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Estimating health expectancies from two cross-sectional surveys:  
The intercensal method  

Michel Guillot1 

Yan Yu2

Abstract  

Health expectancies are key indicators for monitoring the health of populations, as well 
as for informing debates about compression or expansion of morbidity. However, 
current methodologies for estimating them are not entirely satisfactory. They are either 
of limited applicability due to high data requirements (the multistate method) or based 
upon questionable assumptions (the Sullivan method). 

This paper proposes a new method, called the “intercensal” method, which relies 
on the multistate framework using widely available data. The method uses age-specific 
proportions “healthy” at two successive, independent cross-sectional health surveys, 
and, together with information on general mortality, solves for the set of transition 
probabilities that produces the observed sequence of proportions healthy. The system is 
solved by making realistic parametric assumptions about the age patterns of transition 
probabilities. Using data from the Health and Retirement Survey and from the National 
Health Interview Survey, the method is tested against both the multistate method and 
the Sullivan method. We conclude that the intercensal approach is a promising 
framework for the indirect estimation of health expectancies. 
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1. Introduction  

Health expectancies are population health indicators which combine information on 
both quantity of life (through mortality) and quality of life (usually through disability). 
Health expectancies measure the number of years that an individual can expect to live 
in defined health statuses. For example, the life expectancy with disability corresponds 
to the number of years that one can expect to live with some disability. The disability-
free life expectancy corresponds to the number of years that one can expect to live in 
the absence of disability. Disability and disability-free life expectancies add up to the 
total, conventional life expectancy. 

Health expectancies are important indicators for several reasons. First, they allow 
the monitoring of the health of populations with a greater level of detail than traditional 
life expectancies (Mathers et al. 2003). International comparisons of life expectancies 
may hide important differences in levels of morbidity and disability. This becomes 
particularly critical as countries advance through the epidemiological transition and 
experience increasing proportions of deaths due to degenerative diseases often preceded 
by a period of disability. The World Health Organization has recognized the importance 
of health expectancies as population health indicators and has estimated them for 191 
member states (World Health Organization 2004). 

Second, trends in health expectancies are useful indicators for addressing the 
question of whether current increases in life expectancy are being matched by similar 
increases in healthy life. In recent decades, several hypotheses have emerged: the 
expansion-of-morbidity hypothesis, which states that seriously chronically-ill 
individuals are being kept alive by medical interventions, creating increasing demands 
on health and social care systems while generating limited improvements in the well-
being of the population (Gruenberg 1977; Olshansky et al. 1991); the compression-of-
morbidity hypothesis, which states that the average age at onset of disability increases 
faster than life expectancy, creating a decrease in the number of years spent with 
disability (Fries 1980, 1983, 1993); and the dynamic-equilibrium hypothesis, an 
intermediate hypothesis which states that when disability is defined as severe 
morbidity, the number of years spent with disability remains relatively constant as life 
expectancy increases (Manton 1982). These are important debates with implications for 
the future costs of health and social care systems in low-mortality countries. An 
international research network, the Network on Health Expectancy (Réseau Espérance 
de Vie En Santé, or REVES), is committed to promoting the use of health expectancies 
and to improving and harmonizing calculation methods 
(http://reves.site.ined.fr/en/home/). 

In spite of the importance of health expectancies as population health indicators, 
current methodologies for estimating them are not entirely satisfactory. They are either 
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of limited applicability because of high data requirements (the multistate method), or 
based on questionable assumptions (the Sullivan method). The multistate (or increment-
decrement) life table method uses a framework that is consistent with the standard life 
expectancy calculations (Rogers et al. 1990). In a standard period life table, age-specific 
mortality rates are estimated for one period, and the life expectancy is calculated by 
simulating a fictitious (or synthetic) cohort of individuals exposed throughout their life 
time to the mortality rates of that particular period. Thus the period life expectancy 
summarizes mortality conditions of a particular period. The multistate life table also 
uses period conditions when calculating the number of years that one can expect to live 
in a particular health status. Period conditions are summarized with a set of age-specific 
“transition” rates observed during the period of interest. In the case of health 
expectancies involving only two health statuses (such as disability-free vs. disabled or, 
more generally, any “healthy” vs. “unhealthy” dichotomy), there are four possible 
transitions: from healthy to unhealthy; from healthy to death; from unhealthy to 
healthy; and from unhealthy to death. Health expectancies are calculated by simulating 
a synthetic cohort exposed throughout their life time to the transition rates of the period 
of interest. These health expectancies refer to individuals in a given health state at a 
given age, and are thus called “conditional” health expectancies. From this simulation 
are derived “period” or “equilibrium” proportions of healthy individuals, i.e., the 
proportions of individuals of a given age who are healthy in the synthetic cohort. By 
weighting conditional health expectancies with these equilibrium proportions, one can 
obtain “unconditional” health expectancies, i.e., the number of years that one can expect 
to live above age x in a particular health state, regardless of state at age x. 

In spite of its methodological soundness and the richness of its output, the 
multistate method has one major drawback: it requires data from longitudinal surveys 
(Mathers 2002). These surveys, which are expensive and complex to carry out, are not 
widely available. As a result, the multistate method has produced only sporadic health 
expectancy estimates. These data requirements dramatically reduce the attractiveness of 
the multistate method, which at present does not appear as a realistic tool for producing 
long time series of health expectancies or making broad international comparisons of 
population health (Cambois et al. 1999). 

Because of the high data requirements of the multistate method, research on health 
expectancies has more often relied on the Sullivan method (also called observed-
prevalence method) (Sullivan 1971; Cambois et al. 1999). The Sullivan method is based 
on the assumption that the observed cross-sectional age-specific proportions of healthy 
individuals are equal to the “equilibrium” proportions defined above. Under this 
assumption, one can apply these observed age-specific proportions healthy to the total 
survival curve for the synthetic cohort, which produces a curve for the proportion of 
births that are healthy at age x. The area under this “healthy” survival curve gives 
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unconditional health expectancies. If the assumption holds, these unconditional health 
expectancies are equal to the unconditional health expectancies produced by the 
multistate method. Because of this assumption, the Sullivan method requires only data 
from one cross-sectional census or survey, together with knowledge of overall mortality 
(usually an official life table). 

However, there is no guarantee that the assumption of the Sullivan method holds in 
real situations. The currently-observed proportions healthy are the product of a history 
of mortality and disability that spans about a century, whereas equilibrium proportions 
are the product of mortality and disability for the current period only. The Sullivan 
method thus produces an indicator which is affected by the past history of the 
population (Brouard and Robine 1992). It is not a “pure” period index indicating the 
number of healthy years that one should expect to live under current conditions. In fact, 
the Sullivan method can be viewed as a composite method which combines synthetic 
cohort information (period survival) with actual cohort information (proportions 
healthy). Another drawback of the Sullivan method is that it produces only estimates of 
unconditional health expectancies. Age-specific transition rates and conditional health 
expectancies cannot be estimated with the Sullivan method. 

