2
−=b αβ , 

1
ln
� �

= − � �
� �

u
αµ

β β
, (13)

where ,α β , and µ  are parameters of the CM formulation in (1) (Kaneko 1991a).

The revised version of the CM standard distribution of age at first marriage by
Rodriguez and Trussell given by (2) is expressed by the GLG with parameters

1.287= −λ , 0.5390= −u , 0.6787=b .
The identification of the CM distribution as the GLG distribution allows many

important properties previously explored separately for each of the distributions to be
unified. For instance, since the GLG distribution includes as special cases some
important distributions as noted above, so does the CM distribution. Conversely, the
characterization of the CM distribution as a convolution of an infinite number of mean
related exponential distributions applies to the GLG distribution as well. In other words,
the convolution representation of the CM distribution as expressed in formulations (5)
and (6) holds for the GLG distribution as:
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( )22 2 2
2

( ; ) ( ) exp exp
( )

−− + − −
−

� �− � − �� � � �= + − � �	 
� � � �Γ + 
 � 
 �� �� �

m
X

x u x u
g x m m

b m b b
λλ

λ λ λ λ λ
λ

(14)

12

2

( )
( ; ) 1 exp exp

( )( 1)!

−−

−

Γ + � �� � � �= −� �� � � �Γ − 	 
 	 
� �

m

T

m t t
h t m

b m b b

λ λ λ
λ λ

(15)

where the parameters are the same as given above and m is the number of the mean-

related exponential distributions that compose the waiting time distribution ( ; )Th x m .

Theories, application frameworks, and computer software packages developed for
either distribution can be applied to the other. This is particularly useful in view of the
wide array of utilities for working with the GG and GLG distributions. In the following
section, we first demonstrate the usefulness of the GLG formulation as an analytic tool
for studying first marriage behavior, and then we conduct empirical enhancement of the
applicability of the model to predict trajectories of marriage and fertility schedules.

3. The GLG Model as an Analytic Tool for First Marriage

3.1 Development of Country Specific Standard Schedules

The first demonstration of the usefulness of the new identification of the CM model
exploits the feature that it has only one shape parameter (λ ). This enables us to make
country specific standard schedules through undemanding procedure. Country specific
standards are sometimes required and often desirable, since the global standard
schedule derived from Swedish experiences might be inappropriate for some
populations. In addition, identifying the specific shape value to apply for a schedule is
crucial for predicting the fertility by birth order, since the value for each order varies
from that of the nuptiality standard. In the following, we illustrate the development of a
country specific schedule using Japanese female cohorts.

Some authors have reported that the CM standard marriage schedule does not fit
Japanese experiences as well as those of Western countries (Takahashi 1978, Kojima
1985, Kaneko 1991b).  Kaneko (1991b) examined shape parameter values of the GLG
model fitted to cohort and period marriage schedules of Japanese females, and found
substantial deviations from the shape value λ  of the CM standard schedule, i.e. -1.287.
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Figure 1: Estimated Shape Parameter Values (λ) of The GLG Model
For Japanese Female Cohorts born in 1935-60

Figure 1 shows the trend of parameter λ  estimated for Japanese female cohorts
born in 1935-1960 who have attained at least age 40 at the time of evaluation. The
figure indicates deviations in the shape values of Japanese cohorts from the value of the
CM standard schedule, which is derived from Swedish experiences. The shape values of
Japanese cohorts fall in the range from –1.0 to –0.8, while it is at –1.287 for the CM
standard. Other particular values correspond to well-known underlying distributions.
The value zero corresponds to the normal distribution, and the value unity to the
extreme value distribution. The shape values of Japanese cohorts are located in the
middle of the CM standard and the normal distribution near the extreme value model,
implying that the Japanese schedule is more symmetric than the CM standard. It seems
a little more feasible to use the extreme value distribution to describe Japanese cohorts.
We consider some of reasons for the symmetry seen in Japanese cohorts later. A mild
decline in the shape value over cohorts is also identified in the figure.
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Coale’s original finding about first marriage schedules is, in our translation, that

the shape parameter of the age distribution is common over countries and periods

(Coale 1971). It has been validated by the wide use of the shape-fixed CM standard

schedule as a practical tool in various demographic applications. However, the stability

of shape is, of course, an approximation. Our close examination indicates that it varies

across countries (Japan is not the same as Sweden), and undergoes changes over time to

some extent as well. Thus, a schedule with a shape value specific to Japanese women is

expected to be more accurate. On the grounds that the shape characterizes the first

marriage process of a nation, developing country specific standard schedule with an

appropriate shape value is quite beneficial. Such a specific schedule offers more

accuracy with the same general form. We now describe the procedure for producing a

country specific shape-fixed standard schedule with mean zero and standard deviation

of unity.

Let sλ  denote shape parameter of the GLG model which is specific to cohorts of

a country. The following parameters are to be calculated for the new standard:

2−=s sk λ ,

( )
'( ) , '( ),

'( )
= = = s

s s s s s s

s

k
k k k

k

ψα ψ β ψ µ
ψ

, (16)

where ψ  and ′ψ  denote the digamma and trigamma function. Using these parameters,

the underlying distribution of age at first marriage in the new standard schedule is given
by:

( ) ( ){ }( ) exp exp
( )

� �= − − − − −� �Γ
s

s s s s s
s s

g z z z
β α µ β µ

α β
(17)

The country specific shape value sλ  can be obtained by averaging values of λ  of the

GLG model fitted to source schedules. Then any first marriage or fertility distribution
( )g x  and corresponding schedule ( )f x  among the location-scale family of the

standard are given by:
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1
( ) ( )

−= s
x x

x x
g x g

s s
, (18)

( ) ( )=f x C g x , (19)

where x  and xs  are the mean and standard deviation of the distribution, and C is the

proportion eventually marrying, of a target cohort.
For Japanese female cohorts born between 1935-60, the average of the estimated

λ  of the GLG model is -0.9123. With this value for sλ , and following the formulas

(16) and (17), our new Japanese female standard marriage schedule ( )jg z  is given by:

( ) ( ){ }( ) 1.226exp 1.351 0.2553 exp 1.125 0.2553� �= − + − − +� �Jg z z z . (20)

In Figure 2 the Japanese standard schedule developed here is compared with the
CM standard.  Substantial difference in shape is observed. The Japanese standard is
more symmetrical than the CM standard. In fact, the shape value indicates that the
Japanese standard is only a little more symmetrical than the extreme distribution.
Besides Japanese cohorts, Liang (2000) reported that the first marriage distribution of a
Chinese female cohort was close to the normal distribution rather than the CM standard.

