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Abstract

A topic of interest in demographic literature is the graduation of the age-specific fertility
pattern. A classical graduation technique extensively used by demographers is to fit para-
metric models that accurately reproduce it. Standard non parametric statistical methodol-
ogy, as kernels and splines, might alternately be used for this graduation purpose. Support
Vector Machines (SVM) is an innovative non parametric methodology that could also be
used for fertility graduation purposes. This paper evaluates SVM techniques as tools for
graduating fertility rates. To that end, we apply these techniques to empirical age-specific
fertility rates from a variety of populations and time periods. Additionally, for comparison
reasons we also fit parametric models and kernels to these empirical data sets.
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1. Introduction

Statistical graduation techniques are useful tools in demographic research, producing esti-
mations of the true patterns of age-specific demographic rates. Therefore such techniques
can serve in order to provide a clear description of the real shape of age-specific patterns
and also consequently serve as a clear basis for population projections.

In fertility analysis, in order to estimate the unknown age-specific fertility rates which
underlie the empirical measures, some graduation technique can be applied to the latter,
under the assumption that the true rates follow a smooth pattern through age. A stan-
dard technique used for graduating the empirical rates is to provide a model that presents
the age-specific birth rates as a parametric function of age. Modeling fertility curves has
attracted the interest of demographers for many years. A variety of parametric models pre-
senting the fertility rates as a function of age have been proposed in order to describe the
age-specific fertility pattern. Some of them provide nice fits to the one year age-specific
fertility rate distribution (Hoem et al. 1981; Peristera and Kostaki 2007). Recently the
utilization of non parametric techniques in smoothing problems has gained attention. Al-
ternatively, standard non parametric statistical methodology, such as kernels and splines,
might also be used for this graduation purpose.

Support Vector Machines (SVM) is a modern non parametric graduation technique
that appeared in the mid nineties in the framework of Vapnik’s Statistical Learning Theory
(Vapnik 1995; Moguerza and Muñoz 2006). Since SVM techniques have shown very
successful results in smoothing noisy data, such as neighbourhood curves (Muñoz and
Moguerza 2005) or nonlinear profiles (Moguerza, Muñoz, and Psarakis 2007), they can
probably serve as useful tools for fertility graduation purposes too. For this application,
SVMs are used as general purpose smoothers that enforce a degree smoothness that is
chosen by the modeler.

This work provides an evaluation of the SVM methodology in the context of fertility
graduation. In the next section, a review of existing parametric models for fitting fertility
data is given. Section 3 provides a brief presentation of kernel techniques, while Section
4 is devoted to a presentation of SVM methodology. Then, in Section 5, the results of
our calculations fitting parametric models and applying kernels and SVM to a variety of
empirical data sets are presented, while finally, in Section 6, the main findings of our
calculations are briefly discussed.

2. Parametric models of fertility

A variety of parametric models for fitting the age-specific fertility curve have been pro-
posed in the literature. Among these models, several have been proved to provide accurate
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fits to one year age-specific fertility distributions. At the outset a presentation of these
models is provided.

The Hadwiger function (Hadwiger 1940; Gilje 1969) is expressed by,

f(x) =
ab

c

( c

x

) 3
2

exp
{
−b2

( c

x
+

x

c
− 2

)}
,

where x is the age of the mother at birth and a, b, c are the three parameters to be es-
timated. Chandola, Coleman and Horns (1999) argued that the parameters of the model
may have a demographic interpretation as follows. Parameter a is associated with total
fertility, parameter b determines the height of the curve, parameter c is related to the mean
age of motherhood, while the term ab

c is related to the maximum age-specific fertility rate
(or modal age-specific fertility rate).

The Gamma function (Hoem et al. 1981) is given by,

f(x) = R
1

Γ(b)cb
(x− d)b−1 exp

{
−x− d

c

}
, for x > d

where d represents the lower age at childbearing, while the parameter R determines the
level of fertility. The parameters b and c have no direct demographic interpretation, but
Hoem et al. (1981) have made substitution using these by the mode m, the mean µ and
the variance σ2 of the density, so that c = µ−m and b = µ−d

c = σ2

c2 .
The Beta function also proposed by Hoem et al. (1981) is given by the formula,

f(x) = R
Γ(A + B)
Γ(A)Γ(B)

(β − α)−(A+B−1)(x− α)A−1(β − x)B−1, for α < x < β.