There is some debate in the literature about the magnitude of the bias in the 
Sullivan method. Some authors have concluded on the basis of actual data that the 
differences between observed and equilibrium proportions healthy are significant, and 
that health expectancy estimates based on the Sullivan method should not be used for 
conclusions on compression or expansion of morbidity (Rogers et al. 1990; Barendregt 
et al. 1994, 1997; Lievre et al. 2003). On the other hand, Mathers and Robine (1997) 
have concluded on the basis of simulated scenarios that the differences are not very 
large and that the Sullivan method is acceptable for monitoring long-term changes in 
population health. These simulations have been later criticized by Barendregt and 
colleagues who believe that the chosen scenarios provided too favorable results in 
support of the Sullivan method (Barendregt et al. 1997). In spite of disagreement about 
the size of the biases, there is consensus that the multistate method is theoretically 
sounder than the Sullivan method (Laditka and Hayward 2003) and that one should be 
careful in interpreting Sullivan-based measures in terms of compression or expansion of 
morbidity (Nusselder 2003). In sum, it appears that the Sullivan method is the most-
commonly used method more because of its reliance on widely available data than 
because of its reliability. Uncertainties about scenarios of compression or expansion of 
morbidity may be due in part to these methodological issues. 

This paper explores a new approach for estimating health expectancies which 
relies on the multistate framework, but uses widely available data. The method uses 
observed proportions of healthy individuals at two successive, independent cross-
sectional surveys, and, together with information on general mortality, solves for the set 
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of period transition probabilities that produces the observed sequence of proportions 
healthy. The system is solved by making realistic parametric assumptions about the age 
pattern of transition probabilities. The proposed approach aims at resolving a major 
drawback of the multistate method by relying on widely available data. Indeed, cross-
sectional proportions healthy are widely available from health surveys routinely 
conducted in various parts of the world and for various time periods, as well as from 
certain censuses (Myers and Lamb 1992). General mortality information is also widely 
available. This new approach, which applies when two health statuses (in addition to 
death) are considered, produces both conditional and unconditional health expectancies. 

This is not the first time that two successive cross-sections are used for estimating 
period conditions. There is a family of indirect demographic methods, called 
“intercensal” methods, which uses demographic identities to estimate a single-
decrement or multiple-decrement period life table from two cross-sections (Preston et 
al. 2001; Schmertmann 2002). The proposed method can be considered as an extension 
of the intercensal framework to the estimation of a multistate (increment-decrement) 
life table. We thus refer to this method as an “intercensal” method, although it can use 
survey data as well. 

A number of authors have examined how successive cross-sectional data can be 
used to estimate a multistate system in the absence of direct information on actual 
transitions (Willekens 1982, 1999; Schoen and Jonsson 2003). However, the existing 
approaches (i.e., the Iterative Proportional Fitting (IPF) approach  and the Relative State 
Attraction (RSA) approach) require absolute counts of individuals by state at two cross-
sections. They thus have limited applicability when the data come from two 
independent sample surveys, where the absolute counts of individuals at two cross-
sections cannot be related to one-another in a meaningful way. Unlike the IPF and the 
RSA approaches, the intercensal method does not use absolute counts of individuals as 
inputs and can thus be applied to data from independent sample surveys. In addition, it 
makes less constraining assumptions than the RSA approach, especially with regards to 
mortality (Schoen and Jonsson 2003). 

In a different line of research, Davis et al. (2001) and Imai and Soneji (2007) have 
used successive cross-sections to estimate health expectancies. Their goal, however, 
was not to reconstruct the full increment-decrement system, which they recognize 
cannot be recovered with their methodology, but to estimate unconditional health 
expectancies, as in the Sullivan method. Moreover, they use successive cross-sections 
not to estimate inter-survey period conditions, but to track actual cohorts as they appear 
in these cross-sections and estimate corresponding cohort health expectancies. The 
approach they developed can thus be viewed as a version of the Sullivan method for the 
estimation of cohort health expectancies. In this paper, we go beyond previous research 
by proposing a methodology that uses data from two independent cross-sectional 
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sample surveys with the aim of recovering the multi-state system prevalent during the 
inter-survey period. 

 
 

2. Basic principles  

2.1 Exact relationship linking proportions of “healthy” individuals at two dates  

In this section, the terms “healthy” and “unhealthy” refer to any dichotomous definition 
of health states. The basic equation of the intercensal approach expresses the observed 
population proportion of healthy individuals at age x+n and time t+n, Π(x+n, t+n) 
(=healthy individuals at age x+n and time t+n/all individuals at age x+n and time t+n), 
in terms of the observed proportion of healthy individuals in the same cohort at time t, 
Π(x, t), and the transition probabilities prevailing between t and t+n. The derivation of 
the equation involves following cohorts of healthy and unhealthy individuals between t 
and t+n, and comparing their respective evolution to that of the entire cohort, regardless 
of health status. 

Suppose the following transition probabilities, which all refer to conditions of 
period [t, t+n]:  
nqx

HU  = probability that a healthy individual aged x at time t will be unhealthy at ime  
  t+n;  
nqx

HD  = probability that a healthy individual aged x at time t will die between time t  
  and t+n;  
nqx

UH  = probability that an unhealthy individual aged x at time t will be healthy at time  
  t+n;  
nqx

UD  = probability that an unhealthy individual aged x at time t will die between time t  
  and t+n;  
nqx  = probability that an individual aged x at time t will die between time t and t+n,  
  regardless of health status at age x. 

The observed population proportion of healthy individuals at age x+n and time 
t+n, Π(x+n, t+n), is equal to: 
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Equation (1) can be modified as follows:  
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By defining nrx = nqx

UD/nqx
HD (unhealthy/healthy mortality ratio) and using the fact 

that death probabilities for the entire population are weighted averages of the death 
probabilities for healthy and unhealthy populations  
(nqx = Π(x, t) nqx

HD + [1-Π(x, t)] nqx
UD), Equation (2) can be rewritten as: 
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If the only available information consists of two independent cross-sections of the 

population (with age and health status as variables), as well as a conventional life table 
prevailing between t and t+n, the known quantities of Equation (3) are Π(x, t),  
Π(x+n, t+n) and nqx. The other quantities, nqx

UH, nqx
HD, and nrx are unknown. When data 

are available for k age groups, Equation (3) expands to a system of k equations. 
This system of k equations is obviously not solvable, because it has 3*k unknowns. 

However, the quantities nqx
UH, nqx

HD, and nrx do not vary randomly with age. On the 
contrary, they correspond to health processes that are clearly related to age (incidence 
of disability, recovery from disability, and active/disabled mortality ratio in the case of 
the active vs. disabled dichotomy). As discussed in the next section, these quantities 
follow some rather simple functions of age. Knowledge of the age patterns of these 
three functions will reduce the number of unknowns in the system of equations, and 
allow us to search for optimal solutions. 
 
 
2.2 Age-patterns of transition rates in the disability multistate framework  

There is a body of literature showing that the four sets of transition rates in the 
active/disabled/dead multistate framework follow some well-defined age-patterns. For 
example, Rogers et al. (1990) and Crimmins et al. (1994) have shown that such 
transition rates are well described by exponential functions at ages 60 and above. 

