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Therelative tail of longevity and the mean remaining lifetime

Maxim Finkelstein *
James W. Vaupel 2

Abstract

Vaupe (1998) posed the provocative question, “When it comes to death, how do people
and flies differ from Toyotas?’ He suggested that as the force of natural selection
diminishes with age, structural reliability concepts can be profitably used in mortality
analysis. Vaupel (2003) went a step further, using smulations to investigate the impact
of redundancy, repair capacity, and heterogeneity on the relative length of post-
reproductive life spans, called relative tails of longevity. His 2003 paper showed that
structural redundancy and the possibility of repair decrease therelative tail of longevity,
whereas greater heterogeneity increases it. Here, we consider the problem in much
greater generality and prove these results anaytically. Structures with repairable and
non-repairable components are considered. Heterogeneity is described by a frailty-type
model and different definitions of the tail of longevity are discussed.
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1. Introduction

The force of evolution peters out with age. Natural selection determines mortality
trajectories of organisms at reproductive ages. But what happens afterwards? What
mechanisms are responsible for survival at the post-reproductive ages? We do not
observe a ‘wall of death’ at the age at which reproduction ceases; on the contrary, many
species experience a remarkably long post-reproductive period with a deceleration, a
leveling-off or even a decrease in the respective mortdity rates. Vaupd (2003)
addressed these questions and drew an analogy from structural reliability concepts. This
analogy was used before (see, e.g., Gavrilov and Gavrilova, 2002); however, Vaupel for
the first time linked it primarily with the post-reproductive period only. He used the
following loose analogy for explaining the connection between longevity and the post-
reproductive age: “The speed and tragjectory of a ball is governed by the pitcher's
strength and skill up to the moment the ball leaves the pitcher’s hand. Thereafter, the
ball’s course is determined by the force of gravity acting on the momentum of the ball.
Similarly, the course of life until the end of reproduction is determined by evolutionary
forces. After reproduction ceases, the remaining trgjectory of life is determined by
forces of wear, tear, and repar acting on the momentum produced by the Darwinian
forces operating earlier in life’. As the human organism is an extremely complex
structure of billions of components, it follows from the structural reliability theory that
the only way to survive for a relevant period of time in such a system is to be
sufficiently redundant on different levels and to possess the capability of repair.

Thus, the answer to Vauped's (1998) provocative question, “When it comes to
death, how do people and flies differ from Toyotas?’ can beinterpreted in the following
way: As the force of natural selection diminishes with age, structurad reliability
concepts can be profitably used in mortdity analysis. It means that the design of the
structure is more or less fixed at this stage and its evolution in time is governed by
reliability laws. However, it does not mean that these concepts cannot be used for
mortality modeling at earlier ages, but in this case they should be combined with the
laws of natural selection. We hope that the corresponding models can be developed in
the nearest future.

Vaupe (2003) used simulations and empirica reasoning to investigate for some
specific cases the impact of redundancy, repair capacity, and heterogeneity on the
relative length of post-reproductive life spans, called relative tails of longevity. The
results were as follows: Redundancy and the possibility of repair decrease the relative
tall of longevity, whereas heterogeneity increases it. Some general considerations of
reliability theory also support this claim: It iswell known (Barlow and Proschan, 1975)
that the survival curve of a structure with a higher level of redundancy stays longer at
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larger values but then decreases more steeply than a survival curve of a structure with a
lower level of redundancy.

The relative tail of longevity is defined via the difference between the quantiles of
the corresponding digtributions (see Section 2). A comparison between them is not
straightforward, as we compare the quantiles of different distributions. Moreover, an
increase (decrease) in the distance between the quantiles does not mean automatically
an increase (decrease) in thereative distance.

A possible deceleration in mortality rates at old ages, which was already
mentioned by Gompertz (1825) and Makeham (1867) and was first modeled via the
concept of population heterogeneity by Beard (1959, 1971; see also Vaupd et al. (1979)
for amore generd frailty model) can help in understanding why heterogeneity increases
the tail of longevity. Due to this deceleration, one can expect that the distance between
two quantiles of the same digtribution is higher for populations with a higher level of
heterogeneity (with the same baseline mortality rate). But & priori it isnot clear at all
whether this effect is maintained for therelative distance and for different distributions.