Its parameters are related to the mean ν and the variance τ2 through the relations

B =
{

(ν − α)(β − ν)
τ2

− 1
}

β − ν

β − α
and A = B

ν − α

β − ν
.

As Hoem et al. (1981) mention, the parameters α and β are frequently interpreted as
the lower and upper age limits of fertility, respectively. The parameter R determines the
overall level of fertility.

Schmertmann (2003) proposed an alternative model for representing age-specific fer-
tility schedules. This is obtained by defining three index ages that describe the shape of
the age-specific fertility using a piecewise quadratic spline function. This model describes
the shape of the age-specific fertility rates in terms of the ages at which some certain char-
acteristic points are reached; α is the youngest age at which fertility rises above zero, R
is the age at which fertility reaches its peak level, and H is the youngest age above R at
which fertility falls to half of its peak level.
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The model proposed is given by

f(x) =

{
R

∑4
k=0 θk(x− tk)2+, α ≤ x ≤ β

0 , otherwise.

Knots t0 < t1 . . . < t4 fall in the interval between ages α and β, where t0 = a, (the
lowest age of childbearing) and (x− tk)+ ≡ max[0, x− tk].

As Schmertmann (2003) mentions the quadratic spline model can be useful for de-
scribing the shape of many fertility schedules but it requires thirteen parameters to be
estimated, while their meaning is somewhat opaque. Therefore, he constructed a spline
model in which the three index ages [α, P, H] determine the shape function f(x), while
the parameter R determines the level of fertility. The reduction of the number of pa-
rameters is achieved by determining knot positions from the index ages and by imposing
mathematical restrictions so that the spline function mimics common features of the age-
specific fertility rates.

Recently, as Peristera and Kostaki (2007) describe, the fertility pattern in some de-
veloped countries exhibits a deviation from its classical shape. Recent data sets of the
United Kingdom, Ireland and the USA show distortions in terms of a bulge in fertility
rates of younger women. Furthermore, in countries with distorted fertility, the pattern of
first births also exhibits an intense hump in younger ages, stronger than that of the total
fertility pattern. This heterogeneity initially discovered in the recent fertility distributions
of the English speaking European countries and the USA, but recently even in data from
other European populations as Spain and Norway, might be related to marital status, re-
ligion, educational level and differences in social and economic conditions, as well as to
ethnic differences in the timing and the number of births. As expected, the existing mod-
els are unable to describe the new shape of the fertility pattern, and therefore the use of
more appropriate representations is required.

For describing the new shape of the fertility pattern, Chandola, Coleman and Horns
(1999) developed a two-component mixture model of Hadwiger functions which is given
by the following expression,

f(x) = am
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where x is the age of the mother at birth. This model requires the estimation of six param-
eters: m is the mixture parameter that determines the relative sizes of the two component
distributions and α, b1, c1, b2, c2 the other parameters of the model. According to the
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authors, these parameters may also be demographically interpreted. Parameter α is cor-
related with the overal fertility level, c1 and c2 are related to the level and the trend of the
mean ages of births outside and inside marriage.

Recently, Peristera and Kostaki (2007) proposed a flexible model for describing the
fertility pattern which in each different version captures both the classical and the distorted
fertility pattern. The simpler version of this model (hereafter P-K model) is

f(x) = c1 exp

[
−

(
x− µ

σ(x)

)2
]

where f(x) is the age-specific fertility rate at mother age x, c1, µ, σ are parameters to
be estimated, while σ(x) = σ11 if x ≤ µ, and σ(x) = σ12 if x > µ. The parameter c1

describes the base level of the fertility curve and is associated with the total fertility rate,
µ reflects the location of the distribution, i.e. the modal age, while σ11, σ12 reflect the
spread of the distribution before and after its peak, respectively.