More recently, Laditka and Wolf (1998) and Lièvre et al. (2003) have developed a 
model in which the partial odds of monthly transition probabilities follow a log-linear 
function of age:  
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kjx
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where hpx

j is the monthly probability of remaining in state j between x and x+h, and 
where hqx

jk is the monthly probability of moving from state j to state k between x and 
x+h (j = U, H and k = U, H, D). This age pattern is used as a basis for estimating 
transition probabilities with the IMaCh procedure, which uses longitudinal data. Lièvre 
et al. have applied this model to data from the Longitudinal Study on Aging (LSOA) 
and produced estimates of monthly transition probabilities for the sampled population. 
We converted these monthly transition probabilities into annual and 2-year probabilities 
(allowing multiple transitions during the two-year period) and found that these 
probabilities (i.e., nqx

HU, nqx
UH, nqx

HD, nqx
UD for n=1 or n=2) are very well fitted with 

simple exponential functions at ages 60 and above. This means that exponential 
assumptions for one or two-year transition probabilities are consistent with Lièvre et 
al.’s assumptions for monthly transition probabilities. 

Our analysis of data from the 1998 and 2000 Health and Retirement Study (HRS) 
confirms the validity of exponential assumptions for two-year transition probabilities. 
The 1998 HRS is a nationally representative sample of elderly adults aged 50 and above 
living in households in the United States in 1998. After deleting 460 cases that were 
known to be alive but lost; and 63 cases whose survival status was unknown at the 2000 
follow-up, the 1998 sample has 10,809 cases (i.e., 4635 men and 6174 women) between 
the exact age of 64 and 94. Among them, 521 men and 542 women died by the 2000 
interview. The analysis does not use sample weights because our preliminary 
investigation indicates no substantial difference between the un-weighted and weighted 
data in the age patterns of health state transition probabilities. 

We follow the convention of defining the two living states (active and disabled) in 
terms of functional limitations in the following six activities of daily living (ADLs): 
dressing, walking across the room, bathing or showering, eating, getting in or out of 
bed, or using the toilet (Katz et al. 1973). A respondent is defined to be disabled if s/he 
reported to have any difficulties that last more than three months with at least one of the 
ADLs, or to "cannot", or "do not do" at least one of them, and to be active if otherwise. 
In the remainder of this paper, “H” refers to the active state, and “U” refers to the 
disabled state. Information for month and year of death is available from reports by 
proxy respondents, or from linkage with the 2000 National Death Index. 

Figure 1 shows two-year transition probabilities for males and females in two-year 
age groups (centered at exact ages 65, 67, ..., 93). As expected, the incidence of 
disability (2qx

HU) increases with age, while recovery from disability (2qx
UH) decreases 

with age. Death probabilities for active (2qx
HD) and disabled (2qx

UD) individuals both 
increase with age, but probabilities are higher and increase with age at a lower rate for 
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the disabled. The four sets of transition probabilities are well fitted by exponential 
functions of age, as shown by the exponential curves in Figure 1. The observed and 
fitted age patterns of mortality for active and disabled individuals imply that the ratio of 
disabled to active mortality (nrx) is greater than one and follows a declining exponential 
function of age. These results are consistent with Lièvre et al.’s results with the LSOA 
data. 

 
 

Figure 1: Observed and fitted age-specific transition probabilities, HRS,  
1998-2000 (both sexes combined) 
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Note: H=active (no ADL limitation); U=disabled (at least one ADL limitation); D=Dead. 

 
 

2.3 Non-linear model  

Knowledge of the age-pattern of nqx
UH, nqx

HD and nrx allows us to develop a system of 
equations (one equation for each age group) in which there is a relatively small number 
of unknown parameters. If all three functions follow an exponential function of age, i.e., 
nqx

UH = α1 exp(β1 x), nrx = α2 exp(β2 x) and nqx
HU = α3 exp(β3 x), we obtain the following 

equation for each age group:  
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where 

Yx = Π(x+n, t+n) - Π(x, t)/(1 - nqx); 
Ax = [1-Π(x, t)]/(1 - nqx); 
Bx = Π(x, t) nqx /(1 - nqx); 
Cx = Π(x, t); 
Dx = Π(x, t)/(1 - nqx). 

 
Yx, Ax, Bx, Cx and Dx are the known quantities of Equation (3). Equation (5) can be 

viewed as a model in which a dependent variable, Yx, is related to five independent 
variables (x, Ax, Bx, Cx, Dx) in a nonlinear fashion. 

The core idea of the proposed approach is to use nonlinear optimization techniques 
to estimate the unknown parameters of Equation (5). Optimization techniques solve 
systems of equations using iterative procedures. The first step of the optimization 
consists of defining an “objective” for the optimization, i.e., the quantity that needs to 
be minimized. The most common objective is the minimization of the sum of squared 
residuals, but other objectives can be specified. The system is usually solved through a 
procedure in which initial values of the parameters are iteratively improved until the 
objective is met (Bates and Watts 1988).  In this paper, we use the CONOPT non-linear 
optimization solver interfaced with the programming language GAMS. This solver is 
useful for our purpose, because it allows us to specify bounds in the parameters, as 
discussed below in section 3.3 (Rosenthal 2008). 

Once the parameters are solved for, it is possible to produce age-specific estimates 
of nqx

UH, nqx
HU and nrx, which, together with knowledge of nqx, are sufficient to recover 

the full set of period transition probabilities (nqx
HU, nqx

UH, nqx
HD, nqx

UD) consistent with 
the observed changes in proportions active and the observed overall death probabilities. 
Knowledge of these transition probabilities allows the estimation of a full multistate life 
table and corresponding period health expectancies (both conditional and 
unconditional), using classic multistate life table construction techniques (Preston et al. 
2001). 

It is important to note here that this approach involves probabilities, rather than 
rates, in the multistate system. Proportions of healthy individuals at two cross-sections 
are linked to one another via probabilities in Equation (3), and the parameters that are 
estimated in Equation (5) allow us to recover probabilities rather than rates. There are 
two reasons for relying on probabilities rather than rates. First, using probabilities 
produces a simpler relationship linking proportions of healthy individuals at two 
different dates, embodied in Equation (1). If we wanted to rely on rates, Equation (1) 
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would have to involve a rate-to-probability conversion and its associated assumptions. 
This would substantially increase the complexity of the non-linear estimation process. 
Given that this method relies on very little input data, with only as many observations 
as age groups, we decided to rely on the most parsimonious relationship between the 
known and unknown quantities. The second reason is that the main goal of this method 
is to estimate health expectancies, which requires knowledge of probabilities. If the 
method was producing rates, we would still have to perform a rate-to-probability 
conversion in order to estimate health expectancies. In brief, using rates rather than 
probabilities would be at once more complex and unnecessary. One disadvantage of 
working with probabilities, though, is that the metric of probabilities (and, thus, the 
corresponding parametric assumptions) depend on the length of the age interval. By 
contrast, the metric of rates computed over discrete age intervals will not differ from 
that of the underlying continuous process (as long as they are expressed with the same 
exposure metric such as person-years). Age patterns of rates thus better reflect the 
underlying continuous process of interest, and can be more easily tailored to the various 
age interval configurations via the rate-to-probability conversion. We believe, however, 
that for this particular method, the advantages of working with probabilities outweigh 
the disadvantages. 

In this paper, we test our method using two different strategies. We first rely on 
simulations, with the goal of testing the method’s ability to recover the parameters that 
generated the simulated data. We then apply the method to two actual cross-sections 
from the National Health Interview Survey (NHIS), and compare how the method 
performs in comparison with the multistate approach based on longitudinal data from 
the HRS. 
 
