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Global estimation of neonatal mortality using a Bayesian hierarchical
splines regression model

Monica Alexander'

Leontine AlkemaZ

Abstract

BACKGROUND

In recent years, much of the focus in monitoring child mortality has been on assessing
changes in the under-5 mortality rate (USMR). However, as the USMR decreases, the
share of neonatal deaths (within the first month) tends to increase, warranting increased
efforts in monitoring the neonatal mortality rate (NMR) in addition to the USMR.

OBJECTIVE

Data on neonatal deaths comes from a range of sources across different countries, with
the amount of data available and the quality of data varying widely. Our objective in
estimating the NMR globally is to combine all data sources available to obtain accurate
estimates, be able to project mortality levels, and have some indication of the uncertainty
in the estimates and projections.

METHODS
We present a new model for estimating the NMR for countries worldwide, using a Bayesian
hierarchical model framework.

CONTRIBUTION

Our modeling approach offers an intuitive way to share information across different coun-
tries and time points, and incorporates different sources of error into the estimates. It also
improves on previous modeling approaches by allowing for trends observed in NMR to
be more driven by the data available, rather than trends in covariates.

! University of California, Berkeley, USA. E-Mail: monicaalexander@berkeley.edu.
2 University of Massachusetts, Amherst, USA.
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1. Introduction

When evaluating a country’s progress in reducing child mortality, it is important to obtain
accurate estimates, be able to project mortality levels, and have some indication of the
uncertainty in the estimates and projections. In practice, obtaining reliable mortality
estimates is often most difficult in developing countries where mortality is relatively high,
well-functioning vital registration systems are lacking, and the data that is available is
often subject to large sampling errors and/or of poor quality. This situation calls for the
use of statistical models to help estimate underlying mortality trends.

In recent years, much of the focus in monitoring child mortality has been on as-
sessing changes in the under-5 mortality rate (USMR), which refers to the number of
deaths before the age of 5 per 1,000 live births. The focus was driven by Millennium
Development Goal (MDG) 4, which called for a two-thirds reduction in under-5 mortal-
ity between 1990 and 2015. A report on MDG progress released in 2015 by the United
Nations showed that, although this target was not met in most regions of the world, no-
table progress has been made (UN 2015). The global USMR is less than half of its level
in 1990, and despite population growth in developing regions, the number of deaths of
children under 5 has declined. Reducing the USMR continues to be a priority as part of
the Sustainable Development Goals (SDG), which replaced the MDGs in 2015. Goal 3 of
the SDG includes reducing the USMR to at least as low as 25 deaths per 1,000 live births
in all countries by 2030 (UN 2017).

As the USMR decreases, the share of neonatal deaths, i.e., deaths occurring in the
first month, tends to increase. Globally, the estimated share of under-5 deaths that were
neonatal in 2015 was 45%, a 13% increase from 1990 (IGME 2015). Indeed, in most
regions of the world, the majority of under-5 deaths are neonatal; for example, the share is
56% in developed regions, 51% in Latin America and the Caribbean, and 54% in Western
Asia. The share is still less than 50%, however, where the USMR is relatively high; for
instance, in sub-Saharan Africa the share is only 34%.

The neonatal equivalent to the USMR is the neonatal mortality rate (NMR), which is
defined as the number of neonatal deaths per 1,000 live births. The increasing importance
of neonatal deaths in child mortality has warranted increased efforts in monitoring NMR
in addition to the USMR (e.g., Bhutta et al. 2010; Lawn, Cousens, and Zupan 2004;
Lozano et al. 2011). Goal 3 of the SDG explicitly includes a neonatal target, with the aim
to reduce the NMR to at least as low as 12 deaths per 1,000 live births in all countries by
2030 (UN 2017).

The United Nations Inter-Agency Group for Child Mortality Estimation (IGME)
publishes estimates of NMR for all 195 UN member countries (IGME 2015), and these
estimates are used to monitor global levels and trends in NMR over time. Until 2014,
IGME used a statistical model to obtain estimates for countries without high-quality vital
registration data that uses the USMR as a predictor (Oestergaard et al. 2011). While the
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method has worked well to capture the main trends in the NMR, it has some disadvan-
tages. Most notably, trends in NMR within a country are driven by the USMR trends,
rather than being specifically influenced by the NMR data.

In this paper, we present a new model for estimating the NMR for countries world-
wide, which overcomes some of the concerns with the previous IGME NMR model. We
use a penalized splines regression model within a Bayesian hierarchical framework to
estimate and project the NMR and to obtain uncertainty around these estimates and pro-
jections. In the model, the relationship between NMR and USMR is used to inform esti-
mates, and the spline regression model is used to capture country-specific trends. From
the point of view of modeling mortality levels across countries, a Bayesian approach of-
fers an intuitive way to share information across different countries and time periods, and
a data model can incorporate different sources of error into the estimates.

Increases in computational speed as well as the development of suitable numerical
methods has enabled a more widespread use of a Bayesian approach in many fields, in-
cluding population estimation and forecasting (e.g., Alkema and New 2014; Bijak and
Bryant 2016; Girosi and King 2008; Raftery et al. 2012; Schmertmann et al. 2014). The
method presented in this paper has similarities to approaches used to estimate other global
health indicators, including the USMR (Alkema and New 2014; You et al. 2015), mater-
nal mortality (Alkema et al. 2016), cause-specific mortality (Foreman et al. 2012), and
contraceptive prevalence (Alkema et al. 2013). In this application, the proposed Bayesian
model is flexible enough to be used to estimate the NMR in any country, regardless of
the amount and sources of data available. Results were produced for 195 countries for at
least the years 1990-2015, which covers the MDG period of interest, using a dataset with
almost 5,000 observations from various data sources.

The remainder of the paper is structured as follows: We summarize the dataset and
model in the next two sections. Some key results are then highlighted, including model
validation results, followed by a discussion of the work and possible future avenues. The
Appendix provides additional details about the model.

2. Data

There is large variability in the availability of data on neonatal mortality. Broadly there
are three main data sources for the NMR: vital registration (VR) systems; sample vital
registration (SVR) systems; and survey data. Data for a particular country may come
from one or several of these sources, and the source type may vary over time. Table 1
summarizes the availability of data by source type.
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2.1 Source types

Data from VR systems is derived directly from the registered births and deaths in a coun-
try. The observed NMR for a particular country and year is the number of registered
deaths within the first month divided by the number of live births. Because VR data is
based on the records from the whole population, it is usually high quality compared to
other sources. Most developed countries have VR data available. SVR systems refer to
vital registration statistics that are collected on a representative sample of the broader
population.