Redundancy is a main tool in designing reliable technical structures. The idea that
redundant structures constitute a plausible lifetime model seems very attractive, as
extremely high ‘reliability of humans' is likely to exist in nature only with the help of
redundancy on different levels. The mortality rates of the simplest redundant structures
of identical components with constant mortality rates, operating in paralel, were
analyzed by Gavrilov and Gavrilova (1991, 2002). The authors show that for a
sufficiently small t, the mortaity rate of the fixed pardle structure (loaded
redundancy) approximately follows the power law and the mortality rate of a structure
with a random number of initialy operable components approximately follows the
Gompertz law. The latter can be explained also in terms of a genera frailty model
(Finkelstein, 2003). The mortality plateau emerges naturally in this specific modd, as
the mortality rate of a redundant system tends with time to the mortality rate of the last
surviving component, which is assumed to be constant. Steinsaltz and Evans (2003)
explained mortdity plateaus from the more general viewpoint of quasi-stationary
distributions (see also Aalen and Gjessing, 2001).

Repair capacity is crucial for the theory of repairable engineering systems. It turns
out that this property aso plays an important role in modern theories of aging
(Kirkwood, 1997: Horiuchi, 2002: Yashin et al., 2000). In the current paper, we
consider models of perfect repair, i.e. a component after repair is as good as anew one.
In this case, the repair is equivalent to the substitution of the failed component by a
spareoneand is, in fact, a specific case of redundancy (unloaded).

The goal of our technical paper isto prove the empirical and simulation results of
Vaupd (2003) analyticaly and to generalize them to arbitrary lifetime digtributions
where possible.
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In Section 2, we give formal definitions of the tail of longevity and of the relative
tall of longevity. Sections 3 and 4 are devoted to proving that redundancy decreases the
relative tail of longevity. As mentioned, unloaded redundancy can be interpreted in
terms of repair. Section 5 studies the impact of heterogeneity on the relative tail of
longevity. As the comparison of quantiles is parameter-sensitive, we also consider a
more traditional measure of the tail of a distribution in Sections 6-8: the mean
remaining lifetime function (life expectancy at age t). We examine the influence of
redundancy and heterogeneity on this function. As expected, redundancy decreases the
relative mean remaining lifetime function and heterogeneity increases it. Finaly,
Section 9 formulates the overall conclusion and also discusses other possible measures
of thetail of longevity.

2. Thetail of longevity

Consider a population of a sufficiently large size N . Denote by X a random age at
death and by ,-a random maxima age at death (the age at last death) in this

population. It is challenging to define a tail of longevity as some remaining potential
lifetime, taking into account the maximal lifetime variable @, . A natural candidate for

thisisthe difference D, = @, — X, dthough it formally allows for negative values.
Denote by 7(w,,q) the q-quantile for the distribution of @,:
Pr(ow, < 7(wy,0))=q, and by 7(g,) the q,-quantile for the distribution of X:
Pr(X <7(0,)) =0, . Vaupd (2003) defines the length of the tail of longevity (we will
omit the term ‘length’ for brevity sake) as the difference 7(w,,0)—-7(q,) and the
relative tail of longevity as (z(wy,0)—7(0,))/7(q,) - Our main focus in the current

paper is on the latter characterigtic. Relative measures are necessary for adequate
comparisons of tailsin different populations.
Vaupel (2003) considered specific values of quantiles: g=0.5 and q,=0.9. The

latter value marks the left end point of the post-reproductive zone for some organisms,
where the force of natural selection is active no longer. The median of the maximal life
span distribution 7(@,,0.5) is just a reasonable choice for a quantile of this

distribution. Note that formally we do not rely on specific values of q and g, : the only

reasonable restriction is that the corresponding quantiles should be properly ordered:
7(wy,q) > 7(0,) , which isobvioudy the case in reality.
The cumulative distribution function (Cdf) of age at death X isdefined as:
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F(t)=1- exp[— j ,u(u)duj , (1)
where u(t) isthe mortality rate.

Let

S(t) =N exp[— j ,u(u)duj )

be the expected number of members who will survive at t, starting with initid value
S0O0)=N.

Let w, bethe maximal age at death for this sample of sizeN . Thatcher (1999)
showed that the Cdf of @, for large N is:

Fu(t) =Pr(m, <t) = (Ft)" = (1_%j

~ exp(=S(t)) = exp[— N exp[—j y(u)duD.

©)

Let 7(ey,q) denote the gq- quantile Pr(w, <7(w,,q))=q. Using eg. (3),
7(w,,q) isobtained from:

S(z(@y,a)) =-Inq (4)

or, using eg. (2):

7(wy ,9)

Iy(u)dUzInN—In(—Inq). (5)

The second term on theright in eg. (5) is of minor importance, as N is large and

we are not interested in the ‘too high quantiles when studying the maxima value
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distributions. For large enough N, the approximate relation (5) can be practically

considered as equality and thiswill be assumed in what follows.