 

3. Testing the intercensal method using simulations  

3.1 Generating fictitious population data  

In a first series of tests, we generated a fictitious population of active and disabled 
individuals exposed to known transition probabilities, and tested the method’s 
performance in the ideal situation where the parametric assumptions are exactly met 
and where there is no sampling variability. 

For this purpose, we used the HRS 1998-2000 transition probabilities for males 
and females combined, which we fitted with exponential functions, as shown in Figure 
1. This produced the “true” parameters for the three unknown functions of Equation (5). 
These parameters are shown in Table 1. Values of the fitted functions are shown in 
Table 2. 
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Table 1: True values of the parameters for the exponential functions nqx
UH, 

nrx, and nqx
HU, used in the simulations 

Function Index i αi βi

nqx
UH 1 0.35269 -0.04303 

nrx 2 5.50699 -0.04878 
nqx

HU 3 0.06957  0.05598 
 
Note: These values are based on data from the HRS, 1998 & 2000, for both sexes combined. The functions were fitted using least-

squares and a transformed age a=x-65. This age transformation allows to obtain intercepts that correspond to the values of the 
functions at age 65. 

 
 

We then generated population proportions of active individuals at time t, Π(x,t), by 
smoothing the HRS 1998 proportions in two-year age intervals centered at exact age x, 
between ages 65 and 93, for both sexes combined. (This series is arbitrary; the test 
could be conducted with any series of proportions active at time t.) 

These proportions of active individuals at time t were then projected to time t+2, 
using equation (1) and the fitted transition probabilities. This step required knowledge 
of 2qx (total mortality), which we calculated using the fitted mortality curves for the 
active and the disabled, along with the population proportions active at time t (nqx = 
Π(x, t) nqx

HD + [1-Π(x, t)] nqx
UD). 

Population proportions of active individuals at time t and t+2 are shown in Table 2, 
together with the age-specific transition probabilities (including total mortality) that 
agree with these two cross-sections. The health expectancies that correspond to these 
age-specific transition probabilities are shown in Table 3. (In order to avoid the use of 
age extrapolation in these tests, we calculated partial health expectancies at age 65, 
truncated at age 95.) These are the “true” health expectancies that the new method seeks 
to estimate. 

The population proportions active at time t and t+2 shown in Table 2, together 
with overall mortality values (nqx), give us all the information to calculate the “known” 
elements of Equation (5), i.e., Ax, Bx, Cx, Dx, and Yx. We can then use these data as 
inputs in the optimization solver, with the goal of recovering the original parameters 
that generated the data and estimating corresponding health expectancies. 

Using these inputs, the optimization solver converged to the true parameters. This 
occurred regardless of the choice of starting values in the solver. This means that in a 
situation where there is no sampling variability and where the parametric assumptions 
for the transition probabilities are perfectly met in the population, the unknown 
parameters can be exactly recovered with this approach. The unknown parameters were 
also exactly recovered with less sophisticated procedures, such as STATA’s non-linear 
regression procedure. 
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Table 2: Population proportions active at time t, transition probabilities 
between t and t+2, and corresponding proportions active at time t+2 

exact 
age x Π(x,t) nqx

UH
nqx

UD
nqx

HU
nqx

HD
nrx nqx Π(x+2,t+2) 

65 
67 
69 
71 
73 
75 
77 
79 
81 
83 
85 
87 
89 
91 
93 

0.86269 
0.85747 
0.85151 
0.84341 
0.83187 
0.81158 
0.78091 
0.74265 
0.69547 
0.64174 
0.58876 
0.54383 
0.50863 
0.48197 
0.46421 

0.35269 
0.32361 
0.29692 
0.27244 
0.24997 
0.22936 
0.21045 
0.19309 
0.17717 
0.16256 
0.14916 
0.13686 
0.12557 
0.11522 
0.10572 

0.11036 
0.12191 
0.13467 
0.14876 
0.16434 
0.18153 
0.20053 
0.22152 
0.24471 
0.27032 
0.29861 
0.32987 
0.36439 
0.40253 
0.44466 

0.06957 
0.07781 
0.08703 
0.09734 
0.10887 
0.12177 
0.13620 
0.15233 
0.17038 
0.19056 
0.21314 
0.23839 
0.26663 
0.29821 
0.33354 

0.02004 
0.02441 
0.02972 
0.03620 
0.04409 
0.05369 
0.06539 
0.07963 
0.09698 
0.11811 
0.14384 
0.17518 
0.21335 
0.25983 
0.31644 

5.50699 
4.99510 
4.53080 
4.10965 
3.72765 
3.38116 
3.06687 
2.78180 
2.52322 
2.28869 
2.07595 
1.88298 
1.70796 
1.54920 
1.40520 

0.03244 
0.03830 
0.04530 
0.05382 
0.06429 
0.07777 
0.09498 
0.11613 
0.14195 
0.17262 
0.20747 
0.24572 
0.28754 
0.33372 
0.38511 

0.86177 
0.84845 
0.83397 
0.81745 
0.79798 
0.77249 
0.73990 
0.70158 
0.65674 
0.60665 
0.55514 
0.50565 
0.45793 
0.40938 
0.35648 

 
Note: nqx

UH, nqx
UD, nqx

HU, and nqx
HD are based on fitted data from the HRS, 1998 & 2000, for both sexes combined (See table 1). 

Π(x,t) are smoothed age-specific proportions active in the 1998 HRS for both sexes combined. 

 
 

Table 3: Values of health expectancies (partial health expectancies at age 65, 
truncated at age 95) for the period t to t+2, by health status at age 65, 
derived from the fitted transition probabilities shown in Table 2 
(H = active; U=disabled; .=active or disabled) 

Health status of destination  
H U . 

H 13.77 3.93 17.71 
U 8.73 6.06 14.79 Health status at age 65 
. 13.08 4.23 17.31 

 
Note: These health expectancies are calculated with the assumption that only one transition can occur during the two-year period, 

and that transitions occur on average in the middle of the two-year age interval. Unconditional health expectancies (.H and .U) 
are calculated using population proportion active at age 65, Π(65,t)=0.86269. 
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3.2 Simulating sample data  

In reality, even if the parametric assumptions are met in the population, the observed 
proportions active at two dates may not come from population data but from sample 
data. It is thus important to introduce sampling variability in the data for a more realistic 
test of the method’s performance. We thus drew random samples of various sizes from 
the two population cross-sections generated in the above section. These simulated 
samples were then used as inputs in the intercensal method, thus testing the method’s 
performance in a situation where the parametric assumptions are met and where the 
only source of uncertainty comes from sampling variability. 

Specifically, we took the population proportions of active individuals shown in 
Table 2 as the “true” proportions. At each age group at time t and t+2, each individual 
was a random draw with the probability of being active equal to the population 
proportions active. The sample sizes are 20,000, 10,000 and 5,000 individuals in 1998 
and 2000, with an age distribution following that of the US population in 1998 and 
2000. For each pair of samples, the proportions active at time t and t+2, together with 
overall mortality values (nqx), were used as inputs in the optimization solver. (No 
sampling variability was introduced in the overall mortality values, since we expect 
mortality data to come from official, population-based estimates.) As above, the goal is 
to recover the original parameters that generated the data and estimate corresponding 
health expectancies. These estimated health expectancies can be compared to the “true” 
health expectancies shown in Table 3. 
 