An alternative version of this model (hereafter P-K mixture model), which captures
the new shape of the fertility pattern mentioned above, is

f(x) = c1 exp

[
−

(
x− µ1

σ1(x)

)2
]

+ c2 exp

[
−

(
x− µ2

σ2

)2
]

where f(x) is the age-specific fertility rate at mother age x, while σ1(x) = σ11 if x ≤ µ1,
and σ1(x) = σ12 if x > µ1, and c1, c2, µ1, µ2, σ11, σ12, σ2 are parameters to be
estimated.

The parameters c1 and c2 express the levels of total fertility of the first and the second
hump respectively, µ1 and µ2 are related to the mean ages of the two subpopulations; the
one with earlier fertility and the other with fertility at later ages. The parameters σ11, σ12

reflect the spread of the distribution of the most intense hump before and after each peak,
and σ2 reflects the variance of the less intense one.

3. Kernel techniques

Consider a set of observations of two variables X and Y , i.e. data of the form (xi, yi),
i = 1, . . . , p which are related via an unknown regression function m as follows:

yi = m(xi) + εi, i = 1, . . . , p,

where the εi are independent random variables with zero mean and constant variance.
The problem now consists in estimating the unknown function m. In order to esti-

mate m at a point x, the values of the response variable are locally averaging. The width
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of the neighbourhood over which averaging is performed, called bandwidth, controls the
smoothness of the resulting estimator. Hence, an estimator of the function m of the fol-
lowing type is used:

m̂h(x) = n−1
∑

Wh(x;X1, X2, . . . , Xn) · Yi,

where Wh is a weight function depending on the bandwidth parameter h and the set of
variables X1, . . . , Xn.

A conceptually simple approach for the representation of the weight function Wh is to
describe its shape by a density function, called the kernel function, with a scale parameter
h, the bandwidth, that adjusts the size and the form of the weights near x. Therefore,
kernel regression estimators are local weighted averages of the response variable whose
weights are determined by the kernel function K, while the size of the weights depends
on the bandwidth parameter h.

Generally, the kernel function K has the fundamental properties of a probability den-
sity. In the regression context the kernel function is generally a smooth, symmetric, posi-
tive function which peaks at zero and decreases monotonically as the bandwidth parame-
ters increases in size.

Several formulae have been proposed for the kernel estimator m̂ of the regression
mean function m, depending on the type of the kernel regression estimator used. An ex-
tensive presentation of these formulae is provided in Peristera and Kostaki(2005). Among
the alternative estimators, Peristera and Kostaki (2005) have shown that the Gasser-Müller
estimator (Gasser and Müller 1979, 1984) has proved the most adequate alternative in the
context of mortality graduation.

At a point x, the Gasser-Müller estimator is given by the following formula,

m̂GM (x) =
n∑

i=1

Y[i]

∫ (x(i+1)+x(i))/2

(x(i)+x(i−1))/2

Kh(x− xi)dx,

where x0 = −∞, xn = +∞, x(i) denotes the ith largest value of the observed covariate
values and Y[i] is the corresponding response value.

The appropriate selection of the bandwidth parameter is of great importance since it
controls the degree of smoothness, and consequently influences the resulting estimator. A
presentation of bandwidth selection techniques can be found in Härdle (1990, 1991), and
Peristera and Kostaki (2005). An approach for the selection of the bandwidth parameter
is to construct a direct plug-in estimator of the optimal smoothing parameter hopt. Gasser,
Kneip and Kohler (1991) give expressions for the hopt appropriate to the Gasser-Müller
estimator and describe how the unknown quantities can be effectively estimated. An
important issue for the selection of bandwidth is the choice between a global or a local
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one. Local bandwidth selection permits one to obtain a bandwidth that adapts for local
efficiency in different parts of the design points, which means that a smaller bandwidth
is used in areas of high density while the value of the bandwidth increase in areas of low
density. Brockmann, Gasser and Herrmann (1993) and Herrmann (1997) have mentioned
the advantage of using kernel regression estimators with a local bandwidth instead of a
global one. The main idea of the plug-in method is to estimate the optimal bandwidths by
estimating the asymptotically optimal mean integrated squared error bandwidths. For the
selection of a local bandwidth, Herrmann (1997) developed an iterative plug-in algorithm
that is a generalization of the global iterative plug-in algorithm of Gasser, Kneip and
Kohler (1991). A description of this algorithm can be found in Herrmann (1997), in
which the advantage of this approach over both the cross-validation method and the global
plug-in rule, is highlighted.

