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Abstract: 

In the past thirty years, more than 100 censuses gathered fertility data through questions on
women's date of last birth. The standard "births last year" (BLY) approach for such data truncates
timing information, using binary indicators for births in the prior year only. The first author
recently proposed consistent, maximum-likelihood estimation approaches using untruncated date
of last birth (DLB).  In this paper we extend DLB techniques to parametric models. We construct
estimators for Coale-Trussell M and m parameters from open interval lengths. We apply the new
procedure to Brazilian census data, producing maps and spatial statistics for BLY and DLB m
estimates in 723 municipalities in Minas Gerais. DLB estimators are less sensitive to sampling
error than BLY estimators. This increased precision leads to clearer spatial patterns of fertility
control, and to improved regression.



1  Introduction 

Census data for calculating period age-specific fertility rates typically come in one of two
forms. For each woman of childbearing age, census questionnaires usually record either the
number of children born in the last year (BLY), or the date of the woman’s last live birth (DLB).
DLB and BLY questions are both common, and some censuses ask both. In recent surveys, the
United Nations [12, 13] reported that among 262 national censuses taken between 1965 and 1994
in Africa, Asia, South America, and North America (excluding the USA and Canada), 63 asked
DLB questions only, while another 50 asked both DLB and BLY questions (see [8] for more
detail). In the most recent round of censuses nineteen countries, including Kenya, Indonesia,
Sudan, Vietnam, Colombia, and Brazil, collected DLB data exclusively.

When estimating fertility rates from census data (still a common situation in many
countries, particularly when estimates are for subnational areas), efficient use of DLB data is
often an important concern. In principle, DLB data contain more information than BLY data,
because a researcher can observe not only the fertility histories of the sampled women in the past
year, but also many other births and periods of exposure that occurred more than one year earlier.
In practice, demographers generally do not use all of the fertility information inherent in DLB
data. Standard procedures for estimating age-specific fertility rates from DLB data merely
convert to BLY form: 

{1}BLY
if DLB year

otherwise
=

≤



1 1

0

and then utilize this censored version of DLB in all subsequent calculations. Caution with DLB
data stems in part from an early history of statistical problems with more ambitious uses (see [10]
and [11] for proposed applications; [9] and [14] for critiques), and in part from the fact that DLB
data do not provide researchers with histories of uniform lengths for all women. 

In a recent paper [8], the first author proposed a new method for consistent estimation of
period fertility from DLB information. The essential intuition is to change the unit of analysis
from women to woman-years. A sample of N women who report the date of their last live birth
will, in general, contain fertility information on many more than N woman-years. For example,
a woman who is interviewed on her 32nd birthday and reports that her last live birth occurred 46
months earlier provides information on not one, but four, years of exposure to fertility risks: She
had one birth in age interval (28,29], followed by no births in age intervals (29,30], (30,31], and
(31,32]. 

The previous paper [8] derived maximum likelihood procedures for estimating fertility
models from open-interval data. Like standard BLY calculations based on {1}, DLB estimators
are consistent under the strong mathematical assumptions of many formal demographic models
(unchanging fertility schedules and identical fertility rates for all women of a given age,
regardless of parity). DLB estimators also have low bias under more realistic conditions. In
contrast to BLY methods, estimators based on the multiple woman-years implicit in open-interval
DLB data have much lower sampling variability. Thus, when basic fertility information comes
from DLB data, it is possible to produce far more accurate fertility estimates from small samples
or for small populations.

The earlier paper [8] derived the mathematical structure for estimating any fertility model
from DLB data, but gave examples only for one simple type of fertility schedule (piecewise-
constant, with five-year age groups, and no parametric restrictions on the shape of the age
schedule). In this paper we demonstrate more fully how to estimate parametric fertility models



from DLB data. As a specific example we illustrate maximum likelihood estimation for the M
and m parameters in a Coale-Trussell marital fertility model [4]. 

We also provide two examples of the type of analysis for which increasing the accuracy
of fertility estimates is useful. We use a set of small-area data from the state of Minas Gerais,
Brazil, to illustrate the analytical gain from using the full DLB data in place of the censored BLY
version. We produce maps and spatial statistics from alternative 1991 estimates of Coale and
Trussell’s m parameter for the state’s 723 municipalities, and show how the increased precision
of DLB estimates leads to clearer spatial patterns of fertility control. In addition, we illustrate
improvements in regression analysis of fertility when using DLB, rather than the usual BLY,
fertility data.

2 Statistical Background

2.1 DLB Data

In order to fix ideas, consider the hypothetical sample in Table 1. Suppose that a survey
is taken at time , and that each of six women reports her age (a), and the number of months since
her last live birth.  These data appear on the left-hand side of the table. In many data sets
(including the public use samples of the Brazilian census that we use later in the paper), DLB
data are available only in integer-truncated form; this version appears in the table in the “Years”
column. From this point forward we will treat the number of years, rather than the number of
months, as if it were the DLB data observed by the researcher.