Why are the distributions from these countries more symmetrical than the CM
standard? What determines the shape of the distribution in the first place? Kaneko
(1991a), using national representative survey results, examined the shape of first
marriage schedule by type of marriage in Japan, and concluded that a rather symmetric
shape in the Japanese schedule was formed by presence of arranged marriages. Namely,
when the competing risk models were applied to age distributions of marriage by the
types of marriage (arranged marriage and others), the shape of each distribution by
disaggregated by type was less symmetric than the aggregate, and each shape value was
closer to that of the CM standard (arranged –1.065, non-arranged–0.965, while the
aggregate –0.644). This implies that the major part of the deviation of the shape in
Japan from that of the CM standard is caused by mixture of types of marriage whose
timing is distinctively different. In addition, the shape values of schedules of non-
arranged and all marriages become even closer to the CM global standard if
socioeconomic covariates are controlled for. Therefore, the skewed shape exhibited by
the CM global standard may represent schedules of homogeneous marriage behaviors.
Comparison of the shape values associated to different marriage types with covariates
controlled through the competing risk framework is given in the following section.
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Figure 2: Comparison of Japanese Standard Schedule with The Coale-McNeil
Standard for First Marriage of Female Cohort

Searching for the determinants of the shape is essential for many applications of
the model. As shown later, it is crucial to identify the shape in predicting the schedules
of young cohorts that have yet to complete their process. As seen in Figure 1, the shape
value changes over time. For example, if presence of arranged marriage makes the
shape symmetric and proportion of arranged marriage decreases over time, the shape
value is expected to approach that of the CM standard.
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3.2 Estimation of Covariate Effects on First Marriage Timing with/without
Competing Risk Framework

Though extensions to incorporate covariates into the CM model have been
conducted by several authors (Trussell and Bloom 1983, Sørensen and Sørensen 1986,
Liang, 2000), the GLG specification has some advantages for this purpose in both
theoretical and practical developments since it is one of the standard parametric
regression models in survival analysis (Lawless 1982, Johnson et al. 1994 1995, Klein
and Moeschberger 1997). Here, we demonstrate the effectiveness of the model in
analysis of covariate effects on age at first marriage, and the effect of heterogeneity on
shape parameter value, which is significant in predicting the parameter required for
nuptiality and fertility projection described later in this paper.

In the standard specification of the GLG regression model, a vector of covariates
for individual i, Xi, are incorporated into the model in linear form with regression
parameters θ , so that the parameter u of equation (7) and (8) for individual i should be

= X θ
t

i iu  where Xt
i  denotes the transpose of vector Xi . Since the parameter u

determines the location of the schedules (the mode), the specification implies that
individuals have underlying probabilities that differ in marriage or reproduction timing
depending on their characteristics. This formulation is particularly useful for analysis of
the current fertility decline to below replacement level in many countries, since the
decline is firmly connected with delay in timing of marriage and childbearing.

We conduct the GLG regression for age at first marriage with some demographic
and socio-economic characteristics using survey data for illustrative purposes (Note 6)
(The source is the national representative sample in the Ninth National Fertility Survey
conducted in 1987 in Japan). The results are presented in Table 1 in the far left two
columns (“All Marriage”), where estimated parameter values and regression
coefficients for two different model specifications (model 1 and 2) are shown.

The coefficients listed indicate the amount of marriage delay (year) in relation to
timing in reference category (marked with #) if variables are categorical, or to unit
change of covariates if they are quantitative (here only “Number of Sibling”). Model 1
incorporates only “cohort” as covariates, and shows no significant difference in
marriage timing among them, though slight delay is observed in younger cohorts.
However, Model 2, in which all other covariates at hand are incorporated, reveals that
the delay in younger cohorts is fully attributable to the effects of other covariates than
“cohort”, mainly due to the expansion of higher educational groups, since coefficient
values of cohorts are reversed when those effects are controlled in this model (Note 7).
It is worth noting that the value of λ  tends to decrease when more covariates are
introduced, which supports the view that the symmetric shape of schedule is caused by
heterogeneity in marriage timing.
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Table 1: Effects of Covariates on Age at First Marriage of Japanese Women: The
GLG Regression by Type of Marriage with Competing Risk Model

All Marriage
Covariates Model 1

(N=4682)
Model 2

(N=4682)

Non-Arranged
(N=4682)
(n=2878)

Arranged
(N=4682)
(n=1804)

Intercept 23.34 22.43 23.86 23.33

Cohort (Birth Year) **** ****
# 1938-39 0.00 0.00 0.00 0.00
1940-44 0.04 -0.05 -0.36 0.30
1945-49 0.17 -0.11 -0.72 *** 0.75 ***
1950-54 0.20 -0.18 -1.02 **** 1.29 ****

Educational Background **** **** ****
# Junior College 0.00 0.00 0.00
High School 0.87 **** 0.82 **** 0.89 ****
Junior College 1.49 **** 1.69 **** 1.00 ****
University 2.48 **** 2.61 **** 2.05 ****

Father's Occupation ** ** ***
# Agriculture 0.00 0.00 0.00
Self-employed 0.13 -0.10 0.50 **
White-colalr 0.17 -0.16 0.70 ****
Blue-collar -0.13 -0.49 ** 0.48 *
Not working/ temporary -0.44 * -0.69 ** 0.02

Area of Residence **** ****
# Rural 0.00 0.00 0.00
Urban 0.42 **** 0.13 0.98 ****

Co-residence with *** ****
# Living seperately 0.00 0.00 0.00
Living together 0.09

Heiress
# Not heiress 0.00 0.00 0.00
heiress -0.16 -0.06 -0.22

Number of Sibling -0.07 ** -0.12 0.04

Scale Parameter ( b ) 2.614 2.460 3.082 3.453
Shape Parameter ( λ ) -0.673 -0.761 -1.161 -1.054

N : Sample Size     n : Number of Samples without Censor     # : Reference Category
* P<0.05   ** P<0.01   ***P<0.001   ****P<0.0001
Data Source: The Ninth National Fertility Survey in Japan, Female cohorts born in 1938-54.
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While the effects of heterogeneity of individual characteristics in relation to first
marriage timing are measured above, we next view the effects of heterogeneity of
characteristics of marriage itself. There occur several different types of marriage such
as non-arranged and arranged marriages, registered marriage and cohabitation, or inter-
racial and intra-racial marriages, and so forth. For instance, consider a situation in
which the marriage processes of non-arranged and arranged marriages are to be
compared. One plausible supposition here is that the same person goes through different
processes simultaneously and ends up in either of these different types of marriage,
whichever comes first. According to the survival analysis framework, this type of
situation can be dealt with by the competing risk model, in which several different
events have their own mutually independent probabilities of taking place at a given
time.