4. Support Vector Machines

Support Vector Machines (SVMs) appeared in the middle nineties in the framework of
Vapnik’s Statistical Learning Theory (Vapnik 1995; Moguerza and Muñoz 2006), provid-
ing very successful results for the smoothing of noisy data such as neighbourhood curves
(Muñoz and Moguerza 2005) or nonlinear profiles (Moguerza, Muñoz and Psarakis 2007).
Support Vector Machines are regularization methods. These methods also include Splines
(Moguerza and Muñoz 2006). In fact, there is a close relation between SVM and splines
(Pearce and Wand 2006). Next we provide a description of the regression version of SVM
and its main features.

4.1 Regularization Theory

Regularization methods (Tikhonov and Arsenin 1977), allow the construction of smooth
functions by solving an optimization problem of the form:

min
f∈HK

1
p

p∑

i=1

L(f(xi)− yi) + M‖f‖2K ,

where (xi, yi), i = 1, . . . , p are a set of data with xi ∈ Rn and yi ∈ R, L is a loss function,
M > 0 is a constant, HK is a Reproducing Kernel Hilbert Space5 (RKHS, see Aronszajn
1950; Moguerza and Muñoz 2006) generated from a kernel K : X × X −→ R (for
instance, the space X may be defined as Rn), and ‖f‖K is the norm of f in the RKHS.
Notice that, for a fixed value of z, K(x, z) defines a function of x. Roughly speaking, a

5Wikipedia has readable descriptions of both Hilbert Spaces and Reproducing Kernel Hilbert Spaces.
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RKHS is a space made up of linear combinations of functions K(x, zi), and their limits.
For the case of regression SVM, the loss function L is defined as:

L(x) =

{
|x| − ε, if |x| ≥ ε,

0 , otherwise,

where ε > 0 is a constant. The idea is to find a smooth function f∗ ∈ HK that solves
the optimization problem above. This function, which, as already stated, belongs to
the RKHS HK , will have the form f∗(x) =

∑p
i=1 αiK(x, xi) + b∗, where αi and

b∗ are constants, K(x, y) = Φ(x)T Φ(y) is the kernel function that generates HK and
Φ : Rn −→ Rm is a mapping defining K. In this way, geometrically, Φ maps the data
from the so-called "input space" (that is, Rn) into the "feature space" (that is, Rm). The
constant M > 0 penalizes non-smoothness of the possible solutions to the problem.

4.2 Geometrical Interpretation of Support Vector Machines

Although the previous formulation is the one that provides the best theoretical properties,
from a practical point of view regression SVM can be presented from its geometrical in-
terpretation. It can be shown (Moguerza and Muñoz 2006) that the regularization problem
can be formulated as a convex quadractic optimization problem (therefore, without local
minima) of the form:

min
w,b,ξ,ξ′

1
2
‖w‖2 + C

p∑

i=1

(
ξi + ξ′i

)

such that
(
wT φ(xi) + b

)− yi ≤ ε− ξi, i = 1, . . . , p,

yi −
(
wT φ(xi) + b

) ≤ ε− ξ′i, i = 1, . . . , p,

ξi, ξ
′
i ≥ 0, i = 1, . . . , p,

where ξi and ξ′i are slack variables which permit the violation of a boundary deter-
mined by ε. It can be shown (see Moguerza and Muñoz 2006, for the details) that
f∗(x) =

∑p
i=1 αiK(x, xi) + b = (w∗)T Φ(x) + b∗, where w∗ and b∗ are the values

of w and b at the solution of the quadratic optimization problem. One of the key issues
of SVM is how to use φ(x) to map the data into a higher-dimensional space. To achieve
this task, a kernel approach is used in order to operate in the feature space without ever
computing the coordinates of the data in that space, but rather by simply computing the
inner products between the images of all pairs of data in the feature space. Three are
the most widely used kernels: the linear kernel K(x, y) = xT y, which corresponds to
the identity mapping; the polynomial kernel K(x, y) =