Doubling the sample size N will only dlightly increase 7(a,,q) for sufficiently

large N . Theincrease from N to N? or N°® gives a substantia increase, depending
on the shape of the mortality rate: It is smaller for increasing failure rates and larger for
constant and decreasing failure rates. This result follows from eqg. (5). In Table 1 of

Vaupe (2003), increasing N from 10° to 10° extends the median maximal lifespan
for the congtant mortality rate from 73 to 142 years, which agrees with eqg. (5).

Increasing N from 10° to 10° increases the median maximal lifespan from 142 to 211
years, which also matches eg. (5).
Our goal is to compare 7(w,,0) with the quantile 7(q,) obtained from Cdf (1):

F(z(q,)) = 0, - The quantile 7(q,) , chosen as 0.9, defines the starting point of old age
(Vaupel, 2003; ten percent of the population alive at age 7(0.9)). However, formally
we are not very concerned with the concrete values of g, and ¢, aswe only need the
ordering: 7(q,) < 7(wy.q) .

Vaupe (2003) definesthetail of longevity as:

TL(a,0,) = 7(@y,q) —7(d) (6)

and therelativetail of longevity as

RTL(q,0p) = %—1. @

The influence of redundancy and heterogeneity on these characteristics will be

studied in the next three sections.

3. Loaded redundancy

Consider the loaded redundancy when N datistically independent, identical
components in parallel, operating smultaneously, constitute a system with the Cdf of
time at death (failure):

F.)=(F(@)" n=12.. (8)
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The corresponding quantile  7(n,q); 7(L ) =7(q,) is obtained from:
F,(z(n,q,)) =, , or equivalently:

1

F(z(n,p)) =05 . ©)

It means that the effect of redundancy of this type changes the baseline level q,
1
into g} . For reasonable parameter values this usually leads to a substantial increase of

the quantile.

What about the maximal lifespan quantile? The only difference from the basdline
7(wy,q) isthe size of the sample, which isnow nN , because the maximal value is

observed at the failure of the last of the nN components. Therefore, eg. (5) for
obtaining 7(w,,q) turnsinto

7(0y,4)

Iy(u)du=InN+Inn—In(—Inq) (10)

for obtaining z(w,,,q) . Usualy, n issmall with respect to N (although probably this
is not the case for the molecular or genetic level). Eq. (10) is asymptotic as N —
and the quantile 7(w,,,0) dependson N, sothat theterm Inn isnegligible:

(@, 0)/7(wy,0) 1 a8 N —> oo . (11
Proposition 1. Let sample size N be sufficiently large. Then the relative tail of
longevity for a system with a loaded redundancy structure is smdler than the one for a
non-redundant system:

RTL(n,0,q,) < RTL(0,q,); n=23,... (12

Proof: it follows from eq. (11) that for N large enough:

7(0.%) _ 7@, 9)

13
7(%)  7(@y,q) 49
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and, in accordance with the definition of thereative tail of longevity in eg. (7):

RTL(n1q1q0)+1: T(a)nNiq)T(qO) <1
RTL(Q, Q) +1  7(n,qp)7(ey, )

which leadsto inequality (12). ¢

Similarly for N large enough:

(D A 7(N, Gp)
7(n+1,0,)7(@ . 9)

<Ln=12.., 7(Lq,) =17(q,), (14)

which meansthat therelative tail of longevity decreases with n.
Inequalities (13) and (14) hold for reasonable values of the parameters and show
that the loaded redundancy decreases therelative tail of longevity.

Example 1. Consider the exponential case u(t)=ux and the level of redundancy
n=2. From eg. (10):

INN +1n2-In(-Inq)

(@, ) =
U
Using eg. (5):
z'(a)zN,q)_InN+In2—In(—Inq)~1+ In2 (15)
7(wy,d)  InN-InIng)  ~ InN ’
From eg. (9):
T(quo) :L\/q_o) .
y7i
Therefore:
r(2.4) _In@-ya,) a8

7(0p) - In(l-q,) .
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Thus, for N =10°, g,=0.9,q=05 eq. (15) gives 1.05 while equation (16) gives
1.3. For therdativetails:

7(wy,Q) 1 INN =In(=Inq)

B T R S R
_T(@y,9 ,_InN+In2-Int-Ing)
RTL(2,9,0,) = 2.0 1 Cini—o) 1~ 3.95,

which shows a decrease of approximately 30% of the relative tail of longevity.