We illustrate the use of the competing risk framework by applying it to analysis on
determinants of first marriage timing in Japan taking into account the type of marriage,
i.e. non-arranged and arranged marriage. The results are presented in the right two
columns of Table 1. Here, some interesting tendencies hidden in the analysis of all over
marriage appear. First, age at first marriage decreased by cohort for non-arranged
marriages, while it increased for arranged marriages. These changes in opposite
directions are both statistically significant and substantial in amount. On the other hand,
as described before, the trend as a whole for all marriages indicates no significant
change by cohort. The analysis by type of marriage here revealed active changes behind
the seeming stability over the cohorts. Similar opposite effects by type of marriage are
seen for some other covariates. Co-residence with parent(s) before marriage
significantly affects marriage timing of each type in opposite directions (delay in the
non-arranged, and accelerated in the arranged marriage) while that of over all marriage
appears to be unaffected. Residence in urban areas delays only arranged marriage. Only
non-arranged marriage is accelerated by the presence of siblings. The analysis
illustrates that examination by type of marriage with the competing risk framework
provides us with information about detailed features of the process which are otherwise
not observable.

Again, it should be noted that the values of shape parameter λ  for each type of
marriage are substantially smaller in absolute value than that of overall marriages,
approaching the value of the CM global standard schedule derived from the Swedish
experience. This confirms the view that a mixture of different processes such as type of
marriage makes the shape of the age distribution of overall marriages more symmetric
than the CM standard, while shape of each underlying process tends to follow the
standard.
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4. Empirical Enhancement

4.1 Empirical Adjustment of the GLG Model

No model fits actual data perfectly. Discrepancies consist of two types of errors; one is
random error induced by exogenous factors such as measurement error, and the other is
systematic error derived from simplification or insufficiency in model specification.
The latter may be corrected by exploiting regularity in the pattern of error. Here we
introduce empirical adjustments of the GLG model, seeking a better fit to actual
experiences in first marriage of Japanese female cohorts.

The GLG model does not satisfactorily describe the first marriage experiences of
Japanese female cohorts. This issue is partly discussed above, where the shape of the
standard schedule is inappropriate and therefore is to be set to a specific value to create
a country-specific schedule. But even allowing the shape parameter to take value
specific to a target cohort, the model schedule deviates noticeably from the observed
data. Figure 3 shows observed (dots) and modeled (broken line) first marriage rates for
Japanese female cohorts born in 1950. Although the model is best-fitted by optimizing
all parameter values including the shape value, the discrepancy is sizable. A similar
error pattern is found for every cohort that completed the marriage process in our data
set, and therefore the errors can be regarded as systematic. The discrepancy causes
serious distortion in estimated parameter values especially when the model is applied to
censored cohorts that have not completed their marriage processes. Therefore, seeking
better fit for the model is critical in predicting eventual schedule of nuptiality and
fertility for cohorts that have not completed the process.

To improve the predictive power of the model in this circumstance, we should
capture regularity in the error pattern to be modeled. Difference in the cumulative first
marriage rates by age between actual and fitted experiences for 16 cohorts (born in
1935 through 1950) that completed the marriage process are examined. We adjust the
cumulative rate function instead of the first marriage rate function because the former is
used in parameter estimation, as describe later.

Figure 4 shows the errors for the cohorts. In the figure, the horizontal coordinate is
calibrated by standardized age z in terms of parameter u and b, i.e. with usual age x:

( )= −z x u b . The origin (0) of the axis indicates the location of mode, since

parameter u designates the mode of the GLG schedule. Let ( )zξ  denote the error

as: ˆ( ) ( ) ( ; , , , )= + − +z F u bz F u bz C u bξ λ , where ( )F x  and ˆ ( ; ),θF x
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( ), , ,=θ C u bλ are the cumulative function of the first marriage rate of observed and

model (the latter is alternatively represented by ( )ˆ ( ; ), , ,0,1=θ θF z C λ .)

As mentioned above, a highly systematic age pattern of error exists. It is
reasonable to assume that there is a particular cause for the very persistent age pattern
of discrepancy seen in Figure 4. However, here we just model the pattern empirically.
We return to a discussion of underlying causes of the error pattern later.

The straightforward way to incorporate the error pattern into the model is to add an

average error pattern to the model.  The resulting model ( )( ; ), , , ,=θ θF x C u bλ  is

expressed as:

ˆˆ( ; , , , ) ( ; , , , )
−� �= + � �

� �

x u
F x C u b F x C u b

b
λ λ ξ , (21)

where ˆ ( ; )θF x  is the GLG model, and ( )ˆ zξ  is the average error at standardized age

z, called the adjustment function (Note 8). We call this model the empirically adjusted
GLG model. Although incorporating empirical residual pattern into the mathematical
model is not an elegant solution, the simple way out is of practical efficacy.

Here, ˆ( )zξ  is obtained by averaging the errors of the model applied for Japanese

cohorts (born in 1935-50) described above, and is presented in numerical form in Table
A-1 in the Appendix. The function is also shown in Figure 4 in a continuous curve
along with error dots. To obtain the average error pattern on standardized ages, and to

evaluate ˆ( )zξ  in the new model ( ; )θF x , some interpolation method is required.

Although here the cubic spline interpolation technique is employed, linear interpolation
may be adequate for most purposes. There are some constraints on the adjustment

function ˆ( )zξ . First, it is to be zero as z goes to plus or minus infinity to keep

parameter C intact as is in the original GLG model. Secondly, integration of ˆ( )zξ  over

the full domain of z should be zero to keep the mean age of the schedule intact.