(
c + xT y

)d, where c and d are

606 http://www.demographic-research.org



Demographic Research: Volume 20, Article 25

constants, which maps the data into a finitely dimensional space; and the Gaussian kernel

K(x, y) = e
−‖x−y‖2

σ , where σ is a positive constant which maps the data into an in-
finitely dimensional space. The Gaussian kernel, given its approximation capacity, is the
most extensively used (see Moguerza and Muñoz 2006, for a complete set of examples).
In practice, the optimization problem to solve is not the primal formulation shown above.
For practical purposes, the problem to solve is the "dual problem" (Schölkopf et al. 2000),
that is:

max
λ,λ′

−1
2

p∑

i,j=1

(λi − λ′i)(λj − λ′j)K(xi, xj)− ε

p∑

i=1

(λi − λ′i) +
p∑

i=1

yi(λi − λ′i)

such that
p∑

i=1

(λi − λ′i) = 0,

0 ≤ λi ≤ C, i = 1, . . . , p,

0 ≤ λ′i ≤ C, i = 1, . . . , p.

It can be shown that both problems, primal and dual, are equivalent, and that:

f∗(x) =
p∑

i=1

(λ∗i − λ′∗i )K(x, xi) + b∗ =
p∑

i=1

αiK(x, xi) + b∗,

where αi = λ∗i − λ′∗i , λ∗i and λ′∗i being the values of λi and λ′i at the solution of the
dual problem. Therefore, in practice, the estimated parameters are the α coefficients,
whose number is p, that is, the number of data. In this way, the relationship between
kernels and SVM is clear: only the closed form of the kernel K is needed, and not the
explicit mapping Φ. Notice that this distinctive peculiarity allows, for instance, the use
of the Gaussian Kernel in order to evaluate f∗(x). Moreover, in practice, only a small
percentage of the α coefficients will differ from zero, which makes simpler the evaluation
of this function (this is one of the advantages of SVM, see Moguerza and Muñoz 2006),
and reduces the number of estimated parameters.

5. Results

In order to evaluate the performance of SVM techniques in graduating age-specific fertil-
ity patterns, we apply this technique as well as kernels, while we also fit the parametric
models mentioned above to period single year age-specific fertility rates for the popula-
tions of Sweden 1996 and 2000, Norway 1992 and 2000, Denmark 1992 and 2000, Bel-
gium 1993 and 1995, Greece 1995 and 2000, Italy 1995 and 2000, UK 1992 and 2000,
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and Ireland 1995 and 2000, as well as for the white and black populations of the USA
2003 and the cohorts of 1942 and 1963 for Spain The empirical data sets were obtained
from Eurostat New Cronos database. Additionally, single year age-specific fertility rates
for the US were derived from the 2003 Natality Data Set, obtained by request from the
US National Centre of Health Statistics. Cohort data for Spain for the generations born
from 1942 to 1963, obtained from the Eurostat New Cronos database. It should be noted
that even for cohorts not yet completed, Eurostat provides estimates of the fertility rates
for older women by using the rates observed for previous generations, without waiting for
the cohort to reach the end of the reproductive period.

The fits of the parametric models presented at the outset were initially calculated by
Peristera and Kostaki (2007). In populations with no apparent early-age hump, the Had-
wiger, Gamma, Beta, P-K, and quadratic spline models (Schmertmann 2003) are fitted,
while in cases of distorted fertility distributions, the Hadwiger (Chandola, Coleman, and
Horns 1999, 2002) and the P-K mixture models ( Peristera and Kostaki 2007) are fitted.
The simple models used previously in data sets without distortions had a rather disap-
pointing performance in the distored data sets.

In order to avoid heterogeneity we also use data differentiated by order of birth, and
cohort and period data sets. Finally in the case of the USA, the fits of the alternative
models are provided for the white and black population separately.