NMR observations can also be derived from data collected in surveys, if women
are asked to list a full history of all births (and possible deaths) of their children. A ret-
rospective series of NMR observations can then be derived using the birth histories. A
total of 72% of the survey data series contained in the database (Table 1) have microdata
available, and it is possible to estimate the sampling error associated with each of the
observations. For the remaining 28 %, data comes from summary reports and preliminary
releases; as such there is not enough information to calculate the sampling errors from
the data. For these series, values for sampling errors are imputed (see Section 3.4.2). All
mortality rates, ratios of mortality rates, and corresponding standard errors were calcu-
lated from the survey microdata using the software CMRJack (Pedersen and Liu 2012), a
software package that produces mortality estimates and standard errors for surveys with
complete birth histories or summary birth histories. Estimates are obtained based on the
methodology outlined in Pedersen and Liu (2012). The retrospective time period covered
by mortality estimates is optimized to capture short-term fluctuations while still ensuring
that the estimates have a coefficient of variation of less than 10%.

The majority of survey data comes from Demographic and Health Surveys (DHS)
(Table 1). The category ‘other DHS’ refers to non standard DHS, that is, Special Interim
and National DHS, Malaria Indicator Surveys, AIDS Indicator Surveys, and World Fer-
tility Surveys (WFS). National DHS are surveys in DHS format that are run by a national
agency, rather than the external DHS agency. The Multiple Indicator Cluster Survey
(MICS), developed by UNICEF in 1990, was originally designed to address trends in
goals from the World Summit for Children, and has since focused on assessing progress
toward the relevant MDG indicators. The ‘Other’ category includes surveys such as the
Pan-Arab Project for Family Health and the Reproductive Health Surveys.

2.2 Data availability

Data availability varies by country and by year. For most developed countries, a complete
time series of VR data exists. For other countries with VR data, the time series is often
incomplete and is supported by other sources of data. Of the 105 countries where VR data
is available, 44 countries have incomplete VR time series. For some smaller countries
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with VR data, observations were combined to avoid issues with erratic trends due to
large stochastic variance (see the Appendix for more details). SVR data is available for
only Bangladesh, China, and South Africa. Most developing countries have no vital
registration systems and so observations of the NMR are derived entirely from surveys.
A total of 12 countries had no available data.

In terms of data inclusion, we follow the same inclusion/exclusion rules as the UN
IGME-estimated USMR (IGME 2015). These exclusion rules are based on external in-
formation that suggests that some NMR observations are unreliable due to, for example,
poor survey quality or under coverage of VR systems. A total of 16% of the 4,678 obser-
vations were excluded.

Table 1: Summary of the NMR data availability by source type
Source Sampling errors  No. of series  No. of countries No. of obs. No. of country-years
VR Calculated 105 105 2607 2607
SVR Calculated 3 3 79 78
DHS Reported 239 81 1212 934
DHS Unreported 16 15 50 48
Other DHS  Reported 52 42 251 251
Other DHS  Unreported 26 21 78 75
MICS Reported 16 14 81 73
MICS Unreported 12 12 49 46
Others Reported 24 16 119 111
Others Unreported 72 36 152 151

Note: The totals include observations that were excluded from the estimation.

Figure 1 illustrates examples of the data available for four countries. The shaded
area around the observations has a width of two times the sampling error (for survey
data) or stochastic error (for VR data). The NMR for Australia (Figure 1), as calculated
from the full VR data time series, has a trend over time that is relatively regular, and the
uncertainty is low. Data for Sri Lanka indicates that the NMR is roughly five times as high
as Australia. Data is available from 1950, but the VR data series is incomplete. The rest
of the data comes from the WFS, DHS, and National DHS. There are multiple estimates
for some years, and the uncertainty around the estimates varies by source and year. The
uncertainty around the VR data is much less than for the survey data. The National DHS
series does not have estimates of sampling error. Iraq (Figure 1) has no VR data, and
the estimates are constructed from MICS and two other surveys: the Infant and Child
Mortality and Nutrition Survey, and the Child and Maternal Mortality Survey. Again,
there are multiple estimates for some time points, and uncertainty levels and availability
vary. Finally, Vanuatu (Figure 1) has only three observation points from one National
DHS.
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Figure 1:

Neonatal mortality data (deaths per 1,000 births) for four selected

countries
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Note: The different colored circles represent different data sources, as described in the plot legends. An open circle
indicates that the observation was excluded from the analysis. The shaded area around the data series represents
the stochastic error (in the case of VR data) and sampling error (in the case of survey data). Survey data series that
did not have reported sampling errors do not have a shaded region on the plots and are marked with an asterisk (*)
in the legends.

3. Method

The aim is to produce estimates of the NMR for all countries in the world and report the
associated uncertainty around the estimates. The model needs to be flexible enough to
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estimate NMR in a variety of situations, as illustrated in Figure 1. The estimates should
follow the data closely for countries with reliable data and low uncertainty. On the other
hand, the model estimates need to be adequately smooth in countries with relatively large
uncertainty and erratic trajectories. The model also needs to be able to estimate NMR over
the period 1990-2015 for all countries, including those countries where there is limited
or no data available. To achieve these goals, our proposed model utilizes the relationship
between the USMR and NMR: as the level of USMR decreases, the proportion of deaths
under 5 that are neonatal tends to increase. In addition, the model also allows for country-
specific effects and time trends to capture data-driven trends in data-rich countries. The
term ‘data-driven’ refers to a model setup where the NMR estimates over time are ex-
plicitly influenced by temporal changes in the NMR data. This model is in contrast to a
model where temporal changes in NMR estimates are driven by trends in USMR only, as
was the case with the previous IGME model (Oestergaard et al. 2011).

In the NMR model, we use country-year specific USMRSs as explanatory variables
and also to obtain final estimates of NMR. All estimates of USMR used in the model were
obtained from the UN IGME (IGME 2015).