Therefore, we slightly adjust the average error pattern to derive ˆ( )zξ  so that these

properties of schedule are preserved.
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Figure 3: Observed Age Specific First Marriage Rates and Fitted GLG Model (with
and without Adjustment): Japanese Female Cohort born in 1950

Figure 4: Errors of the GLG Model in Cumulative Fist Marriage Rate for Japanese
Female Cohort (1935-50) and Adjustment Function
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In Figure 3, we see an improvement in the results produced by the adjusted model
(solid line). The curve produced by the adjusted GLG model traces almost exactly the
observed rates, while, as already mentioned, the GLG model without adjustment
(broken line) does not (Note 9).

Now we briefly discuss the cause of the error pattern. The upper graph of Figure 5
shows the average error pattern in the first marriage rate of the Japanese female cohorts
from vital statistics and from a national representative sample. Both patterns indicate
that first marriages concentrate on the mode (age 23-24) more than is predicted by the
GLG model. A similar error pattern is reported in attempts to fit the Coale-McNeil
model to cohort experiences in other countries (for the U.S., Bloom and Bennett 1990,
for Swedish male, Ewbank 1974). If the model should represent the “natural” course of
first marriage schedule, people should exert a certain kind of regulation on age at
marriage resulting in the error pattern. Since in the US, the actual rate exceeds the
prediction of the model in the late teens, where the mode locates, Bloom and Bennett
speculate that there is a threshold age of 18 before which marriage is hindered by laws
or cultural norms. In our case in Japan, however, excess marriages concentrate on age
23-24. Inquiring as to the cause of this residual pattern, we might ask if age at marriage
is regulated directly by couples or if the pattern is formed spontaneously in course of
marriage process. We observe the error pattern of distribution of age at first encounter
with eventual spouse through a national representative survey (the National Fertility
Survey) in Japan. The lower graph of Figure 5 indicates that there is a similar deviation
pattern in distribution of age at first encounter from the GLG model, which suggests
that the regulation is exerted largely on the timing of first encounter, although a
difference in the error pattern between first encounter and marriage, especially in their
dispersion, indicates that duration from encounter to marriage is partly regulated as
well. A sharp rise in deviation of the actual rates of first encounter around age 18 from
the model prediction seen in the lower graph of Figure 5 suggests that graduation from
high school may be a threshold of behavioral change in first meeting, which supports
the view of Bloom and Bennett(1990) that the residual pattern is formed by interference
of some social activities.

Hereafter we exclusively use the empirically adjusted version of the model for the

first marriage schedule. Notation ( )F x  instead of ( )F x  is used for simplicity.
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Note: Dots stand for residual that are obtained as difference between the Kaplan-Meyer estimates and the GLG model prediction.
Thin lines represent their moving average. Thick lines represent the residual pattern from vital statistics.  Data is from the
National Fertility Survey, round 9, 10, and 11, for married cohorts born during 1937-1959, from the vital statistics for cohorts
born in 1935-1950.

Figure 5: PDF Residual Pattern of the GLG Model of First Marriage
and First Encounter with Spouse by Age
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4.2 Method of Parameter Estimation

The Parameter Estimation Method for the adjusted GLG model is no different from the
standard method as long as the proper interpolation technique is used for the adjustment
term. In a simple situation where age at first marriage of the married people and age at
survey of the never married are measured, the likelihood function ( )θL  is constructed

as:

[ ]1
( ) ( ; ) 1 ( ; )

−

∈

= −∏θ θ θ
ii

i i
i P

L f x F x
δδ (22)

where ( ; )θf x  and ( ; )θF x  are respectively the density function (age specific first

marriage rate) and the cumulative function of first marriage schedule at age x with
parameter set θ , which includes , , ,C u bλ  in our model (21), xi is age at marriage or

age at survey (consor) of individual i depending on whether i is married or never

married, iδ  is a indicator variable that takes value one if individual i is married at age xi

and zero otherwise, and P denotes the sample set as a whole. We estimate a set of
parameters θ  so as to maximize ( )θL , although its logarithm is to be maximized in

practice for the sake of ease of calculation.
In the situation above, xi, age at marriage or at survey is to be exact age. If only

aggregated information, such as numbers of marriage classified by age group or even by
completed age of single year, is available, the maximum likelihood method with
interval censoring is appropriate. Most data of the national level is available only in this
form. Suppose that a female cohort of size N at exact age x had ma marriages in each

completed age a (a<x), and nx is left as never married, i.e. 
0

1−

=

= +�
x

a x
a a

N m n , where

0a  is age at onset of first marriages. Assuming marriages take place independently, the

probability of having such a sample follows the multinomial distribution with

0 1− +x a  parameters ( 0 0( , 1, , 1)= + −�am a a a x , xn ). Let ( ; )θF x  denote the

cumulative first marriage rate function. Then the probability (L) is given by:

( ) ( )
00 0

1

1 1

!
( ) ( 1; ) ( ; ) 1 ( ; )

! ! ! !

−

=+ −

� �
= + − −� �

� �
∏θ θ θ θ

�

a x
x

m n

a aa a x x

N
L F a F a F x

m m m n
. (23)



Demographic Research – Volume 9, Article 10

http://www.demographic-research.org 245

Eliminating the constant factors from the log-transform of L, we maximize the
following function to obtain an estimate of θ :

( ) ( )
0

1

ln ( 1; ) ( ; ) ln 1 ( ; )
−

=

+ − + −� θ θ θ

x

a x
a a

m F a F a n F x (24)

The estimation procedure described above requires number of marriages and
population never married as inputs. But in most applications with aggregate data, it is
desirable to input rates rather than numbers for the estimation, since numbers are
subject to direct influences of death and migration. Here we use the age specific first
marriage rate in completed age a as input for ma, and the proportion never married at
exact age x for nx so as to focus on behavioral aspects of first marriage free from
influences of death and migration (Note 10).

4.3 Censoring Effects on Parameter Estimation

Parameter estimation is affected by censoring. This takes place in our research for
cohorts that have not completed the marriage process (right censoring). The extent of
censoring effects on parameter estimation depends both on the exactness of model
specification and data adequacy. Here, we conduct some experiments in which
censoring is artificially performed on non-censored cohorts to assess the effects of
censoring at various ages on estimated value of parameters.