In order to fit the alternative parametric models, it is generally accepted that the most
efficient procedure is to use weighted least squares, with weights equal to the reciprocals
of the variances of the empirical rates. However, as pointed out by Hoem (1976) and
Hoem et al. (1981), a weighted estimating procedure would give too much attention
to the low fertility ages in the tails and especially to the higher ones in the upper tail,
while giving too little attention to the high fertility ages in the middle, and thus is not
desirable. Therefore, for the estimation of the parameters of the various models, a non-
linear unweighted least-squares procedure is adopted. The models are fitted by means of a
Gauss-Newton optimization scheme. The Matlab built-in routine for non-linear parameter
estimation lsqnonlin is used in order to find the unconstrained minimum of the unweighted
residual sum of squares.

The quadratic Spline estimates are obtained using the program provided by Schmert-
mann (2003) at the web page http://mailer.fsu.edu/ schmert/qsfit/qsfit.htm.

For kernel applications, the subroutine "lokerns" of the library "lokern" for the R-
package is used for the calculation of Gasser-Müller estimators with local bandwidth
parameter. This is available in http://www.unizh.ch/biostat/software. In order to select
bandwidth for a local linear Gaussian kernel regression estimator, trials are made us-
ing a direct plug-in technique (Ruppert, Sheather, and Wand 1995). There, we use the
KernSmooth library and the R package. However, this methodology has been discarded
given the overfitting observed. Therefore, the bandwidth parameter has been computed
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by cross-validation leading to a value of 1.9066 for all the estimated curves. In this way,
we have a unique model for all the data sets.

For the SVM techniques, the subroutine svm of the library e1071 for the R-package
is used. This is available in http://cran.r-project.org/. A two-step simulation procedure
is used to select the parameters ε, σ and C of the ε - regression procedure: ε is used to
fix the width of a band around the fitted curved, σ plays the role of a variance, and C is
an upper bound for the λ coefficients in the dual optimization problem and, at the same
time, penalizes the values of the slacks corresponding to those points lying outside of
the band determined by ε in the primal optimization problem. In a first step, the range
of parameters ε, σ and C are determined. Then in a second step, the best combination
of the three parameters is computed using R flow sentences. In particular, the values
ε = 0.0001, σ = 40 and C = 1.8, have been chosen for the SVM implementation.
Additionally, in this application, the values for the corresponding dimensions in the SVM
model are n = 1, m = ∞ (given that this is the dimension induced by the Gaussian
kernel, see Moguerza and Muñoz 2006) and p = 34, that is, the number of data within
each set. We should notice here again that we use the same set of parameter values for all
the data sets. In this way, we are able to make fair comparisons of these results with those
produced by kernels.

The values of the sums of squares of the differences between the empirical and the
resulting values for all the data sets used, and all graduation techniques used, are provided
in Tables 1 and 2. The results of fitting the parametric models were first presented in
Peristera and Kostaki (2007).

Figures 1-6 provide illustrations for some chosen cases. In all the cases we are using
ages ranging from 15 to 48, so each schedule has 34 rates.
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Table 1: Values of the minimization criterion multiplied by 100.000, at
the exit of the estimation procedure for P-K model, Beta model,
Gamma model, Hadwiger model, quadratic Spline model, kernels
and SVM

SSE·106
P-K
Model

Beta
Model

Gamma
Model

Hadwiger
Model

Quadratic
Spline
Model Kernel SVM

Period Data

Sweden
1996 115 108 132 326 174 67 72
2000 117 181 321 689 174 30 11
Norway
1992 242 175 265 656 263 65 61
2000 233 225 640 329 287 40 10
Denmark
1992 103 107 130 383 169 54 20
2000 225 363 575 1073 287 51 6
Belgium
1993 401 396 380 540 462 68 15
1995 346 374 376 558 525 78 30
Greece
1995 190 137 184 289 101 26 14
2000 34 114 491 617 55 14 13
Italy
1995 20 58 139 352 49 18 11
2000 47 71 524 908 82 14 3
Cohort Data

Spain
1943 732 1005 1159 1547 5450 452 562
1962 295 259 1113 184 3720 69 67
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Table 2: Values of the minimization criterion, multiplied by 100.000, at the
exit of the estimation procedure for P-K mixture model, Hadwiger
mixture, kernels and SVM, for the US data

