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No consistent effects of prenatal or neonatal exposure to  
Spanish flu on late-life mortality in 24 developed countries  

Alan A. Cohen1 

John Tillinghast2 

Vladimir Canudas-Romo3 

Abstract  

We test the effects of early life exposure to disease on later health by looking for 
differences in late-life mortality in cohorts born around the 1918-1919 flu pandemic 
using data from the Human Mortality Database for 24 countries. After controlling for 
age, period, and sex effects, residual mortality rates did not differ systematically for flu 
cohorts relative to surrounding cohorts. We calculate at most a 20-day reduction in life 
expectancy for flu cohorts; likely values are much smaller. Estimates of influenza 
incidence during the pandemic suggest that exposure was high enough for this to be a 
robust negative result.  

 

 
1 Corresponding author. Current address: Centre de recherche PRIMUS, Universite de Sherbrooke, 3001 12e 
Ave Nord, Sherbrooke, QC J1H 1A8, Canada. tel.: (819) 580-2655. fax: (819) 564-5424. E-mail: 
aacohen1.bus@gmail.com. 
2 Johns Hopkins University. E-mail: jtilling@jhsph.edu. 
3 Johns Hopkins University. E-mail: vcanudas@jhsph.edu. 

mailto:aacohen1.bus@gmail.com


Cohen, Tillinghast & Canudas-Romo: No consistent effects of prenatal or neonatal exposure to Spanish flu 

580  http://www.demographic-research.org 

1. Introduction  

It has long been hypothesized that events early in life could affect the developmental 
process and thereby health at later ages. Such effects are well-known in animal models, 
and have been observed in humans for a number of specific diseases (Barker 1990; 
Barker 1997; Ozanne 2001). Finch and Crimmins (2004) showed an association 
between early and late mortality in cohorts from Sweden, and suggest that this could 
imply an effect on lifespan of high inflammation resulting from infections early in life.  
However, links between early and late life mortality could also result from famine or 
other factors not directly related to early inflammation; data on the effects of famine are 
mixed (Kannisto et al. 1997; Ravelli et al. 1998; Stanner et al. 1997). Generally 
speaking, disease and malnutrition tend to co-occur, making it hard to tease apart these 
factors with population data. 

One potential way to distinguish effects of disease from malnutrition is to use the 
Spanish influenza pandemic of 1918-1919. Although following close on the heels of 
World War I and the potential food shortage accompanying war, the pandemic affected 
neutral countries as well and did not occur at a time of generalized food shortages more 
severe than what had occurred in the previous years of the war. Thus, any significant 
differences in late-life mortality of 1918 and 1919 cohorts relative to surrounding 
cohorts is likely attributable to the pandemic, especially if such effects can be 
generalized across countries. Mortality from the pandemic is estimated at 50-100 
million worldwide, the largest well-recorded demographic event on record (Johnson 
and Mueller 2002); while the damage was somewhat less in developed countries, no 
country was immune and effects were severe even in Denmark, the country with lowest 
excess mortality (Murray et al. 2006). 

The simple prediction, following Crimmins and Finch (2006), is that exposure to 
disease in utero or early in life should increase late-life mortality (i.e., reduce adult life 
expectancy). There are a number of mechanisms that could cause such an effect in 
addition to an increase in inflammation. In particular, pre- or perinatal exposure to 
disease could have effects via changes in health of the mother, who might allocate 
scarce resources to maintaining her own health rather than ensuring proper development 
of the fetus. Developmental processes are sensitive to perturbation and can have 
diverse, long-lasting downstream effects. For example, a slight problem in neural 
development might result in marginally lower intelligence, which could in turn result in 
lower social status and all its concomitant health problems. Additionally, developing 
organisms often look to their environment for cues as to how to develop best in an 
unstable world (“phenotypic plasticity,” Stearns 1989); early exposure to disease could 
prompt the immune system to develop in expectation of high disease burden throughout 
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life, potentially resulting in high constitutive inflammation levels.  There may be other 
pathways as well by which early exposure to disease could affect late-life mortality. 