Examination of estimated values of parameters with artificial censoring shows that
the values are quite stable and close to the “true” values that are estimated without
censoring when the censoring takes place after standardized age 5.0, which
approximately corresponds to normal age 36-40 in the case of Japanese females. It is
suggested, therefore, that estimates with censoring after standardized age 5.0 are mostly
trustworthy. Examination of estimates of C indicates that the differences between
estimated and the true values are within a range of –1.5% to 1.0% for those censored
around and after standardized age 2.0, which corresponds to normal age 28-32 in Japan.
Therefore, we may expect that we can estimate the proportion eventually marrying for
the cohort that has completed the marriage process up to around age 30 with error of
less than 2%± .

If the values of some parameters are known a priori, it is observed that the
prediction of other parameters for young cohorts are more accurate, and with the same
accuracy the target range can be extended to younger cohorts. Since parameter λ  is
expected to be stable in value, it is reasonable to fix it at a certain value such as the
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global standard (-1.287) or a country specific value in order to obtain a better prediction
for younger cohorts in first marriage schedule. According to our examination,
differences of C between estimated and the true values are within a range of –0.4% to
0.2% with censor at standardized age 2.0, if true value of λ  is known. In this case we
may reasonably expect to be able to predict the proportion never married for cohorts
who are above age 30 with an error of less than 1%± . In the same condition,

parameter u, the location parameter that designates location of the mode, is estimated
within a range of –0.015 to 0.01 of the target when censored at standardized age 2.0,
and parameter b is estimated within range of –0.05 to 0.01 around the target value.  This
is adequate accuracy for most demographic applications. Since u and b are only
determinants of the mean and standard deviation of age at first marriage if λ  is fixed,
similar stabilities are expected for those moments.

5. Application of the Adjusted GLG Model

5.1 Estimation and Projection of First Marriage

Now we apply the empirically adjusted GLG model described above to estimate and
predict first marriage schedules for female birth cohorts including those that have yet to
complete the marriage process. Annual first marriage rates derived from the vital
statistics with correction of delayed registration are used as the source data so that the
results represent overall Japan (the correction procedure is described elsewhere, Kaneko
2002).

From the estimated annual first marriage rates through the ages and years of 1950-
2000, the full lifetime first marriage experiences over ages 15-49 can be extracted only
for 16 single year cohorts born during 1935-1950. However, the relevant cohorts to the
unprecedented nuptiality and fertility decline in Japan since the mid 1970s are mostly
those born after the 1950s. Hence, some reliable predictive tool is required to identify
the changes seen in the contemporary nuptiality and fertility reduction. We employ the
GLG model adjusted for Japanese females described in the previous chapter for this
purpose. We apply it to the cohort first marriage processes to estimate lifetime
behavioral measures such as mean age at first marriage, or proportion never married at
age 50.

The model schedule is fitted to each cohort experience by estimating model
parameter values specific to the cohort through the maximum likelihood method
described in the previous section. First, parameter estimation is performed without
constraint on parameter for cohorts that have fully and substantially completed their
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lifetime first marriage schedules. Then, we extend the estimation to younger cohorts
that are undergoing various stages in the process, by keeping the shape parameter
constant at feasible values as described in the following.

For cohorts that have completed the marriage process, i.e. those born in the years
up to 1950, predicted measures by the model agree almost exactly to the observed, since
model schedules fit the actual experiences quite well. However, censoring effects on
estimates are apparent in younger cohorts born after the mid 1960s, causing estimation
results to be increasingly implausible.  According to our criterion of reliability in the
estimated value of C assessed in the censoring experiments described above, we employ
free estimation for cohorts with censoring at standardized age 5.0, which corresponds to
cohorts born in 1960 in our data set. For cohorts born after 1960, the value of λ  is to
be fixed while the other parameters are freely estimated. The criteria for reliable
estimation with fixed λ  described in the previous section suggests that the border of
feasible estimation is around the cohort of 1970. Hence, we limit our observation up to
cohorts born in 1970.

Which value should we fix λ  to for cohorts born from 1961 to 1970? According
to the free estimation, the value of λ  shows upward development during 1961 to 1970.
It is not certain if the trend is actually happening or is just an artifact due to the
censoring effect. Previously we found that the shape value becomes larger (smaller in
absolute value) when marriages are a mixture of non-arranged and arranged marriages.
Since arranged marriages have been diminishing through the postwar period, the value
of λ  is expected to decrease instead of increase as seen in the results of free
estimation. Thus, here we fix λ  at the level of 1960 so as not to let λ  increase.

Estimated and fixed values of λ  are shown in Figure 6. In the figure, we added
the graph of estimated λ  for the model without empirical adjustment in a broken line
to see effect of the adjustment. Its values after 1960 are fixed at the level of 1960 again.
Shape values of the non-adjustment model deviate from that of the adjusted particularly
in later cohorts with earlier truncation of the marriage process, tending to be larger
which implies a more symmetric shape.

Predicted marriage schedules for the cohort of 1970 are contrasted with those
observed in Figure 7. The model schedule follows the actual experiences quite well,
even though the cohort is the youngest and its exactitude of the fit is supposed to be the
weakest in our data set.
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Notes:  Solid line: Estimates with empirical adjustment, Broken line: Estimates without empirical adjustment.

Figure 6: Trends of Estimated Value of Parameter λ  (Shape Value): Japanese
Female Cohorts born in 1933-70
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Figure 7: Observed and Predicted Age Specific First Marriage Rate: Japanese
Female Cohort born in 1970

0.00

0.02

0.04

0.06

0.08

0.10

15 20 25 30 35 40 45 50

Age

R
at

e

Cohort born in 1970

 ●    Observed
-x-   Predicted by Model



Demographic Research – Volume 9, Article 10

250 http://www.demographic-research.org

The results of estimation for the mean and the mode of age at first marriage, and
the proportion never married at age 50 (γ) are portrayed (solid lines) in Figure 8-a and -
b along with estimates for the non-adjustment model (broken lines) again. The trends
show a smooth continuous transition from cohort to cohort except the relatively large
fluctuation in C for cohorts born at the end of the World War II, probably caused by a
flaw in raw statistics. For these indices, the original GLG model without adjustment
yields similar estimates to those from the adjusted model for older cohorts. But the
results from the former show somewhat different paths from the latter for younger
truncated cohorts. These are expected from differences in the abilities of the models to
trace age schedules of first marriage (see Figure 3, for instance).