SSE·106 P-K Mixture Model Hadwiger Mixture Model Kernel SVM

Period Data
Total Births

UK
1992 154 35 37 14
2000 99 22 40 14
Ireland
1995 437 97 62 90
2000 78 177 65 43
Spain
1999 29 17 30 12
2000 23 15 31 6
Cohort Data
Total Births

Spain
1963 77 85 59 62
Period Data
First Births

UK
2004 5 8 47 4
Ireland
2000 73 53 61 62
Period Data
Second Births

UK
2004 4 5 45 3
Ireland
2000 31 31 25 28
USA 2003

Total 150 28 63 58
White 28 156 63 51
Black 39 190 103 86
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Figure 1: Observed and estimated period age-specific fertility rates for Den-
mark, 2000
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Figure 2: Observed and estimated cohort age-specific fertility rates for
Spain, 1943

http://www.demographic-research.org 613



Kostaki et al.: Graduating the age-specific fertility pattern using Support Vector Machines

Figure 3: Observed and estimated cohort age-specific fertility rates for
Spain, 1963
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Figure 4: Observed and estimated age-specific fertility rates of Ireland,
2000. First births.
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Figure 5: Observed and estimated age-specific fertility rates of US, 2003.
White population.
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Figure 6: Observed and estimated age-specific fertility rates of US, 2003.
Black population.
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6. Findings

In this paper we propose the application of Support Vector Machines for graduating age-
specific fertility rates. In order to evaluate the performance of SVM we apply this tech-
nique to a variety of empirical cohort and period data sets of alternative populations. In
addition, for comparison reasons, we also fit parametric models and apply kernels to these
data sets.

According to the values of the minimizing criterion, the results for the two non para-
metric techniques are apparently closer to the empirical values than those provided by the
parametric models. This can partly depend on the fact that parametric models provide
highest smoothness. A higher degree of smoothness might result from larger distances
between the empirical and the graduated values. Turning now to the comparison between
the two non parametric techniques, the results provided by the SVM are in most cases
associated with lower values of the minimizing criterion.

As is obvious in tables and figures, SVM show a successful performance in graduating
the empirical rates in both simple and distorted data sets, producing results that, in the vast
majority of cases, are closer to the empirical rates than the other methods. Regarding the
figures, one can observe that especially for the ages in the peak and the tails of the fertility
curve, the results of SVM were closer to the empirical values than those of most of the
other methods.

An advantage of non parametric graduation techniques in comparison with the para-
metric modeling is that these can be adequately applied to all data sets, while in data sets
with distorted patterns, the use of standard models is inadequate and more complicated
formulae are required. Furthermore, the regulation of the degree of smoothness by the
user can also be considered as an advantage, allowing the user to choose the optimal de-
gree of smoothness depending on the purpose of graduation at hand and also avoiding
oversimplification of age patterns.

Regarding future extensions of this work, SVM can be easily used as a multivariate
model, providing a promising area for further research in demographic problems.

618 http://www.demographic-research.org



Demographic Research: Volume 20, Article 25

References

Aronszajn, N. (1950). Theory of reproducing kernels. Trans. Amer. Math. Soc. 68: 337–
404. doi: 10.2307/1990404.

Brockmann, M., Gasser, T., and Herrmann, E. (1993). Locally adaptive bandwidth
choice for kernel regression estimators. Journal of the American Statistical Associ-
ation 88(424): 1302–1309. doi: 10.2307/2291270.

Chandola, T., Coleman, D. A., and Horns, R. W. (1999). Recent european fertility pat-
terns: fitting curves to ’distorted’ distributions. Population Studies 53(3): 317–329.
doi: 10.1080/00324720308089.

Chandola, T., Coleman, D. A., and Horns, R. W. (2002). Distinctive features of age-
specific fertility profiles in the English-speaking world: Common patterns in Australia,
Canada, New Zealand and the United States, 1970-98. Population Studies 56: 181–200.
doi: 10.1080/00324720215929.

Eurostat New Cronos Database (2006). Europa database: Popula-
tion and Social Conditions (electronic resource). Manchester UK.
http://www.esds.ac.uk/international/support/user_guides/eurostat/Cronoswe.asp.