3.1 Model overview

Write N and U, ; as the NMR and USMR for country c at time ¢, respectively, with
U.,: given by the IGME U5MR estimate for that country-year. Note that N.; and U,
are always expressed in units of deaths per 1,000 live births. We explain the model setup
in terms of the ratio

R _ Nc,t
c,t —
’ Uc,t - Nc,t7

which refers to the true ratio of neonatal deaths compared to deaths in months 2 to 60.
We constrain R.; > 0 such that 0 < Ner < 1 to guarantee that NMR estimates are not
greater than USMR estimates. The true rat10 R, is modeled as follows:

Rc,t = f(Uc,t) . Pc,ta (1)

where f(U,,.) is the overall expected ratio given the current level of USMR and P, ; is a
country-specific multiplier to capture deviations from the expected relationship.

The observed ratio 7. ;, which refers to the i-th observation of the ratio in country c,
is expressed as a combination of the true ratio and some error, i.e.,
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Tei = Rc,t[c,i] T €ci 2
= log(TC,i) log(Rc Jtle,i] ) + 6ci
10gf< ctcz]) +10gpct[cz] + 50,1'

forc=1,2,...,Candi=1,...,n., where C' = 195 (the total number of countries) and
n. is the number of observations for country c¢. The index t[c, i] refers to the observation
year for the i-th observation in country c, €. ; is the error of observation ¢, and 6.; =
log(e.,;). Note that throughout the paper, ‘log’ refers to the natural logarithm.

The following sections explain how we chose to model the expected ratio f(U,),
the country-specific multiplier P, ;, and the error term J. ;. The Appendix details other
aspects of the method, including the projection method, estimation for countries with no
data, and crisis and HIV/AIDS adjustments.

3.2 Global relationship with USMR

The first step in modeling the ratio of neonatal to non-neonatal deaths is to find an appro-
priate function f(U,,) in Equation 1, which captures the expected value of the ratio given
the current level of USMR. We modeled f(U, ) on the log scale. Figure 2 shows a scat-
ter plot of log-transformed observed ratios log(r. ;) versus log(Uey[c,i ). The relationship
between the two variables appears to be relatively constant up to around log(U. ;) = 3.5,
after which point the log ratio decreases linearly with decreasing log(U.. ;). Given this
observed relationship, log f (U, ;) is modeled as follows:

Bo for U, < 6,

log f(Uer) = {»304'51 (log(Uet) — log(8)) forU.; > 6.

This implies that, below a cutpoint 6, log f (U, ;) is modeled as a constant 5y. Above
the cutpoint, log f(U.,,) is represented linearly as a function of log(U.. ;) with slope ;.

Figure 2 illustrates the fitted relationship between the ratio and the level of USMR
from the NMR model, log f(Ue. ). The posterior median estimate for the cutpoint 6 is
34.2 deaths per 1,000 births (90% CI: [33.7, 34.5]). At USMR levels that are higher than
0, the 31 coefficient suggests that a 1% increase in the USMR leads to a 0.65% decrease
(90% CI: [0.61, 0.71]) in the ratio R ;. The fitted line is quite similar in shape to the
loess curve fitted to the data, shown by the red line in Figure 2.
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Figure 2: Observed and estimated relation between the ratio of neonatal and
non-neonatal deaths and under-5 mortality

™M = = Estimated log(f(U))
— Loess

Observed log(ratio)

0 1 2 3 4 5 6 7
Estimated log(USMR)

Note: Observations log . ; are displayed with grey dots and plotted against log U, ;(c,;). The loess fit to the
observations is shown in red, and the estimated relation (function f(U.,+)) is added in blue (dashed line).

3.3 Country-specific multiplier

This section details how the country-specific multiplier P, ; is modeled. Although there
is a relationship between the neonatal ratio and USMR at the aggregate level, the rela-
tionship between Iz ; and U, , is likely to differ by country. For instance, some countries
may have higher or lower levels of NMR than what is expected given the level of USMR.
In addition, within a particular country, the relationship between NMR and USMR may
not be constant over time, so the model should be flexible enough to also allow for tem-
poral changes. The purpose of the country-specific term P, ; in Equation 1 is to capture
data-driven differences across countries and also within countries over time.

The country-year multiplier P, ; was modeled on the log scale with a basis-splines
(B-splines) regression model:
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=

c

IOg(Pc,t) = Bc,k(t)ac,kw
1

>
Il

where B j(t) refers to the k-th B-spline function for country ¢ evaluated at time ¢ and
. j; is the k-th splines coefficient for country c¢. The B-splines B, j(t), which are il-
lustrated in Figure 3 for Nigeria, were constructed using cubic splines. In the figure,
each B, j(t) is represented in a different color at the bottom. Spline placement is deter-
mined by knot points, indicated by gray dotted vertical lines. Knot points occur where
the spline function is at its maximum. Country c has a total of K. knot points defined by
t1 <ty < -+ < tg,. K. isthe number of B-splines needed to cover the period up to
2015 and back to 1990 or the start of the observation period, whichever is earlier. In terms
of knot spacing, the same interval length of 2.5 years was used in each country, regard-
less of the number or spacing of observations. The consistent interval length was chosen
to be able to exchange information across countries about the variability in changes be-
tween spline coefficients. Knot placement was determined by placing one knot half an
interval before the most recent observation year in each country. Because the most recent
observation year differs by country, the splines B, ;(¢) also differ by country.

Figure 3 also illustrates the fitting of the country-specific multiplier log P, ; for Nige-
ria. The splines regression for log P, ; captures any pattern in the data on the log scale
after the global relation between the ratio and USMR, as expressed by f(U..;), has been
taken into account. As such, the y-axis in Figure 3 refers, on the log scale, to the dif-
ference between the observed data points and their expected level given the USMR, i.e.,
log(re,s) — log f(Uc,c,i)- The different colored dots connected with lines represent
residual data points from different sources available for Nigeria. The estimated log P, ;
at a particular time point ¢ is given by a linear combination of the B, j, at point ¢ and the
estimated coefficients a. .

The splines regression model for log(P. ;) is very flexible in order to be able to
capture patterns in the data. However, in situations where the data is sparse, limited
information on a subset of the spline coefficients . j can result in an implausible fit. We
impose smoothness on the fits by penalizing differences in adjacent spline coefficients
. This is referred to as Penalized splines, or P-splines regression (Eilers and Marx
1996; Currie and Durban 2002).