What are the findings from the estimated trends of lifetime measures of first
marriage by the empirically adjusted GLG model? The results for cohorts born in 1935-
1970 indicate that there are five phases of behavioral change, of which the last three are
relevant to the recent unprecedented nuptiality and fertility decline. The change was
initiated with a delay in marriage by the cohort born in 1952, followed by a diffusion of
never-marrying in cohorts born after 1959 along with prolonged delaying. Then there is
an emerging new phase in which the timing shift of marriage is gradually ending in
cohorts born after 1965, while the diffusion of never-marrying is rather accelerated.
Close examination of hazard rates revealed that the diffusion of never-marrying in the
second phase is related to the delaying behavior since marriage propensity in later ages
seems to have a bound on increase, and some of postponed marriage have been
foregone. On the contrary the diffusion of never-marrying in the third phase is caused
by a decline in the propensity to marry even in higher ages as well as early ages. The
results suggest that a new phase of marriage behavior is emerging among Japanese
women born in and after 1965, which will result in steep increase in lifetime proportion
never-marrying (Kaneko 2002).

Note that observation of the trends over cohorts born in from 1952 to 1970 is
possible only via the application of some model, and a high level of accuracy in model
is required to draw substantive conclusion. The original GLG model (CM model) seems
not sufficient in the Japanese case for the recent period described above.

5.2 Application for Fertility Projection

As mentioned before, a model of first marriage schedules also serves for modeling
fertility schedules by birth order. Those processes of first marriage and birth by birth
order share common structures. The application of the GLG model to birth by order is
theoretically expected because of the convolution structure of the GLG model described
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Note: Solid line : Estimates with empirical adjustment  Broken line : Estimates without empirical adjustment

Figure 8: Trends of Estimated and Projected Lifetime Measures of First Marriage:
Japanese Female Cohorts born in 1933-70

0

5

10

15

20

25

1930 1935 1940 1945 1950 1955 1960 1965 1970 1975

Cohort (Year of Birth)

P
ro

p
o

rt
io

n
 N

ev
er

 M
ar

ry
in

g

b.  Trend of Estimated and Projected Value of
 Proportion Never Married at Age 50 (%)

22

23

24

25

26

27

28

1930 1935 1940 1945 1950 1955 1960 1965 1970 1975

Cohort (Year of Birth)

Lo
ca

ti
o

n
  (

Y
ea

r)

a.  Trend of Estimated and Projected Value of
Mean and Mode



Demographic Research – Volume 9, Article 10

252 http://www.demographic-research.org

in this paper (Note 11). We briefly illustrate an immediate application of the GLG
model to fertility in a system of fertility projection, following Kaneko (1993).

Let ( ; , )θn nF x C  be a function of age specific cumulative fertility rate of the n-th

child at age x with proportion eventually having n-th child nC  and a set of other

parameters θn , then:

( ; , ) ( ; )=θ θn n n n nF x C C G x  (25)

where G denotes the distribution function of the GLG distribution. The function of age

specific fertility rate of the n-th birth ( ; , )θn n nf x C  is given by:

( ; , )
( ; , ) ( ; )= =θ

θ θ
n n n

n n n n n

dF x C
f x C C g x

dx
 (26)

where g denotes PDF of the GLG distribution. However, the observed age specific

fertility rate in completed age a  should be given by ( 1) ( )+ −n nF a F a .

The estimation scheme is also identical to that for first marriages except
substituting observed frequencies of n-th birth for those of first marriages. If schedules
for all birth order are estimated, then the overall age specific cumulative birth rate F(x)
is given simply by summing them up to the highest birth order as:

1

( ) ( ; , )
=

=� θ

L

n n n
n

F x F x C    (27)

where L denotes the highest birth order. In practice, the class of highest birth order may
include certain order of births (e.g. 5-th birth) and higher together so that the summation
in (27) includes all births.

In general, the higher the birth order is, the more the shape of the schedule
becomes symmetric. There is difficulty for the GLG model to describe the schedule
whose shape approaches perfect symmetry. The distribution underlies the perfect
symmetric GLG model is the normal distribution. Therefore, the normal distribution
model (with extra parameter for prevalence level, C) is to be used as an approximation
for the case in which the shape is highly symmetric, or value of parameter λ  is near
zero.
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The model (27) contains 4× L  parameters, which seem to be many more than
required to describe overall fertility schedules. Parameters for subsequent birth orders
should be correlated and the relationships might be modeled so that we could reduce the
number of parameters for parsimony. However, the maximum precision is attained in
the original form as long as fertility rate by birth order are available, which is mostly
the case with national data.

The empirical adjustment technique employed for first marriage schedule
developed in the previous section is applicable to the model of fertility as well. Kaneko
(1993) examined the error pattern of the model for each birth order with regard to
Japanese female cohorts, and presented the adjustment functions in table form (see
Table A-2 in the Appendix).

We now provide an illustration of the application of the model to cohort fertility.
In Figure 9, the observed and predicted age specific fertility rates by birth order for
Japanese female cohorts born in 1955 with data up to age 35 are plotted together. The
model schedules follow the observed rates quite well for all birth orders.

Note: Fifth and higher birth order is not shown

Figure 9: Observed (as of 1991) and projected Cohort Fertility Rates: Japanese
Female Cohort born in 1955
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The model projects the schedule of this cohort beyond age 35 (the point after
which data was not available) to conclude the processes. Applying this projection
procedure to every relevant cohort with some assumptions of future fertility behavior
for very young cohorts, we obtain a prediction of the period fertility schedule. Using
fertility data of cohorts born in 1935-75, the period age specific fertility rates for the
year 1985 through 1990 are reconstructed by the model system. The fits are visually
presented in Figure 10, which indicates that the system is capable of generating period
fertility schedules with adequate precision for most practical purposes (Note 12).