4. Unloaded redundancy (repairable systems)

Consider the unloaded redundancy when one of the identical components starts
operating and the other n-1 are in stand by. As the operating one fails, it is
immediately replaced by the stand by one etc. The system fails when the last
component fails. This is interpreted as the perfect repair of the failed object and we
shall use thisinterpretation in what follows.

For a constant mortdity rate of a component: F(t) =1—exp(—ut) , the probability

of the system failureat t isan n—1 fold convolution of the exponential distribution:

k
(ﬂktl) n=12,....

F. (1) =1-exp(— /)Y

The mortality rate of the system is (Barlow and Proschan, 1975):
luntn—l

n-1 k * (17)
(n—1)!z%

(1) =

4, (t),n>1 is a monotonically increasing function, x,(0)=0; u,(t) >ux ast—eo
and

M) <y, 1), Vi>0n>1. (18)
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(Barlow and Proschan, 1975). The g, -quantiles for the simple and redundant cases are
defined by equations:

#7(0) ==InA-qp) , (19)
7(n.do)

[ #a@du=~In(-g), (20

0

respectively. Dueto inequdity (18):

7(n,q,) >7(n-1q,);n>1, (21)
which implies:
t(n,q,) >t(Lq,) =t(q,); n>1. (22

The corresponding g -quantiles, in accordance with eg. (5), are defined by:

ut(@y,q) =InN-In(-=Inqg), (23)
7(noy,9)
[ #,(U)du =InN=In(-Ing), (24)

where 7(n,@y,q),n>1 denotes the q-quantile for a redundant object with
(Lo ,q) =7(wy,q) . As previously, the sample size N is supposed to be sufficiently
large and the quantiles should be ordered as:

—-Inl-q,) <InN-In(-InQ) . (25)
Proposition 2. Let the mortality rate of a non-redundant component be constant. Then
the relative tail of longevity (for a sufficiently large sample size N) is smaller for a

system with unloaded redundancy structure than for a non-redundant system.

Proof. Under condition (11), we show that inequality (13) holds for the case under
consideration, which, using the notation of egs. (19) to (24), is equivalent to:
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r(ng) _ _ 7(nay,q)
-Inl—q,) ~ InN—=In(=Inq)

(26)

Due to the monatonicity of u,(t) and because for large t this function approaches
the ‘non-redundant’ value u , inequality (26) is achieved for N large enough. The
mortality rate u(z(n,@y,q)) is sufficiently close to u in this case and, taking into
account egs. (23) and (24), 7(n,@y,q)/(INN—-In(-Inq)) is close to 1. Therefore,

Proposition 2 holds and the unloaded redundancy also decreases the relative tail of
longevity. ¢
Proposition 1 isalso explained from the genera fact that:

My () = p(t)  t— o0, (27

asthemortality rate u,(t) of asystem with aloaded redundancy tendsto the mortality

rate of the last remaining component. This means that for n>1, as t —» e and
N —>eo:

7(n.oy.0)
[t wau
—0 _ —1+0(), (28)

7(wy,9)

[ u(u)du

which leadsto Proposition 1.
Proposition 2 was proved only for a constant mortality rate. Eq. (27) istrue for this
case. However, eq. (27) does not hold for an arbitrary mortdity rate u(t). The

corresponding (random) mortality rate is defined (Aven and Jensen, 1999) as

{o t<t,,
M=ty t>t
where t, , is the random failure time of the last but one component in the unloaded
redundancy structure of n components. This effect introduces ‘unexpected’

heterogeneity in this case through random t,_,. The increasing sample size N

decreases the relative tail of longevity, whereas heterogeneity increasesit. This needs a
more detailed investigation in the future.
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5. Heterogeneity

Consider the values of the accumulated mortality rate M (t) on the y -axis:

y=M®© = [ u(udu. (29

Denoteby y, and vy, specific values of the accumulated mortality rate in the quantile
points M (z(q,)) and M (z(@,,q) , respectively. It follows from eg. (1) and eqg. (5) that

Y. =M(7(0)) = -In(=0q,), Y, =M(7(ey,9) =InN-In(=Ing). (30)
We shall prove the following hypothesis of Vaupel (2003):

-The more variability (environmental or internal) in a mortality pattern of an object,
the longer itsrelative tail of longevity.