In the P-splines regression, spline coefficients are modeled as a combination of an
overall mean value A, and K. — 1 first-order differences

Ec = (ac,Z — Qc1,Qc3 — Qe 2,...,0c K, — ac,chl)-

The \. can be interpreted as a country-specific intercept, representing deviations in
the level from the overall global relationship between R.; and U, ;. We model the A.’s
centered at zero:
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Ae ~ N(0,0%).

The e, term represents fluctuations around the country-specific intercept. These
fluctuation terms allow for the P, ; term to be influenced by the changes in the level of
the underlying data. The fluctuations are modeled as

e ~ N(0,02). 3)
The variance U?C essentially acts as a country-specific smoothing parameter. The
smoothness of a particular country’s trajectory depends on the regularity of the trend
in the data and also the measurement errors associated with the data points. As o2,
decreases, the fluctuations go to zero, and the «.. ;’s become a country-specific intercept
with no change over time. The agc ’s are modeled hierarchically:

log(c2 ) ~ N(x,v7), 4)

where eX can be interpreted as a ‘global smoothing parameter’ and )2 reflects the across-
country variability in smoothing parameters. The hierarchical structure of the model al-
lows information on the amount of smoothing to be shared across countries. The countries
with fewer data points and thus less information about the level of smoothness borrow
strength from countries with more observations.

The effect of including the country-specific term is shown in Figure 3 for Nigeria.
The available data series are shown by the points, and the shaded area around those points
represents their associated sampling error. The blue solid line illustrates the fit from the
global relation, i.e., f(U.:). The green line illustrates the global relation and country-
specific intercept, i.e., a combination of f(U. ;) and A.. Note that this line has the same
shape as the blue line, but has been lowered. The red solid line shows the final fit after
inclusion of the fluctuations, i.e., f(U,.), A and &.. This allows the fitted trajectory to
be more influenced by the data.
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Figure 3: Illustration of splines regression and three fit components for
Nigeria

a) Estimate of log P, for Nigeria using splines regression
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Note: The y-axis is (on log scale) the difference between the observed data points and the expected level (given
by f(U.,:)). The different colored dots/lines represent data from different sources available. Each basis spline is
represented in a different color at the bottom of the figure. These have been scaled vertically for display purposes.
The gray dotted vertical lines indicate knot points (every 2.5 years).

b) The three components of fit
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Note: The blue dashed line illustrates the fit from the global relation, i.e., f(U. +). The green dashed line illustrates
the global relation and country-specific intercept, i.e., a combination of f(U.,+) and A.. The red solid line shows
the final fit after inclusion of the fluctuations i.e., f(Uc,¢), Ac and ec.
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The choice to model the country-specific terms P, ; using P-splines regression was
motivated by previous work on mortality modeling and forecasting (e.g., Alkema and
New 2014, Currie, Durban, and Eilers 2004; D’ Amato, Piscopo, and Russolillo 2011).
In practice, there are many different ways to model and smooth the country-specific term
P. ;. For example, P, ; could have been modeled using an autoregressive or autoregressive-
moving average (ARMA) process, similar to the modeling approaches for global maternal
mortality (Alkema et al. 2016) and contraceptive prevalence (Alkema et al. 2013). How-
ever, the use of a splines basis, which results in a regression function that is twice differ-
entiable, gives estimates of P, ; that are relatively smooth compared to an ARMA-based
approach. In addition, the P-splines regression approach was chosen for consistency with
the current model used by IGME to estimate USMR.

3.4 Data model

Equation 2 indicates that the observed ratio r. ; is modeled on the log scale as the true
ratio R, plus some error term d,. ;. We model this error term 6. ; differently based on the
source of the data of the i-th observation. The model imposed on &, ; is called the ‘data
model.

3.4.1 VR data

For VR data series, the error term d.. ; is modeled as

5c,i ~ N(O T2 ),

s feg

where 7. ; is the stochastic standard error. These are obtained based on standard as-
sumptions about the distribution of deaths in the first month of life. The Appendix gives
details. Note that SVR data is modeled the same as VR data, but the 7. ; term refers to
the sampling error.

3.4.2 Non-VR data
For the non-VR data, the error term §; is modeled as
Oei ~ N(0,12, + W),
where v, ; is the sampling error and wy|., ; is the nonsampling error of the series type s of

observation ¢ in country c. Nonsampling error variances are estimated separately for each
of the series types listed in Table 1: DHS, other DHS, MICS, and others. The distinction
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by series type was made to allow for the possibility that a particular survey may be run in a
similar fashion across different countries, and as such may display similar characteristics
in terms of nonsampling error.

Sampling error variances were reported for the majority of the non-VR observations
(see Table 1). For those observations (c, ) where sampling error was not reported, it was
imputed based on the median value of all observed sampling errors of series type s|c, ]
within the group-size category of country c. We categorized a country as ‘small’ if the
annual number of births was in the lowest quartile of all countries (corresponding to a
maximum of around 25,000 births per year). Table 2 shows the distinction between small
and other-sized countries was made due to the differences in observed standard errors.
The imputed values for missing standard errors for each size category and series type are
shown in Table 2.

Table 2: Values imputed for missing standard errors for survey data by
series and country size category

Country size category

Series type  Other  Small

DHS 0.13 0.26
MICS 0.16 0.21
Other DHS 0.14 0.24
Others 0.16 0.22

3.5 Obtaining the final estimates

The model produces estimates of log (R, ). The corresponding estimate of N, ; is ob-
tained by transforming the ratio and combining it with U, ;:

Ney = logit™! (log (Re,t)) - Ueys

because

. th th
logit =) =1 —— | =log(R.:).
o8 (Uc,t> 8 (Uc,t - Nat) o8 (Fe)

The ratio estimates are recombined with IGME estimates of U, ;. However, using
only the median estimates of U, ; does not take into account the level of uncertainty in the
U, estimates and correspondingly under-represents the level of uncertainty in the N ;.
As such, the N, estimates were generated by randomly combining posterior draws of
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logit_l(log (Rc,z)) and of U, . The result is a series of trajectories of N, over time.
The best estimate is taken to be the median of these trajectories, and the 5th and 95th
percentiles are used to construct 90% credible intervals.

3.6 Computation

The Appendix summarizes the hierarchical model. The model was fitted in a Bayesian
framework using the statistical software R. Samples were taken from posterior distribu-
tions of the parameters via a Markov Chain Monte Carlo (MCMC) algorithm. This was
performed by using JAGS software (Plummer 2003).