If early exposure to influenza increases mortality via inflammation pathways, we 
can make several predictions. To start with, the effect should be strongest in those hit 
by the flu postnatally, when there is less reliance on the maternal immune system (Holt 
1995). In contrast, other pathways should be strongest for prenatal exposure, since 
disturbance earlier in development is likely to have more severe long-term 
consequences in most cases. Because the timing of the flu pandemic was precise and 
roughly synchronized worldwide, with most mortality occurring in fall 1918 followed 
by a smaller wave in early 1919 (Johnson and Mueller 2002), we should expect 1918 
cohort mortality (i.e., mostly those already born before the flu hit) to be higher than 
1919 cohort mortality (mostly those still in utero during exposure) if inflammation is 
the primary pathway of action; conversely, if more general developmental disturbance 
through under-allocation of maternal resources is the primary pathway, the 1919 cohort 
should have higher late-life mortality. Also, we would expect a slightly delayed cohort 
effect in Australia, which managed to delay onset of the flu to early 1919 by a maritime 
quarantine (Johnson and Mueller 2002). 

Potentially confounding these predictions, there are also pathways by which early 
exposure to disease could actually lower late-life mortality. First, high exposure to 
disease could cull the weakest infants from a cohort; the survivors should be the most 
robust individuals and therefore predisposed to live longer. Such selection effects have 
been documented in wild animals such as Leach’s Storm-Petrel (Oceanodroma 
leucorhoa) (Mauck et al. 2004). Second, early exposure to disease could actually 
improve the long-term health of infants. Hunter-gatherers are likely exposed to much 
higher disease burdens than modern humans and are known to have constitutively high 
inflammation levels (Gurven et al. 2008). If this is representative of the environment in 
which our immune systems evolved, it may well be that proper development of the 
immune system requires exposure to pathogens for some “priming” effect. Along these 
lines, there are hypotheses that modern epidemics of allergies and asthma result from 
early under-exposure of the immune system (Folkerts et al. 2000; Holt 1995); it might 
be reasonable to expect similar such effects in other aspects of the immune system late 
in life, including auto-immune disease and regulation of inflammation. 

All of the above mechanisms for effects of early exposure to disease on late-life 
mortality could operate simultaneously. To the extent that countervailing processes 
have similar degrees of effect, our ability to detect differences with population-level 
data will be minimal and detailed physiological data will be necessary to determine 
pathways of action. Nonetheless, it is possible that some of these effects are much 
stronger than others, and if there are population-level effects, it is unlikely that a better 
natural experiment will be found than the 1918-1919 flu pandemic. Analyses of 
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economic and health outcomes were poorer for cohorts born in the U.S. during the flu, 
but mortality has not been examined (Almond 2006; Almond and Mazumder 2005). 

Here, we take publicly available data from the online Human Mortality Database 
to test for differences in late-life mortality between Spanish flu cohorts and surrounding 
cohorts. We restrict analyses from ages 45 to about 80, depending on country, and to 
cohorts born between 1911 and 1923. To ensure that all ages tested are included for all 
cohorts, we limit countries analyzed to those with mortality data dating back to 1956 (= 
1911 + 45), a set of 24 countries including most of Europe (but not the Soviet bloc), the 
U.S., Canada, Australia, Japan, and New Zealand. Details of the data are described in 
section 2.1. We use residual mortality rates after accounting for age, period, and sex 
effects; age and period splines are used to account for non-linear trends (see 2.2.1). Life 
expectancy is also analyzed (see 2.2.2). Finer-scale cohort analyses are performed for 
France, Italy, and Switzerland (see 2.2.3).  