 
3.3 Constraints, objectives, and starting values in optimization solver  

CONOPT, the optimization solver which we used, allows us to specify constraints for 
the unknown parameters. It is useful to take advantage of these constraints now that we 
introduced sampling variability in our simulated data (no constraints were necessary 
when we used population data as inputs). Drawing from our review of the empirical 
evidence on age patterns of disability, we used the following constraints in our age 
range 65-93: (1) probabilities nqx

HU and nqx
UH need to be between 0 and 1 (by 

definition); (2) the slope of nqx
HU needs to be positive (the probability of developing 

disability increases with age); (3) the slope of nqx
UH needs to be negative (the 

probability of recovering from disability decreases with age); (4) nrx can only be above 
1 (the mortality for the disabled must be greater than that for the active); (5) nrx must 
decrease with age (the mortality differential between the disabled and active decreases 
with age). In addition to these constraints, we used a set of bounds for the parameters. 
We chose bounds that were large enough to encompass plausible variability in the 
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functions nqx
UH, nqx

HU and nrx, while ensuring that the above constraints are met. We 
tested two sets of bounds, a narrower one and a wider one. These bounds are provided 
in Table 4 and shown in Figure 2. Relative to the observed data, the wide bounds 
include very high and very low levels of the three functions nqx

UH, nqx
HU and nrx. While 

we would need to have empirical estimates of transition probabilities in a wide range of 
contexts to be able to fine tune these bounds, the wide bounds appear large enough to 
encompass a wide variety of situations. 

 
Table 4: Values of bounds used in optimization procedure 

Narrow bounds Wide bounds Function Age 
low high low high 

65 0.25 0.5 0.1 0.7 
2qx

UH

93 0.05 0.15 0.02 0.5 
65 3.5 6.5 2 12.0 

2rx 93 1 3 1 4.0 
65 0.02 0.15 0.01 0.5 

2qx
HU

93 0.2 0.45 0.08 0.7 

 
 

Figure 2: Bounds used in non-linear optimization 
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We used the minimum of the sum of squared residuals (min Σx (Ŷx-Yx)2 ) as the 
objective for the optimization solver. With both narrow and wide bounds, all 1000 
samples had locally optimal solutions, which is all that can be guaranteed for a 
nonlinear model. The convergence took 20 to 30 iterations on average. We used various 
combinations of starting values for the 6 unknown parameters of Equation (5). 
Regardless of the choice of starting values, the optimizer always converged to the same 
solution. 

 
 

3.4 Results  

We evaluate the intercensal method by comparing health expectancies estimated with 
this method to the “true” health expectancies shown in Table 3. Results for each 
conditional or unconditional health expectancy are presented in Figure 3-5 according to 
the following configurations: (1) Sample size (20K, 10K or 5K per cross-section); (2) 
Bounds in nonlinear optimization (narrow, wide). For each combination of these 
configurations, we present how health expectancies estimates are distributed among 
1,000 pairs of samples randomly drawn from the simulated population at time t and t+2. 
Each sampling distribution is presented in two ways: (1) box plots showing medians 
and quartiles (boxes represent inter-quartile ranges or IQR, whiskers extend to 1.5 times 
the IQR below the first quartile or above the third quartile, and estimates beyond that 
range are considered outliers and are represented by dots); (2) means and 90% 
uncertainty intervals (means are represented with dots, and whiskers around these dots 
represent the range between the 5th and 95th percentile). 

These sampling distributions are compared to the true health expectancies, 
represented with a dashed line. Results are shown in Figure 3 for health expectancies 
conditional on being active at age 65, Figure 4 for health expectancies conditional on 
being disabled at age 65, and Figure 5 for unconditional health expectancies. 
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Figure 3: Simulated sampling distribution of health expectancies at age 65 (in 
years), conditional on being active at age 65, by sample size and 
bound width 
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at age 65 

1 2

13
.0

13
.5

14
.0

14
.5

15
.0

15
.5

16
.0

30
e6

5H
H

1 2

13
.0

13
.5

14
.0

14
.5

15
.0

15
.5

16
.0

1 2

13
.0

13
.5

14
.0

14
.5

15
.0

15
.5

16
.0

Narrow (1) or Wide (2)  Bounds in Nonlinear Programming

20K
10K
5K

 
 

  b. Life expectancy in the disabled state, conditional on being active  
at age 65 
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Figure 3: (Continued) 

  c. Life expectancy (any disability state), conditional on being active  
at age 65 
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Note: These health expectancies are partial health expectancies at age 65, truncated at age 95 (30e65). The horizontal dashed lines 

represent the true population health expectancies shown in Table 3. 

 

Figure 4: Simulated sampling distribution of health expectancies at age 65 (in 
years), conditional on being disabled at age 65, by sample size and 
bound width 

  a. Life expectancy in the active state, conditional on being disabled  
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Figure 4: (Continued) 

  b. Life expectancy in the disabled state, conditional on being disabled  
at age 65 
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  c. Life expectancy (any disability state), conditional on being disabled  
at age 65 
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Note: These health expectancies are partial health expectancies at age 65, truncated at age 95 (30e65). The horizontal dashed lines 

represent the true population health expectancies shown in Table 3. 

 

http://www.demographic-research.org 521 



Guillot & Yu: Estimating health expectancies from two cross-sectional surveys 

Figure 5: Simulated sampling distribution of unconditional health expectancies 
at age 65 (in years), by sample size and bound width 

  a. Unconditional life expectancy in the active state 
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  b. Unconditional life expectancy in the disabled state 
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Note: These health expectancies are partial health expectancies at age 65, truncated at age 95 (30e65). The horizontal dashed lines 

represent the true population health expectancies shown in Table 3. For each sample, unconditional health expectancies are 
calculated using the simulated sample proportion active at age 65. 
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We observe the following patterns in these results. Overall, the intercensal method 
appears to work remarkably well for health expectancies conditional on being active at 
age 65 (Figure 3), and for unconditional health expectancies (Figure 5). For these health 
expectancies, the method offers little bias and sampling error; the means and medians of 
the sampling distributions are typically within a few decimal points from the true value, 
and the size of the 90% uncertainty interval rarely extends beyond one year. 

There is more bias and more sampling error for health expectancies conditional on 
being disabled at age 65 (Figure 4), especially when wide bounds are used. For these 
values, means and medians of sampling distributions are typically within one year of 
the true values, and uncertainty can be quite substantial. This may be due to the fact that 
these conditional health expectancies for the disabled are greatly affected by the 
estimated value of 2qx

UH at age 65. Indeed, 2q65
UH is high in comparison with the other 

transition probabilities at that age, which means that small relative errors in the value of 
that probability (estimated with α1) will have a large impact on the health expectancies 
conditional on being disabled. On the positive side, errors in these conditional health 
expectancies have little impact on the unconditional health expectancies shown in 
Figure 5, because they pertain to a small proportion of the population at age 65. 

Comparing different combinations of sample size and bounds, we find the 
following patterns in terms of bias and sampling error. First, as expected, larger samples 
produce better results, but the gain is not always substantial. Second, the choice of 
narrower bounds in the nonlinear optimization provides better results. The gain, 
however, is not very substantial, except in the case of health expectancies conditional 
on being disabled at age 65 (Figure 4). For these health expectancies, the use of narrow 
bounds produces much less bias and sampling error. 