In terms of computation, three chains with different starting points were run with a
total of 20,000 iterations in each chain. Of these, the first 10,000 iterations in each chain
were discarded as burn-in, and every tenth iteration after this was retained. Thus 1,000
samples were retained from each chain, meaning that 3,000 samples were retained for
each estimated parameter.

Trace plots were checked to ensure adequate mixing and to verify that the chains
were past the burn-in phase. Gelman’s R (Gelman and Rubin 1992) and the effective
sample size were checked to ensure a large enough and representative sample from the
posterior distribution. The value of R for all parameters estimated was less than 1.1.

4. Results

Estimates of NMR were produced for the 195 UN member countries for at least the period
1990-2015, with periods starting earlier if data was available. This section highlights
some key results. Results are also compared to those produced by the method previously
used by the IGME.

The estimated global relation (Table 3) suggests that the relationship between the
ratio and USMR is constant up to a USMR of 34.2 (90% CI: [33.7, 34.5]) deaths per
1,000 births, and the ratio of neonatal to other child mortality is constant at around 1.20
(90% CI: [1.03, 1.25]). This is equivalent to saying that the proportion of deaths under-5
that are neonatal is constant at around 54% (90% CI: [50, 55]). Above a USMR of 34,
the estimated coefficient suggests that, at the global level, a 1% increase in the USMR is
associated with a 0.65% (90% CI: [0.61, 0.70]) decrease in the ratio.
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Table 3: Estimates for parameters in global relation

Median  90% CI

Bo  0.18 (0.03, 0.22)
By —0.65 (-0.70, -0.61)
0 34.2 (33.7, 34.5)

4.1 Results for selected countries

Figure 4 shows the fits for the four countries illustrated in Section 2. In the figures, the
blue dashed line represents the expected level of NMR given the country’s USMR. The
solid red line and associated shaded area represent model estimates and 90% uncertainty
intervals. For Australia (Figure 4), the estimates follow the data closely, given the small
uncertainty levels around the data. There has been a steady decrease in NMR since 1970.
In earlier time periods, the level of NMR was higher than the expected level (that is, the
solid red line is higher than the blue dashed line). This switched in the 1980s and 1990s,
and more recently, the estimated and expected levels are close.

For Sri Lanka (Figure 4), the estimates of NMR are informed by the combination
of VR and survey data. The VR has a greater influence on the trajectory because of the
smaller associated standard errors. In the earlier years, the uncertainty intervals around
the estimate are larger due to the higher uncertainty of the data. There is a small spike in
the estimate in the year 2004, which is a tsunami-related crisis adjustment.

No VR data was available for Iraq (Figure 4), and the larger sampling errors around
the survey data have led to relatively wide uncertainty intervals over the entire period.
This is in contrast to Sri Lanka, where uncertainty intervals became narrower when VR
data was available. The larger sampling errors in Iraq have also led to a relatively smooth
fit (high value of the smoothing parameter), and the shape of the trajectory essentially
follows the shape of the expected line.

For Vanuatu (Figure 4), the trajectory is driven by the expected trajectory given
Vanuatu’s trend in USMR. The available data determines the country-specific intercept
for Vanuatu, which is lower than the expected level. However, the relative absence of
data for this country means that the uncertainty around the estimates is high.
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Figure 4: Observed and estimated neonatal mortality (deaths per 1,000
births) for selected countries
a) Australia b) Sri Lanka
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Note: The blue dashed line represents the expected level of NMR given the country’s USMR. The solid red line and
associated shaded area represent model estimates and 90% uncertainty intervals.

4.2 Outlying countries

The setup of the model allows for the comparison of the estimated level of NMR to the
expected level of NMR given the USMR. The expected level as predicted by the USMR
is an estimation with f(U.) only (without the country-specific effect, P, ;). We define
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a country to be outlying if the estimated NMR in 2015 was higher or lower than the
expected level by at least 10%. That is, the ratio of estimated-to-expected was at least
1.1 or less than 0.9 in 2015, and the 95% credible interval does not contain 1. Figure 5
illustrates these countries, and the values of estimated-to-expected in 1990 and 2015.

Countries that have a lower-than-expected NMR include Japan, Singapore, and South
Korea, and some African countries such as South Africa and Swaziland. Countries
that have a higher-than-expected NMR include several Southern Asian countries, such
as Bangladesh, Nepal, India, and Pakistan. The former Yugoslavian countries Croatia,
Bosnia and Herzegovina, and Montenegro also have higher-than-expected NMR.

Figure 6 shows estimates through time for two contrasting countries: Japan, which
has lower-than-expected NMR, and India, with higher-than-expected NMR. In each of
the figures, the red line represents the estimated fitted line (with 90% Cls). The blue line
represents the expected level, which can be interpreted as the expected level of NMR in
a particular year as predicted by the level of USMR. The gap between the expected and
estimated NMR is being sustained through time for Japan, and has widened since the
1970s. The change in NMR levels for India has been dramatic. Not only is the current
NMR around 30% of what it was in 1970, the discrepancy between the expected and
estimated levels has decreased through time.
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Figure 5: Ratio of estimated NMR to the expected NMR given USMR for
outlying countries
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Note: A country is outlying if the estimated NMR in 2015 was higher or lower than the expected level given USMR
by at least 10%. The dot shows the median estimate, and the lines give the 95% uncertainty interval.
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Figure 6: Observed and estimated neonatal mortality (deaths per 1,000
births) for selected countries

a) Japan b) India
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Note: The blue dashed line represents the expected level of NMR given the country’s USMR. The solid red line and
associated shaded area represents model estimates and 90% uncertainty intervals.

4.3 Smoothing

The smoothness of the fluctuations, agc , is modeled hierarchically, assuming a log-normal

distribution with a mean parameter x (see Equation 4). Smoothing parameters can also
be expressed in terms of precision, 1/ U?C; Figure 7 shows the distribution of estimated
precisions for all countries. The larger the value of the smoothing parameter (precision),
the smoother the fit. The estimate of the mean smoothing parameter was around 59 (90%
CI: [43, 79)).