Figure 10: Observed and Projected Period Fertility Rates: Japanese Female,
1985, 1990
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6. Summary and Conclusion

The first purpose of the present paper is to show that recognition that the Coale-McNeil
(CM) nuptiality model is equivalent to the generalized log gamma (GLG) distribution
model allows an expansion of possible application of the model. Some of these
applications are illustrated. First, by taking advantage of single parameter representation
for the shape of the GLG model, a simple method to derive a country specific standard
schedule is proposed. In this course, the significance of the shape specific to a country
or region, represented by single value by the GLG model, is indicated. Second, we
demonstrated a regression analysis of the effects of covariates on marriage timing.
Immediate application of the theories, techniques and software packages of the GLG
statistical model to analyze first marriage is main advantage of the new recognition.
Here the effects of individual characteristics on first marriage timing were measured
with the GLG regression technique, taking account of types of marriage, such as
arranged and non-arranged marriages, with the competing risk framework. In our
illustration of analysis on Japanese female experiences, we found interesting hidden
effects of covariates that would not be found otherwise. These applications revealed
also some mechanisms that determine the shape of distribution underlying the first
marriage schedule. Heterogeneities of the marriage processes depending both on
individual characters and types of marriage (presence of arranged marriage) in Japanese
case promote symmetry in shape, which is significantly different from the shape of the
Coale-McNeil global standard derived from Swedish experiences. When both types of
heterogeneity are controlled, the shape of the schedule of each underlying process tends
to follow the global standard.

The second purpose of the present study is to enhance the ability of the model to
trace trajectories of the lifetime marriage schedule by incorporating an empirical model
of residual error so as to ensure precise estimation results for cohort processes that have
not been completed. Employing our findings about stability of residual error patterns
for Japanese female cohorts, we successfully incorporated the empirical residual
pattern, adjusting its location and scale into the GLG model. The behavioral foundation
of the residual pattern was examined, and confirmed to be mainly caused by adjustment
in the time of first encounter with future spouse, though there seems an adjustment of
dating duration. We conducted a long-term estimation of cohort lifetime measures of
first marriages including cohort behavior relevant to the recent drastic reduction in
nuptiality and fertility observed in Japan, finding that a new phase of marriage behavior
where the proportion never-marrying will drastically increase is emerging. The
predictive power of the GLG model allows estimation for behavior of young cohorts,
and the empirical adjustment ensures the precision, otherwise quite different schema is
drawn, as illustrated.
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It should be noted that every aspect of arguments on the GLG model for the first
marriage schedule can be directly applied for the fertility schedule by birth order,
because of the formal equivalence in structures of those processes. Finally, we
demonstrated an application of the enhanced model to the fertility projection system.
The performance of the system to predict cohort and period age specific fertility rates
seems satisfactory so that it is utilized for country specific precise fertility projection.
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Notes

1.  This may be regarded as a continuous version of the age specific first marriage rate
that is in the strict sense defined by a definite integral of ( )f x  over the relevant

age range.

2.  Pearson's correlation coefficient between meeting and waiting time to first
marriage is -0.48 (that of meeting and time to engagement is -0.45, and of meeting
and engagement period is -0.22) for Japanese women born in 1938-54. Partial
correlation coefficient between the age at meeting and the waiting time to first
marriage with cohort effect controlled is virtually not affected (-0.45). The analysis
was carried out on the data from the Ninth National Fertility Survey in 1987
conducted by National Institute of Population and Social Security Research.

3.  PDF of the Gamma distribution with two parameters, k and δ , is:

[ ]
1( )

( ) exp 0
( )

−

= − >
Γ

kt
f t t t

k

δ δ δ  while that of the GG distribution with

additional parameter,  η , is; 
1( )

( ) exp ( ) 0
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4.  The gamma function and the incomplete gamma function are here defined as:

1
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y uy u e du  and 1

0

1
( , )

( )
− −=

Γ �
t

y uI y t u e du
y

) respectively.

5.  k  is corresponding to α β  in equation (1).

6.  Some of statistical packages include regression application with the generalized
gamma distribution. We here utilized LIFEREG procedure in SAS/STAT. Constant
term of u, b, and λ  are respectively correspond to INTECEPT, SCALE, and
SHAPE in the SAS output of the procedure with option NOLOG.

7.  We here present only a naïve analysis for examination of covariates effects on
marriage processes, because of its illustrative purpose for the use of GLG model.
Raymo (2003) closely examined the effects of individual characteristics,
educational attainment in particular, on transition probability to first marriage
among Japanese women, finding higher educational attainment is increasingly
associated with later and less marriage by cohort.
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8.  It seems possible to introduce an additional parameter as a coefficient of ξ  to seek

further flexibility. However, it may distort the estimation of the other parameters
due to identification problem.

9.  The empirical adjustment proposed here is primarily aimed to improve model's
ability to trace the age schedules in macro level (demographic) applications, in
which the improved accuracy is crucial for predictive use. Though it improves
accuracy of estimates in the regression analysis as well, the adjustment is mostly
surplus for the regression analysis in the cost of giving up application of the
techniques and prevailing software packages. For instance, the cohort effects on
first marriage timing presented in Table 1 (Model 1) revised with the adjustment
are respectively 0.00, 0.09, 0.16, 0.24 with intercept 23.14 (log-likelihood -
11475.3), while original estimates are 0.00, 0.04, 0.17, 0.20 with intercept 23.34
(log-likelihood -11491.0). As seen in this example, changes in regression
coefficients are usually not significant, though likelihood is slightly improved.

10.  For the parameter estimation of the empirically adjusted GLG model in this study,
specific software (written in C and C++) is developed. To obtain the software,
contact the author.

11.  If age at (n-1)-th birth (or first marriage if n=1) follows the GLG model, then age at
n-th birth that is expressed as a convolution of age at (n-1)-th birth (or marriage)
and birth interval to n-th birth follows the GLG distribution. This convolution
structure, however, holds only approximately in practice, since it is valid only if
age at (n-1)-th birth (or marriage) and birth interval to n-th birth are independent of
each other.