For the unconditional expectancies, we are also able to compare the performance 
of the intercensal method to results from the Sullivan method. (As discussed in the 
introduction, the Sullivan method does not provide conditional health expectancies.) 
These Sullivan estimates, shown in Figure 5, were calculated by combining simulated 
sampled proportions at time t with overall mortality between t and t+2. We find that the 
intercensal method produces slightly less bias than the Sullivan estimates. The Sullivan 
estimates, however, have less sampling variability. This is due in part to the fact that, in 
the Sullivan method, sampling variability comes from only one sample, while in the 
intercensal method, sampling variability comes from two independent samples. This 
additional uncertainty, however, does not jeopardize bias, which is slightly smaller for 
the intercensal method. This smaller bias may be due in part to the fact that the 
intercensal method, like the direct multistate method, produces estimates that refer to a 
synthetic cohort subject to transitions probabilities prevalent during t and t+2 (like the 
true values), while the Sullivan method produces results that are affected by transitions 
occurring before time t. 
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In order to test the limits of this approach, we also run the optimization solver with 
no bounds, keeping only the five constraints specified above. The no bounds results 
were less satisfactory. First, about 5% of the samples encountered infeasibility and 
unboundedness. Second, while the IQR and the 90% uncertainty intervals for the 
feasible solutions were comparable in range to the wide-bounds results, a few solutions, 
up to 15 out of 1000 samples, had values far outside the range observed. While the non-
bounded results are useful to test the limits of the estimation procedure, they put us in 
an unnecessary difficult situation by ignoring a priori information about the order of 
magnitude of the functions. For example, it might not be useful to allow the procedure 
to yield results where the death probability of the active is more than 12 times that of 
the disabled at age 65. While the proposed narrow and wide bounds could be fine tuned 
by examining transition probabilities in a wide range of contexts, we believe there is 
more a priori information to be used than just the five constraints specified above. 

 
 

3.5 Errors in transition probabilities vs. errors in health expectancies  

Since the purpose of this method is to estimate health expectancies, we focused our 
discussion of the results on errors in this outcome measure. However, transition 
probabilities are also an outcome of interest for a number of purposes. We observe that 
probabilities are less accurately estimated than the health expectancies produced by 
them. Values of nqx

HU and nqx
UH, in particular, tend to be seriously underestimated. 

These errors largely offset each other when calculating health expectancies. 
In order to illustrate this point, we treated the two waves of HRS as cross-sectional 

and calculated proportions active in 1998 and 2000. We combined these values with 
official NCHS mortality probabilities for the year 1999 in the intercensal procedure. We 
then compared the estimated transition probabilities with those directly observed when 
the HRS is used longitudinally. This comparison, presented in Figure 6, shows that 2rx, 
and consequently, 2qx

HD and 2qx
UD, are rather well estimated with the procedure. Values 

of nqx
HU and nqx

UH, however, are systematically underestimated. These patterns of errors 
are rather common in our simulations. They affect health expectancies conditional on 
being disabled, as we saw in Figure 4. However, they largely offset each other in the 
estimation of the other health expectancies. 
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Figure 6: Observed and estimated intercensal age-specific transitions 
probabilities, HRS, 1998-2000 
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4. Applying the intercensal method to the NHIS  

The above simulations provide a test of the intercensal method in situations where the 
parametric assumptions are exactly met and where the only source of error comes from 
sampling variability. They do not fully replicate real-life situations where the 
underlying assumptions might not be exactly met, and where the three sources of 
information (two cross-sections and overall mortality) come from three independent 
sources, each with their own potential errors. 

To perform a more realistic test, we applied the intercensal method to data from 
the NHIS. The NHIS is a continuing annual household survey of the civilian, non-
institutionalized population of all ages in the United States. Each week a probability 
sample of households is interviewed. In this test, we used the 1999 and 2001 annual 
samples. The 1999 annual sample consists of 37,573 households, yielding 97,059 
persons. The 2001 annual sample consists of 38,932 households, yielding 100,761 
persons. As the NHIS top codes all respondents aged 85 and over as 85, we restricted 
the 1999 sample to those aged 64-81 and the 2001 sample to those aged 66-83, resulting 
in 9854 and 8994 cases, respectively. As in the case of our earlier HRS analysis, we did 
not use sample weights in the NHIS samples. 
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Our definition of health states in the NHIS is not identical to the one we used in 
the HRS. This is due to the fact that, instead of asking about having any difficulty as in 
the HRS, the NHIS health questions ask about needing help. As the subject may have 
difficulty in functioning without needing help, the prevalence of functional limitations 
in the NHIS is generally lower than that in the HRS for the same type of activities. To 
make the level of prevalence comparable between the two surveys, we expanded the list 
of activities in the NHIS to include: (1) personal care needs such as eating, bathing, 
dressing, or getting around inside the home; (2) routine needs such as everyday 
household chores, doing necessary business, shopping, or getting around for other 
purposes; and (3) being limited in the kind or amount of work one can do. Cases with a 
positive response to any of these items were coded as disabled. 

For overall mortality pertaining to the inter-survey period, we used U.S. mortality 
data from the Human Mortality Database for the year 2000. These data are based on 
official life tables from NCHS. Because of the age restriction in the NHIS, we used 9 
age groups only (65-81) as inputs. The input data are shown on Table 5. 

In this more realistic test, it is not possible to compare the method’s estimates to 
some unambiguous “truth”, because no exhaustive population information exists on 
transitions among health statuses that would allow us to estimate health expectancies in 
a non-parametric fashion. Information on transitions in and out of health statuses 
typically comes from samples, and sample sizes are usually too small to allow non-
parametric calculations. However, in recent years, the IMaCh approach mentioned 
earlier has emerged as the most reliable method for estimating health expectancies in a 
synthetic cohort using longitudinal data. We thus used health expectancies produced 
using IMaCh as our reference against which results of the intercensal method were 
compared. These IMaCh estimates can be viewed as “direct” multistate estimates, 
because they use direct observations of individual transitions between states, 
contrasting with the intercensal estimates which can be viewed as “indirect” multistate 
estimates. (As explained earlier, IMaCh makes assumptions about the age pattern of 
transitions that are comparable to those made in the intercensal method.) The data 
source used for the IMaCh-based reference estimates is the HRS for a period 
comparable to the period used for NHIS. We obviously cannot use data from the NHIS 
with IMaCh, because the NHIS data are not longitudinal. We purposely did not use the 
HRS data as input in the intercensal method for this comparison, because these cross-
sections would not be truly independent and would thus provide a test that might favor 
the new method. Results of this test are shown in Figure 7. (Here also, in order to avoid 
extrapolation beyond the age for which we have data, we calculated partial health 
expectancies at age 65, with a truncation age of 83.) 
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Table 5: Proportions active (1999 & 2001) and overall mortality (2000) used 
as inputs in the intercensal method, US, both sexes combined 

exact age x Π(x, 1999) Π(x+2, 2001) nqx (2000) 
65 
67 
69 
71 
73 
75 
77 
79 
81 

0.87609 
0.86819 
0.85219 
0.83519 
0.82684 
0.81417 
0.77641 
0.76045 
0.70216 

0.86708 
0.86906 
0.84669 
0.82160 
0.79093 
0.82322 
0.75590 
0.71198 
0.66378 

0.03037 
0.03590 
0.04216 
0.04980 
0.05958 
0.07025 
0.08283 
0.09915 
0.11846 

 
Source: 1999 & 2001 National Health Interview Survey (proportions active); Human Mortality Database (overall mortality). 