 
 

2. Methods  

2.1 Data  

We used publicly available data for 24 countries taken from the Human Mortality 
Database  (www.mortality.org; Table 1). We used cohort data on deaths and exposures 
to calculate mortality rates for each cohort at each age (deaths/exposures). We used all 
countries in the database as of January 2008 that met our criteria for age and year 
ranges except Iceland and Luxembourg, for which population size was too small to 
make reliable inferences. There were several trade-offs to consider in selecting which 
cohorts and ages to use, as follows. First, the later the last cohort used in our 
comparison, the younger the oldest age we could use. For example, if we used 1923 as 
the last cohort and have data through 2003, we could include deaths up to age 79, but if 
we used 1924 as the last cohort we could only include deaths up to age 78. We used 
cohorts born through 1923. Most countries had data available through 2003-2005, so 
we could use a maximum age of 79-82 (depending on country). Second, the younger the 
youngest age used and the earlier the first cohort used, the fewer countries could be 
included in the analysis based on how far back their mortality statistics date.  For 
example, if we used age 40 as the youngest age and 1910 as the earliest cohort, we 
could only include countries with data going back at least to 1950, but if we used age 45 
and 1911 respectively, we could include countries with data starting as late as 1956. 
Additionally, greater range of ages and cohorts increases the “sample size” of mortality 
rates available for analysis and thus improves statistical power. Ideally, we would have 
liked to use mortality starting at age 30 for cohorts born in 1910 or later; of the 33 
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available countries, 16 had old enough data regardless of first age and cohort used, and 
two (Slovenia and Taiwan) clearly did not have good coverage at the youngest ages. 
However, 15 countries had mortality data starting between 1947-1959, which would 
limit the youngest age and/or earliest cohort used. We ran the analyses with different 
combinations for all countries and found consistent results; here, we present data using 
cohorts from 1911 (to include some pre World War I data) starting at age 45. This 
results in exclusion of Poland and the former Soviet republics; we were not confident in 
the quality of the Soviet republic data, but there were no clear patterns in these excluded 
countries that contradict our broader findings. Thus, we used a cohort range of 1911-
1923, an age range of 45-~81 (depending on the last year of data available for each 
country), and a set of 24 countries (Table 1). Roughly 22,000 mortality data points were 
incorporated into the analyses. 

The Human Mortality Database provides only annual data, but the Spanish flu 
pandemic was worst from the fall of 1918 through the spring of 1919, suggesting that 
one-year cohorts might not be sufficiently specific to pick up cohort effects, especially 
if age of the infant or the stage of pregnancy during influenza exposure are important 
factors in determining late-life effects. In order to address this, we used monthly 
fertility data for France (1914-1919), Italy (1911-1923), and Switzerland (1910-1923) 
combined with Lexis data from the Human Mortality Database for these countries to 
test for effects at half-year cohort time scales (see Analysis) (Calot 1998; Huber 1931; 
Mortara 1925). Lexis data is formatted so that observations are groups of people born in 
a given year, dying in a given year, at a given age, as compared to typical cohort data 
where death year is unspecified and therefore includes both potential years of death for 
those born in a given year, dying at a given age. The monthly fertility data for Italy 
were pooled for the years 1911-1913 and 1921-1923; we ran analyses with and without 
these years included, but found no substantive differences and present only the analysis 
with all years included. 
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Table 1: Data used for this analysis by country, with World War II mortality 
estimates 

Country 
 

Min age 
 

Max age 
 

Cohort range 
 

Earliest
period 
data

WWII mortality 
(% of 1939  
population)a 

Australia 45 80 1911-1923 1921 0.57% 
Austria 45 81 1911-1923 1947 5.50% 
Belgium 45 81 1911-1923 1841 1.02% 
Bulgaria 45 81 1911-1923 1947 0.38% 
Canada 45 80 1911-1923 1921 0.40% 
Czech Republic 45 80 1911-1923 1950 2.25% 
Denmark 45 82 1911-1923 1835 0.08% 
England and Wales 45 79 1911-1923 1841 0.94% 
Finland 45 82 1911-1923 1878 2.62% 
France 45 81 1911-1923 1899 1.35% 
West Germany 45 80 1911-1923 1956 8.60% 
East Germany 45 80 1911-1923 1956 8.60% 
Hungary 45 81 1911-1923 1950 6.35% 
Italy 45 80 1911-1923 1872 1.02% 
Japan 45 82 1911-1923 1947 3.78% 
The Netherlands 45 82 1911-1923 1850 3.44% 
New Zealand 45 79 1911-1923 1846 0.67% 
Norway 45 82 1911-1923 1876 0.32% 
Portugal 45 81 1911-1923 1940 0%?b 