Fertility information from too far in the past may be unrepresentative of current patterns.
It is therefore desirable to restrict the analysis to the relatively recent past. The researcher can do
this by considering only woman-years lived within T years of the survey, where T is a value
selected by the researcher. The value of T should be chosen after weighing the benefits of
increased sample sizes against the costs of possible biases (see [8]). In Table 1 we use T=5. 



TABLE 1 
Hypothetical Last-Birth Data for a Survey taken at time 

TIME SINCE LAST BIRTH ---------- FIVE-YEAR HISTORY*--------

i

Age at
survey

(a) Months  Years 

Years
truncated

at T=5
(u)

Birth
( )

-5 
to
-4

-4 
to
-3

-3 
to
-2

-2 
to
-1

-1
to

1 32 46 3 3 1 – {29} 30 31 32

2 28 33 2 2 1 – – {26} 27 28

3 21 no births no births 5 0 17 18 19 20 21

4 40 121 10 5 0 36 37 38 39 40

5 25 16 1 1 1 – – – {24} 25

6 31 5 0 0 1 – – – – {31}

*Histories consist of fertility information for the one-year periods ( -5, -4], ( -4, -3] and so on. For each woman, periods for
which her fertility information is known are denoted by her (integer) age at the end of that period. Years in bold face and 
brackets are those in which a birth is reported.



The column labeled (u) displays the number of complete years since last birth, truncated at
the upper limit of T=5. This variable appears in many subsequent calculations. By
construction u 0 {0,1,...,T}, and the researcher observes MIN(T,u+1) woman-years from each
individual sampled.

The set of columns under the heading “Five-Year History” illustrates the available
fertility histories from this sample. Each of the five right-hand columns corresponds to a one-
year period. Cells for which histories are known contain the woman’s age at the end of the
year; other cells are blank. Woman-years that include births are emphasized with bold face
and brackets. The column labeled () contains a dummy indicator, equal to one if the woman
had a birth within the five-year period, and equal to zero otherwise. 

All women in the sample contribute one person-year of exposure to the rightmost
column, corresponding to the period (-1, ]. Each woman’s age at the end of this period is
simply a, her age on the survey date. All women with u$1 also contribute information about
fertility in the period (-2, -1], all women with u$2 contribute information about (-3, -2],
and so forth. 

Standard methods for deriving age-specific fertility rates from a sample like that in
Table 1 use only the rightmost column. For each age group, the researcher sums the births in
the past year only, and divides by the number of women in that age group on the survey date.
For Table 1 these calculations are trivial. Because there is only one birth recorded in the year
before the survey (to woman #6) all estimated fertility rates would be zero, except f30-34=0.50.
This is an unrealistic age schedule for fertility, of course, the main cause of which is the very
small sample size.

As Table 1 makes clear, however, there is considerably more fertility information
embedded in the (a,u,) data than the last year alone reveals. The rightmost column
corresponding to the year before the sample contains 6 woman-years and 1 birth. In contrast,
the available information from the same women for the last T=5 years contains 20 woman-
years and 4 births. 

2.2 Estimating a Simple Fertility Schedule with DLB Data

The previous paper [8] showed that using the expanded sample of woman-years from
a DLB data set can substantially reduce the sampling variance of estimators for small
samples. Furthermore, if the researcher restricts the sampling period to five or fewer years
before the survey (as in Table 1 above), potential biases caused by unobserved heterogeneity
and time trends in fertility rates appear to be small. 

For one simple fertility schedule – a piecewise-constant function with no restrictions
on the pattern of fertility across different age groups – estimation with DLB data is extremely
simple. Specifically, for the fertility schedule

{2}f a

if a age group

if a age group GG

( ) ...=
∈

∈









λ

λ

1 1

the previous paper [8] demonstrated that maximum likelihood estimates for parameters 1... G

from DLB data are

{3}$ ...λ g g gB Y g G= = 1



where Bg and Yg are the counts of births and woman-years, respectively, for age group g. As an
example, in the five-year DLB information in Table 1, B25-29=2 births (woman #1 and #2 each
had a birth in this age group) and Y25-29=5 (1 year each from women #1 and #5, and 3 years from
woman #2). The estimated 25-29 is 0.40, compared to the estimate of zero from the last-year only
data. 

The estimators in {3} are simple and familiar. However, they are somewhat
counterintuitive, because much of the measured exposure (Y) occurs after, rather than before, the
measured events (B). Despite this inversion of the usual order of time, the maximum likelihood
estimators are still familiar-looking event/exposure ratios. Allison [1] showed that similar
counterintuitive results hold for backward recurrence times (times since last event) in many
stochastic models.

2.3 Summary Indices for Piecewise-Constant Models

One very important aspect of {3} is that maximum likelihood estimation requires only a
handful of summary indices (B1...BG,Y1...YG), rather than the full set of individual-level DLB
data. This section demonstrates that this is a property of any fertility model in which the age
schedule is piecewise-constant across age groups, a fact that simplifies the estimation of many
parametric models, including Coale-Trussell. 

For any model with piecewise-constant rates, fertility at age a may be written as:

{4}f a I ag g
g

( ) ( )= ∑ λ

where g is the model’s fertility level for age group g, and Ig(a) is an indicator function equal to 1 if
age a belongs to group g, and equal to zero otherwise. The age-group rates 1... G may be
unrestricted, as in {2}, or they may be required to conform to some parameterized schedule g= g( ).
The important point for the exposition is that fertility levels are identical at all ages within each
group.