 
 

Figure 7: Comparison of health expectancies estimated using IMaCh, the 
intercensal method, and the Sullivan method, US, 1998-2001 
(both sexes combined) 
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Note: H=Active; U=Disabled; .=Active or Disabled. These health expectancies are partial health expectancies at age 65, truncated at 

age 83 (18e65). IMaCh estimates are based on data from HRS, 1998 & 2000 waves. Intercensal estimates are based on data 
from NHIS, 1999 & 2001 waves, together with 2000 mortality data from the Human Mortality Database. Sullivan estimates are 
based on data from NHIS, 1999 wave, together with 2000 mortality data from the Human Mortality Database. The unconditional 
health expectancies are calculated using the observed proportions active at age 65 in the HRS and NHIS, respectively. 
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Results indicate that, compared to the IMaCh approach using HRS, the intercensal 
method provides remarkably comparable estimates for unconditional health 
expectancies (.H and .U), and for health expectancies conditional on being active at age 
65 (HH, HU and H.). For these health expectancies, errors range from .3 to .8 years 
with narrow bounds; and from .4 to 1.2 with wide bounds. As in our earlier test, the 
errors are larger for health expectancies conditional on being disabled at age 65, 
especially when wide bounds are used. Active life expectancy (UH) tends to be 
underestimated, while life expectancy in the disabled state (UU) tends to be 
overestimated. These two errors balance out for the total life expectancy conditional on 
being disabled (U.), producing an error of .4 years when narrow bounds are used, and .9 
years when wide bounds are used. These results are consistent with the results of the 
earlier simulations. 

For unconditional health expectancies, we are also able to compare the results of 
the intercensal method to those of the Sullivan method. The intercensal method and the 
Sullivan method perform similarly well, with little difference between wide bounds and 
narrow bounds. Here also, this is consistent with the results of the simulations. 
 
 

5. Discussion  

In light of the simulations and examples developed in this paper, the intercensal 
approach appears as a promising framework for indirectly estimating health 
expectancies. In this section, we discuss the advantages and disadvantages of this 
approach, compared to the two most common approaches that have been used so far: 
the multistate approach using IMaCh, and the Sullivan method. 

The most important advantage of the intercensal approach, compared to IMaCh, is 
that it allows the calculation of conditional and unconditional health expectancies 
without resorting to longitudinal data. Transitions among health statuses, and deaths by 
health status, are not needed. Only two independent cross-sections, producing 
proportions active, and a life table pertaining to the inter-survey period are needed. 
These data are widely available. The two methods rely on comparable parametric 
assumptions. The disadvantage is that the intercensal method produces health 
expectancy estimates that do not always agree with the underlying population health 
expectancies. However, except in the case of conditional expectancies for the disabled, 
the errors are not substantial. The population of disabled individuals at age 65 is a small 
population group, and therefore unconditional health expectancies are not substantially 
affected. We thus believe that the intercensal approach is a promising alternative to the 
data-costly IMaCh approach. 
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The advantages relative to the Sullivan method are many. First of all, unlike the 
Sullivan approach, the intercensal method allows the estimation of conditional health 
expectancies. Health expectancies vary substantially depending on one’s health status at 
a given age, and therefore conditional health expectancies are important health 
indicators. A second advantage is that the intercensal method, like IMaCh, does not rely 
on the assumption that the observed prevalence of disability of the population is equal 
to the that of the synthetic cohort. It is therefore more theoretically correct. Another 
advantage is that the intercensal method produces unconditional health expectancy 
estimates that are slightly less biased than those resulting from the Sullivan method. 
The disadvantage relative to the Sullivan method is that it requires two cross-sections, 
instead of one in the case of the Sullivan method. This is a minor disadvantage given 
that successive cross-sections are widely available. A related disadvantage is that the 
unconditional health expectancies produced by the intercensal method have more 
sampling variability than the Sullivan method. This additional sampling variability is 
modest, however, and seems to be an acceptable price to pay in view of the advantages 
that the intercensal method offers compared to the Sullivan method. 

 
 

6. Conclusion  

The intercensal method developed in this paper allows the estimation of health 
expectancies (conditional and unconditional) without the use of longitudinal data. It 
only requires two successive cross-sections of the population and overall mortality 
pertaining to the inter-survey period. Assumptions regarding the age pattern of 
transitions are similar to those made by IMaCh. 

The intercensal method works perfectly when there is no sampling variability and 
when parametric assumptions are exactly met in the population. When we introduce 
sampling variability, the method appears to work remarkably well for estimating health 
expectancies conditional on being active at age 65, and for unconditional expectancies. 

The amount of error is somewhat larger for health expectancies conditional on 
being disabled at age 65. Fortunately, this is a small population group at age 65, and 
therefore these errors do not compromise the multistate system and the other health 
expectancy estimates. Nonetheless, further research is needed for improving the 
performance of the method for these conditional health expectancies. 

One direction for future research is to examine the age patterns of transitions in 
and out of disability using other available longitudinal data sets besides the HRS. This 
would help determining if the parametric assumptions made in this paper hold in a 
variety of settings. Additional information on transition probabilities would also allow 
us to examine in greater detail the amount of variation in transition probabilities, and 
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would help choosing perhaps more sensible bounds for the values of the parameters. 
The age pattern of transition probabilities also needs to be studied for various widths of 
age intervals (e.g. 3 years, 5 years, etc.), and for other healthy vs. unhealthy 
dichotomies. 

We believe, however, that the method introduced in this paper provides a useful 
framework for estimating health expectancies in the absence of longitudinal data. 
 
 

7. Acknowledgments  

The authors are grateful to Jason Fine, Stephen Wright, and anonymous reviewers for 
their useful comments. This research was supported by core grants to the Center for 
Demography and Ecology at the University of Wisconsin-Madison (R24 HD047873) 
and to the Center for Demography of Health and Aging at the University of Wisconsin-
Madison (P30 AG017266), and by a research award from the Graduate School, 
University of Wisconsin-Madison. 

 



Demographic Research: Volume 21, Article 17 

http://www.demographic-research.org 531 

References 

Barendregt, J.J., Bonneux, L., and Van Der Maas, P.J. (1994). Health expectancy: an 
indicator for change? Journal of Epidemiology and Community Health 48(5): 
482-487. doi:10.1136/jech.48.5.482. 

Barendregt, J.J., Bonneux, L., and Van Der Maas, P.J. (1997). How good is Sullivan's 
method for monitoring changes in population health expectancies? Journal of 
Epidemiology and Community Health 51(5): 578-579. 
doi:10.1136/jech.51.5.578. 

Bates, D.M. and Watts, D.G. (1988). Nonlinear regression analysis and its 
applications. New York: Wiley. doi:10.1002/9780470316757. 

Brouard, N. and Robine, J.M. (1992). A method of calculation of health expectancy 
applied to longitudinal surveys of the elderly in France. In: Robine, J.M., 
Blanchet, M., and Dowd, J.E. (eds.). Health Expectancy. London: HMSO. 