Slovakia 45 82 1911-1923 1950 2.25% 
Spain 45 81 1911-1923 1908 0.02%c 

Sweden 45 82 1911-1923 1751 0.03% 
Switzerland 45 82 1911-1923 1876 0.00% 
USA 45 80 1911-1923 1933 0.32% 
 

aSources: Ellis (1993) and Frumkin (1951) have estimated casualty statistics for many countries and regions. An extensive list can be 
found at http://en.wikipedia.org/wiki/World_War_II_casualties.  

bCurrently not listed in our sources, but presumably very low, since Portugal was neutral.  
cOfficial WWII casualties are low, but civil war casualties were high and we treat it as a high-casualty nation. 

 

http://en.wikipedia.org/wiki/World_War_II_casualties


Demographic Research: Volume 22, Article 20 

http://www.demographic-research.org 585 

2.2 Analyses  

2.2.1 24-country multilevel models  

Mortality rates (deaths per exposure per year) were log-transformed so that the increase 
with age was roughly linear. Henceforth we refer to log-mortality rates simply as 
“mortality rates.” We used regression (general linear models) to calculate residual log-
mortality after accounting for age, period, and sex. Year of death (period) was 
calculated as year of birth plus age at death plus one, which is the average time of death 
assuming constant fertility rates within each year of birth and constant death rates 
within each one-year age class. We centered age and period and then calculated 
polynomial B-spline bases with knots every 10 years (R v. 2.8.1, “splines” package, 
“bs” function). Weighted least squares Poisson regression models calculated mortality 
as a function of age splines, period splines, sex, and all two-way interactions among 
them, and can be represented as: 

 
 μ = Σasi + Σysj + sex + Σ(asi×ysj) + Σ(asi×sex) + Σ(ysj×sex) + ε  (1) 
 

where μ is log-mortality for a given cohort, age, and sex; asi are centered spline terms 
for age at death (summed over all values of i, approximately 5); ysj are centered spline 
terms for year of death (summed over all values of j, approximately 6), and ε is the 
residual mortality. There are thus 53 terms in the full model. We weighted the 
regression by the number of deaths in each stratum because the expected number of 
deaths can be shown to be approximately equal to the variance under a Poisson 
distribution (by the Delta method). 

Depending on country, variance explained by this model ranged from 99.51% to 
99.95%. Residuals from this model (“residual mortality”) were used in subsequent 
analyses, and represent mortality after accounting for age, period, and sex effects. The 
small percentage of variation accounted for by residual mortality is expected given the 
large changes in mortality with age and period relative to what might be expected from 
an additional cohort effect. Residual mortality rates were calculated separately for each 
country using R v. 2.8.1 (R Core Development Team 2007). We checked for patterns of 
non-randomness in the residuals using mean residuals (across country and sex) plotted 
against age at death, year of death, and three-dimensional surface plots across Lexis 
surfaces (Fig. 1).   

We tested for heterogeneity in residual mortality rates across 24 countries and 13 
birth cohorts (1911-1923) using random effects models. Because residuals from 
equation (1) were estimated separately for each country, mean residual for each country 
is zero by definition, and the overall expected mean residual is also zero. There is thus 
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no need to include terms in the model for country or overall mean. The specified model 
was: 

 
 mr(ijk) = β(k) + ε(ijk)       (2) 
 

where mr is residual mortality, i is individual mortality data point (for a given age, 
cohort, sex, and country), j is country, k is cohort, βs are normally distributed cohort-
specific deviations from 0, and ε is a normally distributed error term. Variances of β 
and ε were also estimated and assumed to be gamma-distributed. In order to calculate 
deviations of specific combinations of country and cohort from the overall average, we 
used a nested cohort-within-country model, similar to equation (2) except with the β2s 
nested within the β1s: 

 
 mr(ijk) = β1(j) + β2(jk) + ε(ijk)       (3) 
 
Shrunk estimated Bayes values were calculated for each cohort (from equation (1)) 

and for cohort-country combination (from equation (2)). Multilevel models were fit 
using Bayesian Gibbs sampling and Markov Chain-Monte Carlo simulations (4000 
iterations, first 1000 discarded to allow for convergence) in WinBUGS v. 1.4.3 
(Spiegelhalter et al. 2007). 