From [8], the log likelihood for an individual observation (ai,ui, i) is

{5}L f a u f z dzi i i i
a u

a

i i

i

= − −
−
∫δ ln ( ) ( )

The first term in this equation corresponds to the probability of a birth at age ai-ui (if i=1 and a birth
was reported), and the second term corresponds to the probability of surviving without a birth over
the age interval (ai-ui,ai). When the model fertility schedule is piecewise-constant, this may be
rewritten in terms of age groups as

{6}[ ] [ ]{ } [ ]L I a u I z dzi i g i i g
g a u

a

g g
g

i i

i

= − −























∑ ∫∑

−

δ λ λ( ) ln ( )



Summing over observations i yields the sample log likelihood

{7}[ ] [ ] [ ]L I a u I z dzi g i i
i

g
g a u

a
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g
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i i
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or, more intuitively,

{8}( )L B Yg g g g
g

= −∑ lnλ λ

The derivation of {8}shows that the indices (B1...BG,Y1...YG) contain all the information
necessary for maximum likelihood estimation of any piecewise-constant fertility model from last-
birth data. Event and exposure totals for each age group are sufficient summaries of the observable
fertility histories. 

2.4 Poisson Estimation

Equation {8} is closely related to the Poisson distribution. The natural logarithm of the
probability that a Poisson process with rate  generates B events in Y years is

{9}B Y Cln λ λ− +

where C = B ln Y - ln B!. Except for the C terms (which do not vary with ), the log likelihood in
{8} is a sum of the logs of G Poisson probabilities, one per age group. Thus, for any individual-level
model with piecewise-constant fertility levels, one can calculate maximum likelihood estimators for
parameters by pretending that the aggregate-level DLB data have distributions

{10}B Poisson Y g Gg g g~ ( ) ...λ = 1

This estimation procedure, derived here for open-interval DLB data, is identical to that used by
Broström [3] for standard fertility data.

2.5 Discussion

The distributional result in {10} leads us to one of this paper’s main points. A researcher
using DLB data may use standard methods for estimating rates or fertility parameters. Estimation
procedures for open-birth interval (DLB) or last-year (BLY) data differ only in the manner in which
the data sets are assembled, not in the quantitative methods used. DLB data require no special
statistical techniques, despite the unusual sampling scheme that generates the DLB versions of Yg,

Bg, or other data summaries.
This conclusion held for the simple model presented in [8] (Equations (2) and (3)), and the

exposition here shows that it is equally true for any fertility model in which rates are a function of
age group. Furthermore, because age groups may be arbitrarily narrow, we expect (although we have



not formally proven it here) that the main result – i.e., that appropriate estimation methods are
identical for BLY and DLB data – also applies to models in which f(a) is a continuous function of
exact age. 

3 Empirical Examples: Methods and Data

3.1 Poisson Regression for Coale-Trussell Parameters

We now apply these results to a well known fertility model, Coale-Trussell, using open-
interval data from public use samples of Brazil’s 1991 census. The simplest version of the Coale-
Trussell model schedule for marital fertility [4] assumes that fertility levels for five-year age groups
are related to one another by the parametric specification

{11}λg g gM m M N m v g G( , ) exp( ) ...* *= = 1

or, defining a new, mathematically more convenient parameter k=ln(M), 

{12}λg g gM m N k mv g G( , ) exp( ) ...* *= + = 1

where G=6, the age groups are 20-24, 25-29, ..., 45-49, and the Ng* and vg* values are known
constants ([4], p. 188).

The results for piecewise-constant models in the previous section therefore imply that with
aggregate DLB data generated by a Coale-Trussell fertility schedule with parameters (k,m), the
researcher can estimate (k,m) by maximizing the sample likelihood under the assumption that:

{13}B Poisson Y N k mvg g g g~ [ exp( ) ]* *+

Most modern statistical software packages can estimate (k,m) from {Bg,Yg} using the generalized
linear modeling approach. Estimation is based on the relationship

{14}ln ( ) ln[ ]* *E B Y N k mvg g g g= + +

Broström [3] provided an example program for GLIM software [6]. Table 2 gives additional
examples for the SAS and S-PLUS software systems.



  
Table 2

Code for Estimating Poisson Model

In both examples below, we assume that the researcher has prepared a data set called
DLB. DLB must have 6 observations (one per age group 20-24...45-49), and must
contain variables called N and V (the Coale-Trussell constants) and B and Y (the
aggregate totals of births and years, respectively, from the last-birth data).

Both examples produce an estimated intercept, k=ln(M), and an estimated slope (m). 
 