We start with a smple case. Consider an object in a baseline environment with a
constant mortality rate x . Assume that some perturbation of a basdine environment

obeys amutiplicative frailty model:
ut,2)=2u, (31)

where Z is a random variable with Cdf L(z), support [a,b];0<a<b<e~, and
E(Z) =1, which meansthat a<1<b. We shal compare tails for a constant mortality
rate 4 and a stochastic mortdity rate (31). The mixture (observed) mortality rate
H,,(t) , which corresponds to eg. (31), monotonically decreases to the mortality rate of
the strongest population au with an initial level defined as x,,,(0) = u . (Finkelstein and
Esaulova, 2001).

Denote by 7(u,@y,0),7(4,,, @y,0) the g-guantiles for samples of size N for

mortality rates x4 and u,(t), respectively, and the corresponding ‘ordinary’ ¢, -
quantiles-by 7(u,q,) and 7(u,.0,) . In accordance with eqg. 30, define two quantiles
for each curve p and u,(t) :
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t(Um, o)

nru )=y, Jun(u)du=y,, (32)

7(Um @y, 0)

pr( o=y, [unudu=y,.
0

Definethetail of longevity for & constant as a baseline one. When changing from
u tou, (t), consider theincrements at theright and left ends of thistail, respectively:

AT g (W 1) = T(Uy 0, Q) — 7(1, 0, 0) > 0,
AT (s 1) = T(#, %) — 7(14,G) > 0.

Due to egs. (25), (30), and (32) and, taking into account that x,,(t) monotonically
decreases:

ATright(:umuu) - ATleft (,Um,,ll) >0 ' (33)
which means that heterogeneity increases the tail of longevity, defined by relation (6):

TL(:umiqqu) = T(#min Yq) - T(,um:qo)
=7(u, @y, ) + AT (U 1) = T(1,Gg) = AT (L 1)
=TL(&,0,90) + ATy (i 1) = ATieg (L 1),

S0 that:

TL (44,0, Go) > TL(14,9, ) - (34)

This is nat, in fact, surprising: As the weakest populations are dying out firgt
(Vaupd et al, 1979), the ‘homogeneous mortdlity rate x is ‘bent down’ and the
survival probability is higher.

Inequality (33) does not guarantee a similar ordering of relative tails of longevity,
as the following inequality should hold for this property:
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(7(ut, 0y ) + AT (Hy, 1)) T(1, o)
T(1, 0, (T, ) + AT (s 1))

>1, (35)
which can be seen taking into account definitions of Az (¢, 40) and Az, (L, 1) -
Inequality (35) isequivalent to:

ATrighl(:um’:u) > ATleﬂ (lum’lu)
(1, wy,q) 7(1,9p)

(36)

Although ineguality (33) holds, the quantiles are ordered as. (i, @, ,q) > 7(u, Q) ,

which can change the sign of inequality for relative tails of longevity. Consider asmple
illustrative example, which shows that relations (34) and x,,(t) < u(t);t >0 do not

guarantee an increase in the relative tail of longevity.

Example 2. Let u(t)=p; ()=, and u, <y, . It does not matter that this
situation does not modd the frailty setting. It is important that z,,(t) < u(t),t >0 and
that the tail of longevity is larger for the Cdf defined by u, than for the Cdf defined by
M, . For this case:

(1, 00) = 25 (1, 0,9) =22, (37)
H 1
T(lt3, o) =5 711y, 0,6) =22 (39)
) My
and
1 1
AT (U, 1) = yz[———j ,
2 M
1 1
>ATIeﬁ(;uzuul) = yl[___j .
Hy Wy
Finally:
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ATrighI(luZUUl) =[i_ij _ AT (1, 111)
T, oy, \u, w) 7(.0%)

We have obtained an equality and not an inequality asin eqg. (36).

Theorem 1. Under the assumptions defining the frailty model (31), the relative tail of
longevity, defined for the Cdf with mortality rate g, (t), is larger than the basdline

relative tail of longevity, defined for a constant « .
Proof. It follows from eq. (32):

tuoy.9 _ Y, (40)
7(44, %) Y1

The corresponding quantiles for agiven y can be obtained from line y = 4t , and
the relative tail of longevity does not depend on u in this case. Consider now
(U @y, 9) T(1,,,0,) - The mixture mortality rate () in the model defined by eg.
(31) decreases monotonically to the mortality rate of the strongest population au, and
theinitial level isdefined as ,,(0) = 1 . Accumulated mortality M (t) in thiscaseisa
convex function, as M (t) = u,(t) < 0;t > 0. Definerateu(y,) as

u(y:) = (42)

Y1
t(,Um, yl)

and consider the hypothetical Cdf with thisrate a< u(y,) <« . In accordance with eqg.
(40), the corresponding relative tail of longevity is equal to (y,/y,)—1 and does not
depend on thevalueof . As M. (t) isconvex:

(@, Q) > 7(1(Y1), 04, 9) (42)

which completes the proof. ¢

Similarly, an increase in heterogeneity (e.g., in variance) increases the relative tail
of longevity.