 
 

2.2.2 Life expectancy  

In order to examine male-female differences and also to get a summary metric in 
relevant units (“years” as opposed to “residual log-mortality”), we repeated the analyses 
using cohort life expectancy from ages 45-79, calculated for each country-cohort 
combination from the mortality rates used above via standard methods. This quantity 
shows how many years the average person surviving to age 45 would expect to live 
through age 79. Because period trends in life expectancy result in roughly linear 
increases across the 1911-1923 cohorts, we calculated residual life expectancy for each 
cohort within each country – i.e., given the increase in life expectancy over time in a 
given country, how much longer or shorter did each cohort live than expected? We then 
averaged these values across countries to calculate mean residual life expectancy for 
each cohort. Analyses were run separately for males and females. 

 



Demographic Research: Volume 22, Article 20 

Figure 1a: Plots of residual log-mortality (after running the age-period-sex 
model) averaged across country and sex by age 
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All distributions appear roughly random, though the variance appears higher in early and late years in (b) due to smaller sample size 

during those periods. 
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Figure 1b: Plots of residual log-mortality (after running the age-period-sex 
model) averaged across country and sex by year 
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All distributions appear roughly random, though the variance appears higher in early and late years in (b) due to smaller sample size 

during those periods. 
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Figure 1c: Plots of residual log-mortality (after running the age-period-sex 
model) averaged across country and sex by age and cohort 
simultaneously 
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All distributions appear roughly random, though the variance appears higher in early and late years in (b) due to smaller sample size 

during those periods. 
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Figure 1d: Plots of residual log-mortality (after running the age-period-sex 
model) averaged across country and sex by age and year 
simultaneously 
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All distributions appear roughly random, though the variance appears higher in early and late years in (b) due to smaller sample size 

during those periods. 
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2.2.3 France, Italy, and Switzerland: finer-scale cohorts  

We took a somewhat different approach to analyzing the finer-scale data from France, 
Italy, and Switzerland. Because we used Lexis data rather than cohort data, we were 
able to calculate two mortality rates for each age-cohort-sex-country combination: one 
for people who died in the earlier possible year, and one for people who died in the later 
possible year. For example, a woman who was born in 1918 and died at age 60 could 
have died in 1978 or 1979, depending on when in 1918 she was born and exact age at 
death. The Lexis data allow us to separate those who died in 1978 from those who died 
in 1979. The probability of dying in 1978 versus 1979 depends on when in 1918 the 
woman was born: the closer to the beginning of 1918, the higher the probability she 
would die in 1978 (given death at age 60). This relationship can be used to calculate 
distributions of birthdays for those who died in the earlier versus the later possible 
years. Assuming equal birth rates throughout a year and equal death rates throughout a 
one-year age class, those dying in the earlier possible year have a mean birthday about 
May 2, with 75% born in the first half of the year. Those dying in the later possible year 
have a mean birthday about September 1, with 75% born in the second half. Thus any 
large differences in mortality rates between half-year cohorts should be apparent 
(though not precisely estimable) in differences between these “Lexis pseudo-cohorts” – 
those that died in the earlier versus later possible year, for a given one-year age class 
and one-year birth cohort. If age is a, and year of birth is c, the two Lexis pseudo-
cohorts are thus those who died in year a + c and those who died in year a + c + 1. We 
will refer to these cohorts as “spring births” and “fall births” respectively, though of 
course there are individuals in each cohort born at all times of year; the seasons are 
probabilistic averages. The method is developed at greater length in Appendix A, and 
details of the above calculations are provided.  Related approaches for slightly different 
contexts have been developed by Bell and Rees (2006). 