SAS

proc genmod data = DLB ;
off = log(Y*N);
model B = V / dist=poisson offset=off ;

S-PLUS
            off <- log(Y*N)

glm(B~V, data=DLB, family=poisson, offset=off)

3.2 Brazilian Census Data

In all of our examples we use data from public use samples of Brazil’s 1991 demographic
census, which collected current fertility information exclusively in DLB form. Our focus is on
subnational estimates. We analyze fertility in 723 small areas, called municipalities (municípios in
Portuguese) from the state of Minas Gerais. Municipalities are roughly equivalent to U.S. counties,
and these 723 administrative units cover the state completely, with no overlap. We selected the 1991
Minas Gerais data as a test case because of earlier work by colleagues [2], who applied a very
different set of statistical methods – Bayesian spatial smoothing of the standard BLY data – to
estimate municipal-level fertility control.

Table 3 presents information on the 1991 census sample for Minas Gerais. All data in this
table refer to unweighted samples of women 20-49, regardless of marital status, on the census date.
The overall sample is very large, with approximately 392,000 women. Municipal-level sample sizes
vary widely, however. Column (1) provides information on the number of woman-years available
from the year before the census; by construction, this equals the number of women surveyed. Many
municipalities have extremely small sample sizes: there is information for fewer than 100 women
in 49 of the 723 municipalities, and for fewer than 200 women in 206 (49+157) municipalities. The
smallest municipal-level sample contains information for only 30 women aged 20-49, and the
median size for the municipal-level samples is 311 women. Column (3) displays data on the cross-
municipality distribution of births in the year prior to the census (i.e., BLY birth data). Last-year
births are in single digits (0-9) for 62 of the municipalities, and the majority of municipalities (556
of 723) have fewer than 50 last-year births to interviewed women. 



TABLE 3
Distribution of Unweighted Samples Sizes across 723 Municipalities in Minas Gerais, 

Brazil 1991 Public Use Census Samples

# of municipalities
in sample size range

# of municipalities
in sample size range

(1) (2) (3) (4)

WOMAN-
YEARS

Past year
(BLY)*

Five years
(DLB) BIRTHS

Past
year

(BLY)
Five years

(DLB)

0-99 49 0 0-9 62 0

100-199 157 3 10-19 157 12

200-499 361 102 20-49 337 89

500-999 98 198 50-99 105 195

1000+ 58 420 100+ 62 427

Total 723 723 Total 723 723

Minimum Size 30 125 Minimum Size 0 13

Median 311 1,162 Median 30 119

Maximum 47,865 192,869 Maximum 3,285 13,526

* Woman-years over the past year equals the number of women interviewed



The small sample sizes for many municipalities clearly create severe challenges for
estimating sensible local-level fertility indices, and for analyzing inter-municipality differences. With
such small samples of women and last-year births, estimated fertility indicators may vary widely
across municipalities merely because of coincidental sampling noise, not because of any real features
of the fertility regime. Variability in small samples is likely to be a particularly bad problem for the
Coale-Trussell m parameter, which typically has high standard errors and wide confidence intervals
even in large samples ([3], Table 3). 

As an extreme example of sampling variability, consider the municipality with the smallest
number of women interviewed, Serra da Saudade, in central-western Minas Gerais. The 1991 census
sample for Serra da Saudade includes only 30 women – four each in the 20-24, 30-34, and 40-44 age
groups, eight each in the 25-29 and 35-39 groups, and two women 45-49. (Readers can view and
manipulate the entire census sample for this municipality in the Addendum’s spreadsheet, Serra da
Saudade.xls.) Only two women, one 25-29 and one 35-39, reported births in the year before the
census. A demographer who heroically (and naively) estimated the Coale-Trussell m parameter from
these data would arrive at a value of -1.43. In contrast, estimated m values for the four (more
populous) municipalities that border Serra da Saudade are 1.01, 2.00, 0.71, and 1.35. Serra da
Saudade appears, then, to be an anomalous island in sea of fairly high fertility control. This is
nonsense, of course. Differences in m between Serra da Saudade and its neighbors are caused almost
entirely by the coincidental fact that half of the reported births for 1991 (1 of 2) were in the 35-39
age group, and because the sample weight for the older of the two mothers is higher. As one might
expect, sampling noise, rather than real fertility differences, is the main cause of the local variation
in m. 

Researchers can ameliorate the problem of small sample sizes when fertility data are
collected in DLB form (as they are in the 1991 Brazilian census) by using information from woman-
years that occurred more than one year before a survey. Columns (2) and (4) of Table 3 show how
expansion of the Minas Gerais sample back to T=5 years before 1991 increases sample sizes. The
numbers of observed births and woman-years in each municipality are approximately quadrupled
by this procedure, and the distribution of municipal-level sample sizes shifts dramatically. With DLB
data, the majority of municipalities have over 1000 woman-years and 100 births from which to
estimate fertility. In contrast, only the very largest municipalities had equivalent sample sizes with
the last-year-only data. 

DLB sample sizes are still fairly small, but it is far more plausible that one can extract
meaningful fertility information from the DLB than from the BLY samples. Roughly speaking,
sample sizes quadruple, which should halve the standard errors of estimators. This represents a
significant improvement in accuracy, and by reducing the level of noise in the data researchers can
often “hear the signal” (i.e., identify systematic patterns of interest) much better. 