Consider now the time dependent baselinerate in eg. (31):
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U, Z)=Zu(t), (43)

For the proper ordering of relative tails we impose natura conditions on
t t

M (t) = j u(uydu and M (t) = j 4, (u)du asfunctions of t . Inequality (35), written in
0 0

a standard form:

r(u(t). oy, q) _ 7 (1), 0y, ) (44)
7(u(1), Go) 7(4n(t), Qo)

isrearranged as:

T(ﬂm(t):qo) <T(,Um(t),0)N,q) . (45)
T(u(t),00)  7(u(t), @y,0)

Eg. (45) means that the relative horizonta disance (or relative t—distance)
between the curves M (t) and M() is larger for larger values of

y=M,(t)=M(t) (for fixed y;, y, and y, > y;).
Defineby M ~*(y)(M}(y)) the corresponding inverse function: M (M (y))=y.

Proposition 3. If therdative t — distance between the curves M (t) and M (t):

Mo ()
M (u(t), 1y (1), y) = —E== (46)
M~(y)
increases in 'y > 0, then inequality (45) and the relative tails of longevity ordering of
€g. (35) hald.

Remark. The relative t-—distance is equal to M (u(t), 4, (1),y)-Ly=0. For
smplicity of notation we call M (u(t),4,,(t),y) the relative t—distance (without
subtracting 1).

The next theorem shows that the frailty setting of eq. (43) for the specific case
when u(t) isapower function, results in an increased relative tail of longevity. Asin
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Theorem 1, we will not use the specific form of the mixing distribution. But first, we
need to formulate two important supplementary results:

Proposition 4. Let E(Z |t]) denote the conditional expectation of Z (on condition that
an object did not die in [0Ot); E(Z|0)=E(Z)=1). Applying the operation of
conditiona expectation to both sides of eq. (43):

Hn(t) = (E(Z[1). (47)

Then, (Finkelstein and Esaulova, 2001), E(Z |t) decreases with age t. (See Yashin
and Manton, 1997 for amore genera case)

Proposition 5. The relative y—distance M (t)/ M, (t), defined for the setting of
Proposition 4, increases.

Proof :

‘ ﬂ(t)[j H(UEZ |Wdu-EZ 1] u(u)duj
[M(t)jz ° o >0, (48)
Mo (©) :
[ [HWEE] u)duj

wherethefact that E(Z |t) decreasesisused.

Theorem 2. If heterogeneity is described by the multiplicative frailty model of eq. (43),
with (t) = (¢ +)t*, e >0 (Weybull Cdf) and Ze [a,b];0<a<b<e, E[Z] =1,
then therelative t —distance M (u(t), &,,(t), y) increasesiny .

Proof. Consider a basdine curve M (t)=t*", which defines the family of curves
{M(t).}= cM(t);a<c<1. The relative y—distance between M(t) and CM (t) is
constant and equal to ¢. The corresponding inverse functions are defined by:

1 1 1

M7A(y)=ye?  and M (y)=c “iye,
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respectively, where the family of inverse curves is denoted by {M_*(y)} . Due to this
specific  form, the relaive t-—distance, defined for this case as
MM (y)/ M} (y);a<gq,c, <1, for each pair of curves from {M *(y)} is constant in
1
y . Therefore, the relative t —distance between M (t) and cM(t) is equal to ¢ “*!
and increases as C is decreased. From Proposition 5, M (t)/M (t) decreasesin t. As

t increases, M (t) crossesthe curves with smaller c. A smilar effect takes place with
1
inverse functions As y increases, function M_'(y) ‘climbs on alarger ¢ «** and

M (u(t), 1,,(t), y) increases. ¢

Proposition 5 states that the relative y— distance is an increasng function. The similar
procedure for the t -distance resultsin the following condition:

(M) /™ *l(y)), >0
M~(y) M) (49)

EZ My (MuM()  u(M7(y)