Gasser, T., Kneip, A., and Kohler, W. (1991). A flexible and fast method for automatic
smoothing. Journal of the American Statistical Association 86(415): 643–652. doi:
10.2307/2290393.

Gasser, T. and Müller, H. (1979). Kernel estimation of regression functions. In: Smooth-
ing Techniques for Curve Estimation. Lecture Notes in Mathematics 757, pp. 23–68.
New-York: Springer-Verlag. doi: 10.1007/BFb0098489.

Gasser, T. and Müller, H. G. (1984). Estimating regression functions and their derivatives
by the kernel method. Scandinavian Journal of Statistics 11: 171–185.

Gilje, E. (1969). Fitting curves to age-specific fertility rates: some examples. Statistical
Review of the Swedish National Central Bureau of Statistics III 7: 118–134.

Hadwiger, H. (1940). Eine analytische reprodutions-funktion fur biologische
gesamtheiten. Skandinavisk Aktuarietidskrift 23: 101–113.

Herrmann, E. (1997). Local bandwidth choice in kernel regression estimation. Journal of
Computational and Graphical Statistics 6(1): 35–54. doi: 10.2307/1390723.

Hoem, J. M. (1976). The statistical theory of demographic rates: A review of current
developments (with discussion). Scandinavian Journal of Statistics 3: 169–185.

Hoem, J. M., Madsen, D., Nielsen, J. L., Ohlsen, E., Hansen, H. O., and Rennermalm,

http://www.demographic-research.org 619



Kostaki et al.: Graduating the age-specific fertility pattern using Support Vector Machines

B. (1981). Experiments in modelling recent Danish fertility curves. Demography 18:
231–244. doi: 10.2307/2061095.

Härdle, W. (1990). Applied Nonparametric Regression. Cambridge: Cambridge Univer-
sity Press.

Härdle, W. (1991). Smoothing Techniques with Implementation in S. New York: Springer-
Verlag.

Moguerza, J. and Muñoz, A. (2006). Support vector machines with applications. Statis-
tical Science 21(3): 322–336. doi: 10.1214/088342306000000493.

Moguerza, J., Muñoz, A., and Psarakis, S. (2007). Monitoring nonlinear profiles using
support vector machines. Lecture Notes in Computer Science 4789: 574–583. doi:
10.1007/978-3-540-76725-1_60.

Muñoz, A. and Moguerza, J. (2005). Building smooth neighbourhood kernels via
functional data analysis. Lecture Notes in Computer Science 3697: 631–636. doi:
10.1007/11550907.

Pearce, N. and Wand, M. (2006). Penalized splines and reproducing kernel methods. The
American Statistician 60(3): 233–240. doi: 10.1198/000313006X124541.

Peristera, P. and Kostaki, A. (2005). An evaluation of the performance of kernel estimators
for graduating mortality data. Journal of Population Research 22(2): 185–197. doi:
10.1007/BF03031828.

Peristera, P. and Kostaki, A. (2007). Modeling fertility in modern populations. Demo-
graphic Research 16(6): 141–194.

Ruppert, D., Sheather, S. J., and Wand, M. P. (1995). An effective bandwidth selector
for local least squares regression. Journal of the American Statistical Association 90:
1257–1270. doi: 10.2307/2291516.

Schölkopf, B., Smola, A., Williamson, R., and Bartlett, P. (2000). New support vector
algorithms. Neural Computation 12: 1207–1245. doi: 10.1162/089976600300015565.

Schmertmann, C. P. (2003). A system of model fertility schedules with graphically
intuitive parameters. Demographic Research 9(5): 82–110. doi: 10.4054/Dem-
Res.2003.9.5.

Tikhonov, A. and Arsenin, V. (1977). Solutions of ill-posed problems. John Wiley and
Sons.

US National Centre of Health Statistics (2003). Natality data set (electronic resource).
http://www.cdc.gov/nchs/. Maryland.

620 http://www.demographic-research.org



Demographic Research: Volume 20, Article 25

Vapnik, V. (1995). The Nature of Statistical Learning Theory. New York: Springer.

http://www.demographic-research.org 621



Kostaki et al.: Graduating the age-specific fertility pattern using Support Vector Machines

622 http://www.demographic-research.org