3.3 Simulated Small-Sample Properties of BLY and DLB estimators

As demonstrated in [8], under the strong, idealized assumptions of many formal demographic
models (constant age schedules and complete homogeneity within age groups), DLB data produce
consistent parameter estimators that have lower variance than BLY estimators. Theoretical tests and
empirical simulations in [8] also demonstrated that DLB estimators outperformed BLY under more
realistic conditions, when age schedules change and fertility rates vary within age groups.  



However, Schmertmann [8] compared DLB and BLY estimators only in models without
parametric restrictions on the set of age-specific rates { 15-19,..., 45-49}. The Coale-Trussell model
imposes parametric restrictions, and it is possible that the comparative performance of BLY and
DLB estimators therefore differs. Most importantly, when fertility falls rapidly before the census
date, as it did in Minas Gerais over the 1980s, DLB estimates of m for the census date may be biased
downward, because the DLB data include earlier years in which fertility control was lower. Adding
these woman-years to the DLB sample may therefore “contaminate” the estimate of current m. 

The earlier simulations with changing rates in [8] suggest that any such bias is likely to be
small. However, before calculating (M,m) estimates for hundreds of municipalities, it is instructive
to compare small-sample properties of Coale-Trussell estimators based on actual BLY and DLB data
from Minas Gerais. 

We investigated these properties by drawing large numbers of subsamples of different sizes
from the Minas Gerais 1991 public use sample. For each subsample we calculated Poisson regression
estimates of (M,m) from both BLY and DLB versions of the data. We focus here on the second
parameter m; results are nearly identical for M or k=ln M. 

The distribution of m estimates over many subsamples allows us to assess (1) the magnitude
of DLB biases caused by including woman-years from earlier periods of (presumably) lower fertility
control, and (2) the reduction in sampling variability achieved by including these additional woman-
years in the DLB sample. 

Census public use files contain DLB data for approximately 265,000 married women 20-49
in Minas Gerais in 1991. Table 4 contains the weighted counts of these women by (a,u,) cell, using
T=5 as the maximum sampling period. For simulation purposes we assume that a population of
women is distributed across (a,u,) cells with exactly these proportions.  

BLY estimates from the Minas Gerais sample, which use data from the last year only, are

 k*= -0.449 M*=0.638 m*=1.036     [full sample BLY].

We assume that these are the “true” population parameters to be estimated from small samples. DLB
estimates from Table 4, which add potentially contaminating fertility information from 1-5 years
before the 1991 census, are 

k= -0.433 M=0.649 m=1.001     [full sample DLB, T=5].

The two estimation methods produce similar parameter estimates in the large sample in Table
4, but we wish to investigate their comparative performance in small samples. In particular, we wish
to learn which method is more likely to produce estimates of m for 1991 that are close to the “true”
value m*=1.036, and to learn how performance of BLY and DLB estimators varies with sample size.



Table 4
Time Since Last Birth for Currently Married Women in Minas Gerais, 1991

Weighted Totals from Public Use Sample

Years Since Last Live Birth
AGE 0-1 1-2 2-3 3-4 4-5 5+/never TOTAL

20 13,808 9,962 5,378 2,028 693 12,934 44,804 
21 15,441 11,407 6,989 3,745 1,724 14,132 53,438 
22 17,898 13,356 9,596 5,681 2,510 15,888 64,928 
23 18,160 14,961 10,918 6,612 3,772 17,407 71,829 
24 18,194 15,365 12,558 8,008 4,823 17,644 76,592 
25 18,195 16,326 13,270 8,992 6,303 20,046 83,133 
26 17,621 16,612 14,005 10,044 7,093 22,148 87,523 
27 16,686 15,518 14,165 11,518 8,483 25,445 91,813 
28 16,341 15,419 14,118 11,122 8,685 27,764 93,449 
29 14,203 13,965 13,585 11,411 8,978 30,813 92,954 
30 13,413 12,994 12,134 10,637 9,070 32,502 90,751 
31 11,159 11,151 11,187 10,316 9,096 36,002 88,910 
32 10,336 10,470 10,390 9,547 9,375 41,639 91,758 
33 8,487 9,674 9,779 8,971 8,877 44,627 90,415 
34 7,707 8,120 8,190 8,008 8,030 46,806 86,861 
35 6,362 7,091 6,705 7,275 7,487 47,965 82,885 
36 5,701 6,269 6,626 6,250 6,571 51,869 83,287 
37 5,148 5,503 5,831 5,214 5,737 52,947 80,380 
38 3,881 4,564 4,980 4,649 5,569 52,261 75,904 
39 3,387 3,821 4,769 4,124 4,692 52,046 72,839 
40 2,805 3,794 3,899 3,629 4,079 52,416 70,622 
41 2,162 2,377 3,390 3,159 3,428 49,106 63,622 
42 1,856 2,179 2,644 2,532 2,721 48,779 60,711 
43 1,344 1,685 2,314 2,425 2,608 50,428 60,804 
44 917 1,262 1,786 1,952 2,295 47,061 55,274 
45 634 834 1,456 1,543 2,015 46,482 52,965 
46 515 613 1,303 1,317 1,727 45,853 51,328 
47 268 348 646 1,039 1,339 42,750 46,391 
48 234 386 437 664 950 42,124 44,795 
49 200 144 374 449 788 41,749 43,705 

TOTAL 253,066 236,169 213,423 172,859 149,519 1,129,632 2,154,669 



For each of several sample sizes N 0 {100, 200, 500, 1000, 2000, 5000} we conducted a
Monte Carlo study by repeating the following procedure 200 times:

• draw a pseudo-random sample of N women from the distribution of (a,u,) in Table 4
• construct BLY and DLB values for Bg and Yg, g=20-24,...,45-49
• estimate Coale-Trussell parameters k and m by Poisson regression and record their values

Table 5 displays summary results from these studies. [Figure 1] displays the distribution of m
estimates for the N=200 case, representing a typical municipal-level sample size in our example data.