Larger values of smoothing parameters were estimated for countries that had no
available VR data but many observations from survey data. Senegal, which had the high-
est smoothing parameter at a value of 582 (90% CI: [113, 4000]), had a total of 55 ob-
servations over a 45-year period (Figure 8). The effect of having many observations with
relatively large standard errors is a relatively smooth fit. In contrast, one of the smallest
smoothing parameters occurred for Cuba, at around 4 (90% CI: [2, 7]). Cuba is a country
with good quality VR data that has relatively small standard errors. This means the fitted
line follows the data more closely (Figure 8).
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Figure 7: Distribution of estimated precisions (1/ afc) relating to smoothing
parameters for all countries
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Note: The red solid line represents the mean value of all precisions. The blue dashed line is the estimated smoothing
parameter for Cuba (relatively little smoothing), while the dotted line is the estimated smoothing parameter for
Senegal (relatively high smoothing).
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Figure 8: Example countries with relatively high smoothing (Senegal) and
relatively low smoothing (Cuba)

a) Senegal b) Cuba
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4.4 Comparison with existing IGME model

It is useful to compare the results of this new model to the NMR results from the model
previously used by the IGME. The previous model is described in Oestergaard et al.
(2011). In this method, NMR estimates for countries with complete VR series are taken
directly from the data. For countries without a complete VR series, a multilevel model
is fit using USMR as a predictor, with a quadratic relationship specified. In addition, the
model allows for country-level and region-level random effects:

log(NMRc,t) = + ﬂl log(Uc,t) + 52 (log Uc,t)Q + Acountryli] + Aregionli]

log(f(Ue,t)) log(Pe,t)

For comparison, the new model is:

log(Ret) = Bo+B1- (10g(Uet) —108(0)) (1061, 1) > 10g(0)]
log(f(Uc,t))
K.
+ ZBc,k(t)ac,k
k
log(Pe,t)
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The existing model is similar in that it estimates NMR as a function of USMR,
plus some additional country-specific effect, i.e., a f(U.;) and a P.,. However, one
of the main differences between the two models is that for countries with non-VR data,
estimates from the new model can be driven by the data, while the previous model is
restricted to follow the trajectory of the USMR in a particular country, plus or minus
some country-specific intercept. Table 4 highlights other differences between the two
models.

Table 4: Comparison of two models
IGME 2014 New model
Model used for non-VR countries Model used for all countries
Model relation between NMR and USMR Model relation between ratio and USMR
f(Ue,:) is quadratic f(Ue,) is linear with changing slope
P, is a country and region-specific intercept ~ P. ¢ is a country-specific intercept + fluctuations
Country-specific effect constant over time Country-specific effect can change over time
Only considers sampling error Data model with sampling and nonsampling error

Figure 9 compares the results of four countries to the estimates from the current
IGME model. The estimates from the previous IGME model generally follow the same
trajectory as the expected line, as determined by USMR patterns, and is shifted up or
down depending on the estimate of the country-specific effect. In contrast, the estimates
from the new model follow the data more closely. The fluctuation part of the country-
specific multiplier, P, ;, allows the estimated line to move above or below the expected
line, as is the case with the Dominican Republic (Figure 9). In addition, there is generally
less uncertainty around the estimates in the new model, especially in periods where there
is data.

http://www.demographic-research.org 357


http://www.demographic-research.org

Alexander & Alkema: Global estimation of neonatal mortality

Figure 9: Estimated NMR (deaths per 1,000 births) for four example
countries; new model vs. IGME 2014 model
a) Bangladesh b) Burkina Faso
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The green dashed line and associated shaded area show the model estimates from the 2014 IGME model.

Model validation

assessed model performance through an out-of-sample model validation exercise.

In creating a training dataset, rather than removing observations at random, we chose the
process of removing data to emulate the way in which new data may be received (Alkema,
Wong, and Seah 2012). Mortality databases are updated at least once a year as more data
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becomes available. These updates may include not only data for the most recent time
period but may also include, for example, retrospective estimates from a survey. Ideally
the model should not be sensitive to updates of historical data, so estimates do not change
from year to year.

We constructed the training set by leaving out the most recent survey data series, and
for countries with only one series (including VR countries), the most recent 20% of data
observations were removed. The resulting training dataset was made of around 80% of
the total data available.

For the left-out observations, the absolute relative error is defined by

e = Te
1T ~ )
Te,i
where 7. ; denotes the posterior median of the predictive distribution for a left-out obser-
vation 7 ; based on the training set. Coverage is defined by

S e 2 L (D e < reg (D)

where N is the total number of left-out observations considered and I ([4]) and 7[;) (¢[])
the lower and upper bounds of the predictions intervals for the i-th observation. Coverage
at the 80%, 90%, and 95% levels was considered.

The validation measures were calculated for 100 sets of left-out observations, where
each set consisted of a random sample of one left-out observation per country. Table
5 shows the median and standard deviation of each validation measure. The median
absolute relative error between the observations and estimated value was less than 10%,
and the coverage of the prediction intervals is approximately as expected.

Table 5: Validation measures, left-out data

Expected Median Std. Dev

Mean absolute relative error - 0.09 0.02
80% coverage 0.80 0.84 0.02
90% coverage 0.90 0.92 0.02
95% coverage 0.95 0.96 0.02

A similar set of validation measures was calculated comparing the model estimates
based on the training dataset with the model estimates based on the full dataset. The
absolute relative error is defined as
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where 77 ; and 7 ; denote the posterior median of the predictive distribution for the obser-
vation 7. ; based on estimates using the full and training dataset, respectively. Coverage
refers to what proportion of the posterior median estimates from the training dataset fall
within the 80%, 90%, and 95% bounds of estimates using the full dataset.

Results in Table 6 are reported for estimates up to (and including) 2005, and post
2005. Model performance is better prior to 2005. This is due to the most recent data
being removed, so the data prior to 2005 would be very similar between training and
test sets. However, the post-2005 measures show that estimates are reasonably consistent
between the reduced and full datasets.

Table 6: Validation measures, model comparison

Expected < 2005 > 2005

Mean absolute relative error - 0.05 0.09
80% coverage > 0.80 0.90 0.77
90% coverage > 0.90 0.94 0.84
95% coverage > 0.95 0.96 0.90

5. Discussion

A new model was introduced for estimating NMR. The model can be expressed as the
product of an overall relationship with USMR and a country-specific effect. The overall
relationship with USMR is a simple linear function, while the country-specific effect
is modeled through P-spline regression as a country-specific intercept plus fluctuations
around that intercept.