Condition (49), as follows from Proposition 3, guarantees the relative tails of
longevity ordering of eg. (35). It can be verified for various specific cases such as the
power law for the mortality rate and the gamma Cdf for the mixing digtribution. As
another illustration, M (u(t), 1, (t),y) increases for the exponential baseline mortality

rate and the gamma frailty model (Vaupel, 2003; Finkelstein and Esaulova, 2001):

Example 3. For Z exponentially distributed with parameter =1 and
ut,Z)=Zkexp(t),

where k >0 isaconstant (Finkelstein and Esaulova, 2001):

k exp(t) 14 k-1
kexp(t)—-k+1 kexp(t)—k+1

() =

and M (u(t), i, (t), y) increases. For k=1 the observed rate . (t) isequal to 1.
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6. Mean remaining lifetime function

Another tail characteristic can be considered as a reasonable alternative to the tail of
longevity: life expectancy at age t. In accordance with reliability terminology, this
function is also called the remaining lifetime (MRL) function. Demote it by m(t). It is

well known that:

X+t

m(t)z‘ :T [ | y(u)dujdx. (50)

Thefunction m(t) isa conditional tail measure (on condition that an object did not
fail in [0,t)). The MRL function uniquely defines the corresponding Cdf F(t)

(Finkelstein, 2002).
Differentiating theright hand side in eq (50):

uO)] Foydu-F()

m(t) =— 0 = u()m(t) -1
or:
_mt)+1
u(t) = ) (51)

Eg. (51) is hdpful for comparing shapes of u(t) and 1/m(t) (Mi, 1995; Gupta
and Akman, 1995; Finkelstein, 2002).
Let F(t),G(t) be two lifetime distributions with mortality rates u, (t), u,(t),

and the MRL functions m (t), m, (t) , respectively. Define the MRL distance D, (t) as

Dy (8) = My () —my (1) [} Vt € [0,e0) . (52)

Comparing relative values is usually more appropriate than comparing absolute
values Define therelative MRL function m,(t) , called therelative tail, as
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m(t)

m)=—"=. (53)
m(0)

For aging digtributions (with decreasing m(t)) the function m,(t) represents the

proportion of the remaining lifetime at age t. We say that lifetime X (with the Cdf
F(t)) issmaller than lifetime Y (with the Cdf G(t)) in the relative MRL ordering and

write X < Y, if

We now compare the relative tails for redundant structures (see Shaked and
Shantikhumar, 1993).

7. Comparing relative tailsfor redundant objects

Consider the following quotient:

M@ _m© m )

R(@t) = = :
my() m(0) my(t)

R(0) =1, and the shape of R(t) for t >0 depends on the shapes of m; (t) and m(t) .

Example 4. Unloaded redundancy. We compare the reative tails for two objects
with the constant mortality rates of components and different levels of redundancy:
m<n. Mortality rates m; (t) and m(t) for this case are defined by eq. (17):

luiti—l
(i —1)!2(”;!)

for i =n and m, respectively.
As the rate of the Erlangian distribution increases monotonically to approach u

from below as t—e, the functions m(t) and my(t) decrease and
m; (t) > m,(t); t > 0. Taking into account that m, (0) =n/x and m,(0)=m/u :
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=lm::(t): mg(t)=mrl9](t); m<n (57)
and
m ()m m
R(t) = —— ast— o (58)
nm, (t) n

because m; (t) -»1/u and m, (t) — 1/ 4 ast— e . Conditional probability and eq.
(50) imply:

m; (t) = ; my(t) = (59)

and

Z(n I)(M) %M
R(t) = -2 x& "

Sm-ip G4 g(‘“.)

=R(t)x Rz(t)><— (60)

R() on the right in eg. (60) increases in t, R,(t) decreases and
R@O)=n/m R,(0)=1, R(t) >t"™R,(t) >t™", as t — « . The derivative R;(t) is
negative when

n-1 (M)H(mfl) _m—l (lut)l‘r(nfl) >0 (6]_)
Sim-0! S ji(n-1)!

Changing the index of summation in the second sum: j=i+m—n, on theleft in
eg. (61) turnsinto:
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Z (,Ut)H(m 1) n-1 (M)i+(m—1)

~iim=-1)! & (+m-n)(n-1!"

which is positive, as n>m and i <n-1. Function R(t) is analyzed similarly. The
initial behavior of R(t) is defined by R(0)=u(n—m) >0, R,(0)=0. This function
increases from level R(0)=1, then decreases, crossing line y=1 at some t_, and

approaches m/n ast — o« from above.
Therefore, the relative MRL ordering (54) holds for t >t so that the increase in

redundancy leadsto a decreaseinrelativetails.