Table 5
Summary measures for m estimates 

over 200 Monte Carlo Samples at each Sample Size N

BLY DLB
% of samples
in which DLB
estimate 
is closer to m*N     meana biasb MAEc meana biasb MAEc 

100 1.17 0.13 0.69 1.01 -0.03 0.27 72 
200 1.10 0.06 0.43 1.02 -0.01 0.20 72 
500 1.04 0.00 0.26 0.97 -0.06 0.13 76 

1,000 1.05 0.01 0.17 1.01 -0.03 0.09 74 
2,000 1.03 -0.01 0.13 1.00 -0.04 0.08 73 
5,000 1.04 0.01 0.08 1.00 -0.04 0.05 67 

... ...
Populationd 1.036 0 0 1.001 -0.036 0.036 0

a mean / [Gs ms] / 200, where s=1...200 indexes Monte Carlo samples
b bias / mean - 1.036
c MAE / [ Gs |ms - 1.036| ] / 200
d Values on this row represent a single calculation from the full sample in Table 4, rather than
Monte Carlo simulations. Under sampling without replacement, all possible samples of this
size are identical.

The results in Table 5 illustrate that, in this particular case, DLB estimators produce markedly
better results – indicated by lower mean absolute errors –  at all sample sizes up to N=5000. As
expected, falling fertility in Minas Gerais prior to 1991 leads to a tendency to underestimate
fertility control m in DLB samples, as illustrated by the negative biases in the DLB column.  This
“contamination effect” is small, however. As one switches from BLY to DLB data, gains from



decreased sampling variance overwhelm disadvantages of bias from “contaminated” samples that
include fertility information from earlier years. The net gain is especially large when N=100 or
200, because in this range of sample sizes there is evidence that BLY estimators have positive
small-sample biases, as well as high variance. (An asymmetry in the data causes the right-skewed
distribution in the estimates: small samples in which births are far below population averages are
more likely than small samples in which births are far above.)

The most important column of Table 5 is the rightmost, which displays the percentage of
Monte Carlo samples in which the DLB estimate of m was closer than the standard BLY estimate
to m*=1.036. The simulations show that despite small negative biases, the DLB estimate is
approximately three times more likely to win this contest in any single sample of size N#2000,
and approximately twice as likely to be closer to m* when N=5000. 

In sum, simulation results with census data from Minas Gerais 1986-1991 illustrate that
replacing the standard, truncated BLY form of open-interval data with DLB information
produces superior estimators of Coale-Trussell parameters in small to moderately-sized samples
such as those for the 1991 municipalities. In this particular case, as in the examples in the earlier
paper [8], Monte Carlo evidence strongly suggests that DLB estimators yield better results. If the
researcher’s objective is to arrive at a sample estimate that is close to the population parameter,
the  benefits of decreased sampling variance with DLB data greatly exceed the small costs of
increased bias.  DLB is a far better bet to produce a good guess from a small sample.

4 Improvements in Small-Area Demographic Analysis with DLB Data

We now turn to two brief examples that illustrate how analysis can improve when the
researcher uses all of the information in DLB data, as opposed to the usual censored form in {1}.
We wish to demonstrate how improving fertility estimates improves demographic analysis, by
means of some (simplified) examples of an increasingly common research task: analysis of
demographic patterns over a large set of small geographic areas. 

In order to illustrate the potential analytical gains from full use of DLB data, we estimated
the Coale-Trussell M and m parameters twice for each of the 723 municipalities – first using the
standard, BLY form of the data, and next using the full DLB sample back to a limit of five years
before the census. In the absence of data on marital duration, we adopted the following simple
procedure to convert from total to marital-only fertility rates within each municipality before
estimating the Coale-Trussell parameters:
• tabulate Bg and Yg values for all women (either BLY or DLB versions)
• calculate g, the proportion of women in each age group who were married in 1991
• approximate marital births (BgN) with total births: BgN = Bg

• approximate marital exposure (YgN) as YgN = g Yg 
• estimate (k,m) = (ln M, m) by Poisson regression of BgN on vg* with offset ln(Ng* Y gN)

Unlike the procedure for approximating marital fertility in the Monte Carlo simulations,
this method uses only aggregate data on marital status. Differences between the two procedures
are small.   Our exposition again focuses on m, the estimated index of marital fertility control. 