12.  This system of fertility projection with some modifications has been employed in
the official population projection in Japan conducted in 1992, 1997, and 2002.
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Appendix

Table A-1: Adjustment Function of the GLG Model for First Marriage of Japanese
Female Cohorts: ( )zξ

Standardized
Age (z)

Adjustment
Function

Standardized
Age (z)

Adjustment
Function

-3.0 0.00000 3.6 -0.00859

-2.8 0.00000 3.8 -0.00912

-2.6 0.00011 4.0 -0.00931

-2.4 0.00069 4.2 -0.00926

-2.2 0.00188 4.4 -0.00901

-2.0 0.00358 4.6 -0.00864

-1.8 0.00513 4.8 -0.00821

-1.6 0.00600 5.0 -0.00774

-1.4 0.00478 5.2 -0.00724

-1.2 0.00006 5.4 -0.00673

-1.0 -0.00713 5.6 -0.00623

-0.8 -0.01573 5.8 -0.00573

-0.6 -0.02372 6.0 -0.00524

-0.4 -0.02885 6.2 -0.00478

-0.2 -0.02761 6.4 -0.00436

0.0 -0.02014 6.6 -0.00395

0.2 -0.00728 6.8 -0.00356

0.4 0.00756 7.0 -0.00319

0.6 0.02134 7.2 -0.00284

0.8 0.03183 7.4 -0.00252

1.0 0.03737 7.6 -0.00222

1.2 0.03830 7.8 -0.00192

1.4 0.03542 8.0 -0.00164

1.6 0.03027 8.2 -0.00138

1.8 0.02393 8.4 -0.00115

2.0 0.01766 8.6 -0.00092

2.2 0.01178 8.8 -0.00071

2.4 0.00669 9.0 -0.00051

2.6 0.00234 9.2 -0.00033

2.8 -0.00127 9.4 -0.00016

3.0 -0.00408 9.6 -0.00004

3.2 -0.00616 9.8 -0.00001

3.4 -0.00763 10.0 0.00000

Note: These are the adjustment values for the cumulative function of the GLG model for first marriage schedule by standardized age
prepared for Japanese female cohorts.
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Table A-2: Adjustment Function of the GLG Model for Fertility of Japanese Female
Cohorts by Birth Order: ( )zξ

Birth Order (n)Standardized
Age (z) 1 2 3 4 5 and over

-3.6 0.00000 0.00001 -0.00001 -0.00001 -0.00004
-3.4 0.00000 0.00002 -0.00001 -0.00003 -0.00009
-3.2 0.00000 0.00006 0.00001 -0.00008 -0.00012
-3.0 0.00000 0.00012 0.00007 -0.00012 -0.00009
-2.8 0.00011 0.00027 0.00024 -0.00010 -0.00023
-2.6 0.00041 0.00057 0.00062 0.00007 -0.00075
-2.4 0.00097 0.00110 0.00117 0.00043 -0.00131
-2.2 0.00185 0.00188 0.00171 0.00082 -0.00187
-2.0 0.00291 0.00260 0.00192 0.00100 -0.00198
-1.8 0.00386 0.00280 0.00162 0.00054 -0.00171
-1.6 0.00381 0.00199 0.00058 -0.00045 -0.00173
-1.4 0.00213 -0.00015 -0.00156 -0.00150 -0.00147
-1.2 -0.00142 -0.00321 -0.00459 -0.00289 -0.00070
-1.0 -0.00667 -0.00626 -0.00740 -0.00394 0.00158
-0.8 -0.01246 -0.00913 -0.00905 -0.00414 0.00565
-0.6 -0.01713 -0.01163 -0.00886 -0.00310 0.00829
-0.4 -0.01836 -0.01164 -0.00649 -0.00064 0.00888
-0.2 -0.01562 -0.00854 -0.00240 0.00256 0.00953
0.0 -0.00982 -0.00323 0.00254 0.00423 0.00840
0.2 -0.00128 0.00317 0.00707 0.00481 0.00534
0.4 0.00845 0.00906 0.00943 0.00605 -0.00010
0.6 0.01640 0.01321 0.00989 0.00744 -0.00558
0.8 0.02127 0.01503 0.00952 0.00694 -0.00925
1.0 0.02286 0.01437 0.00861 0.00412 -0.01156
1.2 0.02157 0.01162 0.00701 0.00108 -0.01133
1.4 0.01817 0.00772 0.00457 -0.00101 -0.00855
1.6 0.01364 0.00386 0.00175 -0.00292 -0.00586
1.8 0.00890 0.00075 -0.00065 -0.00406 -0.00334
2.0 0.00449 -0.00154 -0.00228 -0.00394 -0.00048
2.2 0.00064 -0.00314 -0.00326 -0.00378 0.00203
2.4 -0.00248 -0.00410 -0.00369 -0.00337 0.00386
2.6 -0.00474 -0.00446 -0.00377 -0.00367 0.00411
2.8 -0.00617 -0.00438 -0.00350 -0.00189 0.00346
3.0 -0.00689 -0.00404 -0.00295 -0.00106 0.00269
3.2 -0.00708 -0.00354 -0.00235 -0.00039 0.00185
3.4 -0.00689 -0.00298 -0.00182 0.00006 0.00123
3.6 -0.00645 -0.00242 -0.00135 0.00032 0.00076
3.8 -0.00581 -0.00188 -0.00095 0.00042 0.00040
4.0 -0.00506 -0.00139 -0.00063 0.00040 0.00010
4.2 -0.00428 -0.00099 -0.00039 0.00030 0.00000
4.4 -0.00352 -0.00068 -0.00021 0.00021 0.00000
4.6 -0.00285 -0.00044 -0.00010 0.00015 0.00000
4.8 -0.00225 -0.00026 -0.00004 0.00010 0.00000
5.0 -0.00172 -0.00015 -0.00001 0.00005 0.00000
5.2 -0.00126 -0.00008 0.00000 0.00002 0.00000
5.4 -0.00090 -0.00003 0.00001 0.00000 0.00000
5.6 -0.00062 0.00000 0.00000 0.00000 0.00000
5.8 -0.00041 0.00001 0.00000 0.00000 0.00000
6.0 -0.00025 0.00001 0.00000 0.00000 0.00000
6.2 -0.00013 0.00001 0.00000 0.00000 0.00000
6.4 -0.00005 0.00001 0.00000 0.00000 0.00000
6.6 0.00000 0.00001 0.00000 0.00000 0.00000
6.8 0.00002 0.00001 0.00000 0.00000 0.00000
7.0 0.00003 0.00000 0.00000 0.00000 0.00000

Note: These are the adjustment values for the cumulative function of the GLG model for fertility schedules by birth order by
standardized age prepared for Japanese female cohorts.