Estimates of the NMR were produced for 195 countries, spanning at least the period
1990-2015. The model appears to perform well in a wide variety of situations where the
extent and type of data available varies. In many developed countries, where VR data
series are complete and uncertainty around the data is low, NMR estimates follow the
data closely. On the other hand, where there is limited data available or if uncertainty
around the data is high, estimates are more influenced by the trends in USMR.

The model was fit within a Bayesian hierarchical framework, allowing information
about trends in NMR to be exchanged across countries. Through the hierarchical struc-
ture, the smoothness in trends in NMR for countries with little data available, or highly
uncertain data, is partially informed by countries with more reliable data. While this setup
has the potential to introduce biases in country-specific estimates, it allows estimates with
reasonable amounts of uncertainty to be produced for all countries, even in the absence
of reliable data. Validation exercises did not highlight any problems with bias, suggest-
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ing that estimates and uncertainty produced by the model are reliable in a variety of data
situations.

We compared model estimates to estimates from the existing IGME model. The
notable advantage of this model is that trends in NMR for countries without VR data
are driven by the data itself, rather than just reflecting trends in USMR, as is the case
with the existing model. Another advantage of this model is that it is along the same
methodological lines as the current model used by IGME to estimate USMR (Alkema and
New 2014). Estimates produced by this model will help to monitor a country’s progress
in reducing neonatal mortality and reaching the targets set in the SDG.

There are several avenues worth investigating in further research. The choice of a
linear function with changing slope for f(U. ;) was a data-driven decision, based on the
observed relationship in Figure 2. It would be interesting to compare the performance of
models that have a functional form that draws upon existing demographic models. For
example, an extended version of the Brass relational logistic model (Brass 1971) and Siler
models (Siler 1983) can be used to predict survival in the first months of life as a function
of the survivorship at older ages.

The potential for bias in estimates from survey data is always a concern. Bias may
occur from interviewing a sample that is not representative of the overall population, from
selective omission of answers, and can even be influenced by the length of the survey
administered (Bradley 2015). The data model included an estimation of an overall level
of nonsampling error for each survey type, which may account for some random reporting
errors. However, there is scope to further extend the data model to try to better estimate
potential bias in survey data estimates.

The focus of this paper was on the methodology. Future work will also focus on
interpretation of results. More investigation is needed on what is potentially causing
NMR to be higher or lower than expected in outlying countries and whether these are real
effects or artifacts of data issues. This distinction is an important one and will become
even more so as the focus on child mortality continues to shift toward the early months
of life.
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Appendix

Model summary

The full model is summarized below.

where

366

Teg N(Rc,t[c,i]v 612)

RN for VR and SVR data,
o v2i+ wg[m] for non-VR data
Rc,t = f(th) . Pc,t
IOg(f(Uc,t)) = Po+p1- (log(th) — log(ﬂ))[Uw>9]
K.
IOg(Pc,t) = Z Bk(t)ac,k

k=1

ok = Aot Dl (D D) el

Ae ~ N(0,0%)
56‘1 ~ N(O,J?C)

)

log(o2) ~ N(x,v?),

. .. . N,
R, is the true ratio in country c at time ¢, R, ; = ﬁ, where N, and U, ;

are the NMR and U5MR for country c at time ¢, respectively.
7.,; 1s observation ¢ of the ratio in country c.

2

Te,i 18 the stochastic standard error, v, ; is the sampling error, and Wilei

] is non-
sampling error for series type s.

Bo is the global intercept, 3; is the global slope with respect to USMR, 6 is the
level of USMR at which 31 begins to act.

P+ is a country-specific multiplier for country c at time ¢.
By, (t) is the kth basis spline evaluated at time ¢ and c. , is splines coefficient k.
A is the splines intercept for country c.

Dg, isa K. x (K.—1) first-order difference matrix: Dg_;; = —1, Dg_i i+1 =
land D ; ; = 0 otherwise.

€¢,q are fluctuations around the country-specific intercept.

2

oz_ is the country-specific smoothing parameter, modeled hierarchically on the

log-scale with mean y and variance 2.
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The model was fit in a Bayesian framework. Priors are given by

w ~ U(0,40)
Bo ~ N(0,100)
B1 ~ N(0,100)

6 ~ U(0,500)

ONe 7~ U(O, 40)

x ~ N(0,100)

¢~ U(0,40).

Other aspects of the method

Stochastic errors for the VR model

Recall that the observed ratio 7. ;, which refers to the ¢-th observation of the ratio in
country c, is expressed as a combination of the true ratio and some error, i.e.,

Tei = Regle)  €cy 5)
= log(rc,) log(Re tfc,i)) + Ocyi

forc=1,2,...,Candi=1,...,n. where C = 195 (the total number of countries)
and n.. is the number of observations for country ¢. The index t[c, 7] refers to the obser-
vation year for the i-th observation in country c, €. ; is the error of observation 7, and
5c,i = IOg(gc,i)'
For VR data series, the error term J, ; is modeled as
2
60,1' ~ N(Oa Tc,i)’

where 73 , 1s the stochastic standard error. These can be obtained once some standard
assumptions are made about the distribution of deaths in the first month of life. We
assume that deaths before age 5 d5 are distributed

ds ~ Pois(B x 5qo),

where B is live births and 5qq is the probability of death between ages 0 and 5. Addi-
tionally, we assume that deaths in the first month of life d,, are distributed

dn ~ Bln(df)ap)>
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where p =,qo/590 and ,,qo is the probability of death in the first month of life. Note
that the values of ,,qg and 5q¢ come from the raw data.

The stochastic error was obtained via simulation. For each year corresponding to
observation ¢ in country c,

o a total of 3,000 simulations of under-5 deaths ds were drawn from a Poisson
distribution d'*) ~ Pois(B x 5qo);

« a total of 3,000 simulations of neonatal deaths d,, were drawn from a Binomial
distribution ) ~ Bin(d%", p);

()
e the ratio y®) = logit (Z(S)) was calculated for each of the simulated
5

samples and the standard error 7.; was calculated as o(Y) where Y =
(y(l)’ y(2)’ .__y(s)), s = 3,000.