4.1 Example 1: Spatial Analysis



Table 6 displays summary information on the distribution of m estimates over
municipalities. The BLY and DLB columns correspond to the two sources of data. Both data
sources indicate that, overall, marital fertility control in Minas Gerais is high. The mean value of
m (weighting all municipalities equally) is 0.94 from BLY data, and 0.84 from DLB data. BLY
estimates of m are more variable across municipalities, however, with a higher standard deviation
(0.68, versus 0.43 for DLB estimates). BLY estimates are also more prone to extreme,
implausible values for m, at both the high and low ends of the distribution. 

Table 6
Distribution of Coale-Trussell m estimates across 723

Municipalities in Minas Gerais, 1991 Census

BLY data DLB data

Mean 0.94 0.84

Std. Dev. 0.68 0.43

Minimum -1.88 -0.65

5%ile 0.00 0.15

25%ile 0.51 0.56

Median 0.92 0.82

75%ile 1.27 1.08

95%ile 2.05 1.65

Maximum 4.96 2.67

Spatial patterns also emerge more clearly with the more stable DLB estimates. [Figure 2]
displays two maps of the m estimates for Minas Gerais. Panels (a) and (b) map the BLY and DLB
estimates, respectively. Neither map illustrates a clean, simple spatial structure of fertility
control. (This might be too much to expect, since the spatial organization of other relevant
variables may not be clean and simple.) Minas Gerais appears to have the highest levels of
fertility control in the western “beak”, the lowest levels in the north. Broadly speaking, there is a
northeast-to-southwest gradient of increasing fertility control. The DLB map in panel (b) shows
this pattern more coherently

Visual inspection of the maps tells only part of the story, however, because the eye
naturally focuses more on the larger municipalities (e.g., those in the northwest). Many important
details in the smaller southern and eastern municipalities may be difficult to see from the full
map. Table 7 contains (informal) measures of the maps’ global “smoothness”.



Table 7
Informal Measures of “Smoothness” for Minas Gerais maps of m

BLY data DLB data

Number of Municipalities 723 723

Number of Municipalities with m < 0 38 7

Fraction of Neighboring Municipalities 
in Identical m Categories* .285 .467

Mean Absolute Difference  |mi-mj|
between Neighbors .641 .324

Fraction of Neighbors with  |mi-mj| # 0.25 .274 .486

Fraction of Neighbors with  |mi-mj| # 0.50 .505 .783

Fraction of Neighbors with  |mi-mj| # 0.75 .679 .920

* “Neighboring” municipalities are those that share a boundary. Categories of m are
defined in the map legends. All fractions in the table are calculated using row-
standardized weights, so that municipalities with many neighbors and those with few
neighbors receive equal treatment. The implicit question for all of the calculated
fractions is “Select a municipality at random, then select one of its neighbors at
random. What is the probability that the two selected cells satisfy the stated
criterion?”. 

Data in the table indicate that pairs of neighboring municipalities fall in the same range of m (and
therefore have identical map colors) approximately 47% of the time in the DLB map, versus 29%
in the BLY map. The mean absolute difference in m estimates between neighboring
municipalities is only half as large in the DLB map (0.32) as in the BLY map (0.64).
Neighboring municipalities have m values within ±0.25 of one another nearly half of the time
(49%) on the DLB map, but only about one fourth of the time (27%) in the BLY map. In short, a
series of measures all suggest that the DLB map in panel (b) provides a smoother, more coherent,
less mottled-looking picture of fertility control in 1991 than the BLY map. Although the spatial
structure of fertility control is still complicated, DLB data filter out enough sampling noise from
the BLY data to make the overall picture more sensible and more intelligible. 

DLB estimation also improves formal statistical analysis of spatial patterns. [Figure 3]
illustrates spatial autocorrelation in the BLY and DLB estimates of m, as measured by a common
spatial statistic, Moran’s I. The horizontal axis in the figure represents a simple distance measure



(neighboring municipalities are at distance 1, neighbors of neighbors are at distance 2, and so
forth; for reference, the radius of the main area of Minas Gerais, minus the western ‘beak’, is
approximately 12 – that is, municipalities on the northern edge of Minas Gerais are about 12
steps from municipalities at the center of the map). The vertical axis represents Moran’s I, which
is essentially the average correlation in estimated fertility control m between randomly chosen
pairs of municipalities at the specified distance [7]. Positive values of I indicate that
municipalities at a given distance from one another tend to have similar levels of fertility control,
with higher values indicating stronger associations. 

Both the DLB and BLY estimates show positive and declining correlations up to about 10
spatial lags, and negative correlations between more distant municipalities. This autocorrelation
pattern is consistent with an overall gradient in m over Minas Gerais, as opposed to a set of
locally homogeneous but globally heterogeneous “patches” of low or high fertility control ([7], p.
67). It is also the statistical manifestation of the impression made by the maps (particularly the
DLB map in panel b) in [Figure 2], which suggest a fairly clear northeast-to-southwest pattern of
increasing fertility control.