Cambois, E., Robine, J.M., and Brouard, N. (1999). Life expectancies applied to 
specific statuses: a history of the indicators and the methods of calculation. 
Population: an English Selection 53(3): 447-476. 

Crimmins, E.M., Hayward, M.D., and Saito, Y. (1994). Changing mortality and 
morbidity rates and the health status and life expectancy of the older population. 
Demography 31(1): 159-175. doi:10.2307/2061913. 

Davis, B.A., Heathcote, C.R., and O’Neill, T.J. (2001). Estimating cohort health 
expectancies from cross-sectional surveys of disability. Statistics in Medicine 
20: 1097-1111. doi:10.1002/sim.724. 

Fries, J.F. (1980). Aging, natural death, and the compression of morbidity. New 
England Journal of Medicine 303(3): 130-135. 

Fries, J.F. (1983). The compression of morbidity. Milbank Memorial Fund Quarterly 
61(3): 397-419. doi:10.2307/3349864. 

Fries, J.F. (1993). Compression of morbidity: life span, disability, and health care costs. 
Facts and Research in Gerontology 7: 183-190. 

Gruenberg, E.M. (1977). The failure of success. Milbank Memorial fund Quarterly/ 
Health and Society 55: 3-24. doi:10.2307/3349592. 

Imai, K. and Soneji, S. (2007). On the estimation of disability-free life expectancy: 
Sullivan’s method and its extension. Journal of the American Statistical 
Association 102(480): 1199-1211. doi:10.1198/016214507000000040. 

http://dx.doi.org/10.1136/jech.48.5.482
http://dx.doi.org/10.1136/jech.51.5.578
http://dx.doi.org/10.1002/9780470316757
http://dx.doi.org/10.2307/2061913
http://dx.doi.org/10.1002/sim.724
http://dx.doi.org/10.2307/3349864
http://dx.doi.org/10.2307/3349592
http://dx.doi.org/10.1198/016214507000000040


Guillot & Yu: Estimating health expectancies from two cross-sectional surveys 

532  http://www.demographic-research.org 

Katz, S., Branch, L.G., Branson, M.H., Papsidero, J.A., Beck, J.C., and Greer, D.S. 
(1983). Active life expectancy. New England Journal of Medicine 309(20): 
1218-1224. 

Laditka, S.B. and Hayward, M.D. (2003). The evolution of demographic methods to 
calculate Health expectancies. In: Robine, J.M., Jagger, C., Crimmins, E.M., and 
Suzman, R.M. (eds.). Determining health expectancies: Hoboken, NJ: Wiley: 
221-234. 

Laditka, S.B. and Wolf, D.A. (1998). New methods for analyzing active life 
expectancy. Journal of Aging and Health 10(2): 214-241. 
doi:10.1177/089826439801000206. 

Lièvre, A., Brouard, N., and Heathcote, C. (2003). The estimation of health 
expectancies from Cross-longitudinal Surveys. Mathematical Population Studies 
10: 211-248. doi:10.1080/713644739. 

Manton, K.G. (1982). Changing concepts of morbidity and mortality in the elderly 
population. Milbank Memorial Fund Quarterly 60(2): 183-244. 
doi:10.2307/3349767. 

Mathers, C.D. (2002). Health expectancies: A review and appraisal. In: Murray, J.L., 
Salomon, J.A., Mathers, C.D., and Lopez, A.D. (eds.). Summary Measures of 
Population Health. Geneva: World Health Organization: 177-204. 

Mathers, C.D. and Robine, J.M. (1997). How good is Sullivan's method for monitoring 
changes in population health expectancies? Journal of Epidemiology and 
Community Health 51(1): 80-86. doi:10.1136/jech.51.1.80. 

Mathers, C.D., Salomon, J.A., Murray, C.J.L., and Lopez, A.D. (2003). Alternative 
summary measures of population health. In: Murray, C.J.L. and Evans, D.B. 
(eds.). Health systems performance assessment: Debates, methods and 
empiricism. Geneva: World Health Organization: 319-334.  

Myers, G.C. and Lamb, V.L. (1992). Sources of data for assessing healthy life 
expectancy. In: Robine, J.M., Blanchet, M., and Dowd, J.E. (eds.). Health 
Expectancy. London: HMSO: 118-123. 

Nusselder, W.J. (2003). Compression of morbidity. In: Robine, J.M., Jagger, C., 
Crimmins, E.M., and Suzman, R.M. (eds.). Determining health expectancies. 
Hoboken, NJ: Wiley: 35-58. 

Olshansky, S.J., Rudberg, M.A., Carnes, B.A., Cassel, C.K., and Brody, J.A. (1991). 
Trading off longer life for worsening health. Journal of Aging and Health 3: 
194-216. doi:10.1177/089826439100300205. 

Preston, S.H., Heuveline, P., and Guillot, M. (2001). Demography: Measuring and 
modeling population processes. London: Blackwell Publishers: 291. 

http://dx.doi.org/10.1177/089826439801000206
http://dx.doi.org/10.1080/713644739
http://dx.doi.org/10.2307/3349767
http://dx.doi.org/10.1136/jech.51.1.80
http://dx.doi.org/10.1177/089826439100300205


Demographic Research: Volume 21, Article 17 

http://www.demographic-research.org 533 

Rogers, A., Rogers, R., and Belanger, A. (1990). Longer life but worse health? 
Measurement and dynamics. The Gerontologist 30(5): 640-649. 

Rosenthal, R.E. (2008). GAMS - A user's guide. GAMS Development Corporation: 
Washington D.C., USA. 

Schmertmann, C.P. (2002). A simple method for estimating age-specific rates from 
sequential cross sections. Demography 39(2): 287-310. 
doi:10.1353/dem.2002.0018. 

Schoen, R. and Jonsson, S.H. (2003). Estimating multistate transition rates from 
population distributions. Demographic Research 9(1): 1-24. 
doi:10.4054/DemRes.2003.9.1. 

Sullivan, D.F. (1971). A single index of mortality and morbidity. HSMHA Health 
Reports 86: 347-354. 

Willekens, F. (1982). Multidimensional population analysis with incomplete data. In: 
Land, K.C. and Rogers, A. (eds.). Multidimensional Mathematical Demography. 
New York: Academic Press: 43-111. 

Willekens, F. (1999). Modeling approaches to the indirect estimation of migration 
flows: From entropy to EM. Mathematical Population Studies 7: 239-278. 

World Health Organization (2004). The World Health Report 2004: Changing History. 
Geneva: World Health Organization. 

 

http://dx.doi.org/10.1353/dem.2002.0018
http://dx.doi.org/10.4054/DemRes.2003.9.1


Guillot & Yu: Estimating health expectancies from two cross-sectional surveys 

534  http://www.demographic-research.org 

 


	Table of Contents
	21-17 work.pdf
	Abstract
	1. Introduction
	2. Basic principles
	2.1 Exact relationship linking proportions of “healthy” indi
	2.2 Age-patterns of transition rates in the disability multi
	2.3 Non-linear model

	3. Testing the intercensal method using simulations
	3.1 Generating fictitious population data
	3.2 Simulating sample data
	3.3 Constraints, objectives, and starting values in optimiza
	3.4 Results
	3.5 Errors in transition probabilities vs. errors in health 

	4. Applying the intercensal method to the NHIS
	5. Discussion
	6. Conclusion
	7. Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