It is possible that the stochastic variation as assessed in this simulation approach
underestimates the true stochastic uncertainty. We used the results from the validation
exercise described in Section 4.5 to determine the coverage at 80%, 90%, and 95% un-
certainty levels for VR data only. At all levels the actual coverage level was at least as
big as the nominal coverage level. This suggests that either (1) the simulation setup was
sufficient to capture stochastic variation in the neonatal deaths and deaths below age 5,
or (2) that any underestimation of stochastic uncertainty is compensated by an over-
estimation of uncertainty associated with the true ratio. Hence, the validation suggests
that credible intervals for the ratio are either well calibrated or conservative, which is
preferable to underestimating the uncertainty associated with the true outcome.

SVR data

For SVR data, the value for the sampling error was imputed based on the sampling
error for U, 4[..;) SVR data, and the observed ratio between the stochastic error of ¢ ;,
and the stochastic error of U, ;.. On average, the stochastic error of 7. ; was twice as
large as the stochastic error of U, (. ;] In addition, the sampling error for U, 4. ; SVR
data was assumed to be 10%. As such, a value of 20% was imputed for the sampling
error for r. ; SVR data.

Projection

When producing NMR estimates, generally data is not available up to the most recent
year of interest for the majority of countries, and countries may have longer series of
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missing data. As such, country trajectories needed to be projected forward to the year
2015.

The parameters /3y, 81, and 6, which make up the expected relation with U, ;, are
fixed over time, as is the country-specific intercept, A.. The component that needs to
be projected is the random fluctuations part. These €. ;, were assumed to be normally
distributed around zero, with some variance agc (Equation 3). This assumption is used
to project the €., (and thus the splines).

Start at the first o, j, that is past the last year of observed data. For each time
period to be projected:

e Draw e, ~ N (0,02 ) to obtain ave p = &ck, + Qep—1

o Repeat to generate oy, for k up to K., where K, is the number of knots needed
to cover the period up to 2015.

The simulated €. are generally close to zero, so the method essentially prop-
agates the level of the most recent . j that overlaps with the data period with the
slope of the expected trajectory, as determined by f(U,). The projection exercise is
necessary in order to maintain a consistent level of uncertainty in the estimates.

Recalculation of VR data for small countries

Several island nations and other small countries have vital registration data available to
calculate NMR. However, observations from these small countries are prone to large
stochastic error, which can create erratic trends in NMR over time.

To help avoid this issue, observations from adjacent time periods in a particular
country are recombined if the coefficient of variation of the observation is greater than
10%. The result is a smaller set of observations with smaller standard errors that display
a smoother trend. Figure A-1 shows the example of Saint Vincent and the Grenadines
on which this process was applied.

NMR is recalculated using the original NMR observations and annual number of
live births. For two adjacent years that are to be recalculated,

« the number neonatal deaths in each year is first calculated as NMR x live births;

o the combined NMR for the two years is then the total neonatal deaths divided by
total births over the two years;

o the standard error of the new NMR estimate is then recalculated based on the
process described in 3.4.1.

After recalculation, the coefficient of variation is calculated for the new estimate.
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Figure A-1:

370

If it is still greater than 10%, the NMR is recalculated again, recombining with the
previous adjacent year.

Recalculation of VR data: Saint Vincent and the Grenadines

a) Original data b) Recalculated data

1970 1980 1990 2000 2010

Year

Crisis deaths

For some countries, there are known natural or political crises that have caused an
excess of deaths; for example, the Rwandan genocide or, more recently, the Haiti
earthquake and conflict in Syria. For the crisis years, the survey data is unlikely to
be representative of the actual number of deaths.

Adjustments were made to the relevant crisis country-years, using estimates com-
piled by the World Health Organization (WHO). The WHO uses external data sources
on the number of deaths, including the Centre for Research on the Epidemiology of
Disasters International Disaster Database (CRED 2012) and estimates from the UN
Office of the High Commissioner for Human Rights for the Syrian conflict (Price,
Klingner, and Ball 2013). The WHO estimates the proportion of deaths that occur un-
der the age of 5 (WHO 2013). From there, the best guess of the number of crisis deaths
that occur within the first month is simply 1/60th of the total deaths under 5 years.

Estimation of crisis countries was firstly done without any crisis adjustments. In
addition, the global relation with USMR, f(U,,), is fit to crisis-free U, ; estimates.
The relevant adjustments to country-years were then made post estimation. This was
to ensure that the crisis deaths, which are specific to particular years, do not have an
effect on the splines estimation.
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HIV/AIDS countries

Although there have been vast improvements in recent years, many countries in sub-
Saharan Africa still suffer from relatively high levels of HIV/AIDS-related deaths. This
has a substantial effect on the child mortality — if children living with HIV are not on
antiretroviral treatment, a third will not reach their first birthday, and half will not reach
their second birthday (UNAIDS 2014). However, it is unlikely that children with HIV
will die within the neonatal period, and so HIV/AIDS itself does not have an explicit
effect on the NMR (although there may be indirect effects on mortality, for example
through losing their mother to HIV) (Mahy 2003).

Due to this disproportionate effect of HIV/AIDS on USMR compared to NMR,
there are several adjustments made to the inputs used in the model, which leads to NMR
being modeled as a function of ‘HIV-free’ USMR. Firstly, the USMR data used in the
ratio observations is adjusted to incorporate reporting bias. This adjustment accounts
for the higher maternal mortality among HIV-positive mothers, which leads to under-
estimation of USMR from surveys (Walker, Hill, and Zhao 2012). Once adjusted, the
AIDS deaths are removed from USMR, using estimates of deaths provided by UNAIDS
(UNAIDS 2014). The result is a ratio of neonatal to other child mortality which is free
of AIDS deaths. In addition, the global relation with USMR, f(U..,), is fit to AIDS-free
USMR. Unlike the crisis adjustments, no AIDS deaths were added in post-estimation,
because it is assumed no neonatal deaths are due to HIV/AIDS.

Countries with no data

There were twelve UN-member countries for which the IGME produces NMR esti-
mates, but where there is no available data. For these countries, the estimates of NMR
are based on the global relation with USMR, f(U..). Additionally, some steps are
needed to obtain the appropriate uncertainty around these estimates. For country ¢

o draw A\, ~ N(O,of\);

e setag = A

e draw g1 ~ N(0,0.); where 0. = eX is the global smoothing parameter, based
on equation 4;

e set g = a1 + €1;

e repeat to generate oy, for k = 3, ..., K. K, is the number of spline knots needed
to cover the period 1990-2015.
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