Both BLY and DLB data exhibit the same pattern in [Figure 2]. However, this correlation
pattern is stronger, clearer, and empirically more convincing when one uses the DLB data.
Correlations among adjacent municipalities are +0.46 for the DLB estimates of m, compared to
only +0.12 for the BLY estimates. At six spatial lags, correlations are +0.20 (DLB) and +0.07
(BLY). At 16 lags (close to corner-to-corner distances on the state map), correlations are -0.14
(DLB) and -0.05 (BLY). As before, expanding the sample size by using the DLB data clearly
eliminates much of the sampling noise in the m estimates, and brings the spatial patterns into
much sharper relief. 

4.2 Example 2: Regression Analysis

As a second example, we use the Minas Gerais data in a manner more familiar to
demographers: regression of municipal fertility control levels (m) on municipal characteristics.
Like the spatial example above, the actual analysis that we present here is somewhat simplistic.
Our objective is to provide a modest illustration of the value of DLB estimates, not to present a
thorough, nuanced analysis of Brazilian fertility patterns. 

In this spirit, consider a municipal-level analysis of the impact of growth by evangelical
Protestant churches on marital fertility in Minas Gerais. Brazil is officially Catholic, but
evangelicals are an increasing minority. In Minas Gerais in 1991, 87% of the population was
Catholic, 8% evangelical. As with fertility, there are significant inter-municipal differences.
Define EVANG as the fraction of women 20-49 in a municipality who report their religion as
evangelical Protestant. Seven municipalities have EVANG=0, while at the other extreme eight
have EVANG > 0.25, with a maximum (in the municipality of Itueta, on the eastern edge of the
state) of 0.41. 

It is unclear a priori whether a high percentage of evangelicals in a region should be
correlated positively or negatively with fertility control. On one hand, many evangelical churches
are family-oriented and emphasize traditional gender roles, which would suggest a pro-natalist
influence and lower levels of control in regions with more evangelicals. On the other hand, areas
that are “more evangelical” are by construction “less Catholic”, which might mean that women
tend to use more effective methods of birth control, making m higher in such regions. 



A recent study comparing the family planning practices of evangelicals with Catholics in
Rio de Janeiro, a state which borders southeastern Minas Gerais, Machado [5] found that
evangelicals were more likely to use modern birth control methods, especially sterilization.
Machado also notes that one prominent evangelical denomination (the Universal Church) has
openly criticized the Catholic Church’s position on birth control, has encouraged its members to
pool resources in order to fund one another’s sterilizations, and seems to have used female
participation in debates on sexuality and family planning as a conscious strategy to recruit new
members. These findings support the hypothesis of a positive correlation between a
municipality’s fraction evangelical and its estimated m value. 

The left side of Table 8 reports results from a simple exploratory regression with the BLY
data, in which the only independent variable other than EVANG is the fraction of the
municipality’s population residing in urban areas (URB):

{15}E m URB EVANG ii i i( ) ...= + ⋅ + ⋅ =β β β0 1 2 1 723

These BLY results suggest a positive correlation, but the EVANG coefficient of 0.68 is not
significantly different from zero (p=.191), and the overall regression fit is poor (R2=.064). In
contrast, using the DLB estimates of m as the dependent variable yields a strongly significant
positive correlation between m and EVANG ( =0.90; p=.004), and a much better overall fit for
the regression (R2=.197).

Table 8
OLS Regression Estimates, Dependent Variable = m

BLY DATA DLB DATA

Coefficient Estimate t-stat P-value Estimate t-stat P-value

Intercept 0.43 5.63 0.0000 0.27 6.01 0.0000

URB 0.81 6.63 0.0000 0.90 12.37 0.0000

EVANG 0.68 1.31 0.1911 0.90 2.92 0.0036

R2= 0.064 R2= 0.197

Once again, switching to DLB data rids the data of sample noise that obscures important
patterns. The DLB regression in Table 8 is only a beginning in the analysis of the effect of
religion on Brazilian fertility, but (contrary to the results from the BLY version) the significant
coefficient on EVANG is an important signal to the researcher to investigate further.



5 Conclusion

We have two main messages in this paper. The first is that parametric fertility models
may be estimated from open-interval (DLB) birth data in straightforward fashion. Differences
between open-interval estimation and standard methods lie mainly in the construction of the data
sets, not in the application of statistical methods. 

The second message is that use of DLB data can make a critical difference to the quality
of statistical results. This is particularly true when analyzing populations at highly disaggregated
levels. In fertility estimates from small samples of women, sampling noise can drown out signal.
This is a familiar problem, of course, but using more of the information inherent in DLB data can
greatly improve the precision of statistical estimators. More precise estimators make for better
analysis and stronger conclusions. Our examples with Brazilian census data make this point in
several ways: maps of demographic parameters are more coherent, spatial statistics have more
power, and regressions provide clearer answers to questions about fertility’s relations with other
social and demographic variables. 

DLB data are often available to researchers, but they are seldom used to their full
potential. When fertility data are collected in last-birth or open-interval form, the methods
elaborated in this paper can significantly improve the demographic analysis of small samples. 
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Figure 2. Municipal-level Estimates of m from 1991 Public Use Census Data.



Figure 3. Moran’s I
for Various Spatial
Lags, Minas Gerais
estimates of m.