When m=1:

m. (t
R@):M_)i
n n

and thisfunction decreasesfor all t > 0.

Example 5. L oaded redundancy. In this case:
F(t) =(1-exp(-m))" G(t) = (1-exp(—4)™; m<n
The shapeof R(t) issimilar to the one for unloaded redundancy and

Um+l(m-)+---+1
Un+l/(n-D+---+1

ast— oo,

R(t) —

For m=1, thefunction R(t) decreasesin [0,<) .

8. Relativetailsin the heter ogeneous case

Let F(t) denote the Cdf of alife span in some deterministic baseline environment and
G(t)- the Cdf in the heterogeneous case. Consider the frailty model of eq. (43)
(E(Z)=La<1<b) and denote:
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Ay (1) = 25, (1); 1y (1) = (1)

Let z(z|t),t =0 be the conditiona mixing probability density function (pdf):
7(z|0) = z(2) , where z(2z) isthe pdf of a random variable Z . This model describes
the influence of heterogeneity on the observed rate u,,(t) . Using the pdf z(z|t), eq.
(47) reads:

Hn(t) = ()| 27(z]t)dz = u(E(Z |1). (62)

Denote by m(t,z) the MRL function defined by the mortality rate u(t,z) (eg.
(43)). The‘observed MRL function’ m,(t) isrelated to m(t,z) through:

m, (t) = j m(t, 2)z(z|t)dz . (63)

Example 6. Let F(t) be an exponential Cdf with parameter u . The observed mortality
rate u..(t) in this case decreases, monotonically converging to the failure rate of the
strongest population:

lim,_,. u,(t) =au.
Therefore:
. 1
llrntaec I"nm(t) =
au

As m(t) =m(0)=1/u and

m,(0) - Tizz(z)dz =%E(§j ,

ast — o, We obtain:

http://www.demographi c-research.org 133



Finkelstein & Vaupel: Therelativetail of longevity and the mean remaining lifetime

m‘“—(t)—>i>1'
mt) a

ma="e 1o

%
m,(0) aE(lj
Z

The relative tail in the heterogeneous case is equal to 1 at t=0 and increases
monotonicaly to value 1/(aE(1/ Z)), whereas the relative tail for the baseline Cdf is

congtant and equal to 1.
We generalize thisresult to arbitrary increasing mortality rates:

Theorem 3. In a heterogeneous case modeled by the frailty mode of eq. (43), where
E(Z) =1, thefunction:

__mO) m(t)

R(t
0= nr171(0) m(t)

increaseswith t .
This meansthat heterogeneity increases the relative tail.

Proof. Using definitions (50), (55), and eg. (62):

X+t

Iexp[ | ym(u)dujdxjexp[ | y(u)dujdx
Iexp[ fym(u)dujdxjexp[ xjtly(u)dujdx
p[ xflE[z |u],u(u)dujdxjexp[—j y(u)dujdx

fex jE[z |u]y(u)dujdxjexp[ Ty(u)dujdx

R(t) =

(64)

3 O'—;E

It is sufficient to show that
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]:exp[— TE[Z |u] y(u)dujdx
B(t,x) =2 :

]:exp[— xJtly(u)dujdx

increases in t. As E(Z|t) decreasesin age (Proposition 4), B/(t,x)>0 and B(t,X)
increaseswith t . ¢

9. Concluding remarks

Our study shows that structura reliability concepts suggested in Vaupel (1998) can be
realy helpful for analyzing trajectories of mortality at the post-reproductive period. We
prove anaytically that the properties of the relative tail of longevity, described in
Vaupe (2003) using smulation results, are valid in a much greater generality. Namely:
Structural redundancy and the possibility of repair decrease the relative tail of
longevity, whereas greater heterogeneity increasesit. These properties are important for
analyzing the nature of mortality curves at advanced ages.

As mentioned in the Introduction, other measures driven by the difference
D, =@, — X can be considered also. For instance, another possible naturd relative

measureis (E[w,]/7(q,))—1. It isclear, however, that thisis just a specific case of our
measure (7), as the value of q can be chosen as a solution of the equation
Eloy] =7(wy,0) -

A dochagtic analysis of the influence of redundancy, repair capacity, and
heterogeneity on the random variable (@, /X)—-1 can be hopefully also performed

within the framework of stochastic ordering (Shaked and Shantikhumar, 1993), but this
isatopic for afuture study.
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