Death counts but not death rates or population exposures are available in Lexis 
format from the Human Mortality Database, so calculation of Lexis pseudo-cohort 
death rates is only possible if we divide full-year cohort exposure data in half, assuming 
equal sizes of the Lexis pseudo-cohorts (i.e., constant birth rates throughout the year). 
However, there was a baby boom at the end of 1919 in many countries in our database, 
apparently a consequence of the flu (Mamelund 2004); the resulting difference in the 
cohort sizes confounds our ability to calculate accurate Lexis pseudo-cohort mortality 
rates for that year, one of the two of most interest for the flu pandemic. We 
circumvented this by gathering monthly fertility rates for France, Italy, and Switzerland, 
allowing us to calculate much more precisely the percent of full year exposures that 
should be assigned to each of the two Lexis pseudo-cohorts within a given year. For 
example, those born in January are born, on average, around January 15, or 1/24th of the 
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way through the year. Thus, only 1/24 of their lives are spent exposed to risk in year a + 
c + 1, and 23/24ths are spent in year a + c. Similarly, for February the proportions are 
3/24ths and 21/24ths, etc. The baseline sizes of the spring and fall cohorts can each be 
calculated as the sum across months of the product of births in that month and the 
proportion of life lived in year a + c or year a + c + 1, as appropriate for that month and 
cohort. Full-year exposures can then be allocated to the Lexis pseudo-cohorts not by 
dividing in half, but by multiplying by the percentage of births that were allocated to 
each respective Lexis pseudo-cohort. This method does not account for immigration or 
emigration, and assumes that differences in death rates between the Lexis pseudo-
cohorts do not affect cohort sizes; nonetheless, it should yield a reasonable 
approximation of the exposures for each Lexis pseudo-cohort, allowing calculation of 
Lexis-cohort-specific death rates (deaths/exposures). 

Because the years for which monthly fertility data were available differed between 
France, Italy, and Switzerland, we ran the countries separately rather than including 
country as a level in a multilevel model. For each, we generated functions predicting 
mortality as a function of age and period using splines as outlined above. However, 
fertility data by month were not sex-specific, so we used total death rates and exposures 
and do not include a sex term in the model. We then used these functions to generate 
predicted mortality for each age and year of death; residuals were calculated as the 
difference between observed and predicted values. We then modeled these residuals as 
a function of spring versus fall birth (i.e., Lexis pseudo-cohort) and calculated final 
residual values. Analyses up to this point were conducted in R; we then imported the 
residuals into WinBUGS, modeling the heterogeneity of residual mortality across 
cohorts as above but separately for each country (i.e., equation (1) with no β2 terms). 

 
 

2.2.4 Sensitivity analyses  

We ran multiple sensitivity analyses. In most cases, we found no substantial difference 
from the primary analysis. We present a selection of these results in Appendix B. The 
one analysis that showed an important difference was excluding three of the 
Commonwealth countries (England and Wales, New Zealand, and Canada) that had 
apparently aberrant data for 1919 and 1920 (see Results). We present the multilevel and 
life expectancy analyses with and without those countries. Additional sensitivity 
analyses include: (a) varying initial parameters in the multilevel models; (b) using 
different age ranges (45-70 and 60-80) to check for more age-specific effects; (c) 
pooling the countries before running the age-period-sex model so that more country 
variation was preserved in the multilevel model; and (d) using cohort-within-country 
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(equation (3)) and country-within-cohort (equation (4)) models instead of the base 
model (equation (2)). 

 
 mr(ikj) = β1(k) + β2(kj) + ε(ikj)      (4) 
 
Lastly, we worried that flu cohorts, who would have been young adults during 

World War II, might have suffered a specific mortality pattern then that could bias our 
results; for example, if World War II mortality were normally distributed across cohorts 
with a peak for the 1919 cohort, there could have been culling of the most healthy 
individuals (i.e., those fit for battle) in a way that would affect our estimates. We 
addressed this concern by running the multilevel model including only females and by 
using subsets of countries with low (<0.75%) or very low (<0.1%) mortality during the 
war (as a percent of 1939 population, Table 1). Again, there were no substantive 
differences and results are presented in Appendix B. 

 
 

3. Results  

3.1 Twenty-four-country mortality analysis  

There was little evidence for differences in mortality rates among cohorts (Figure 2a; 
β1s from equation (2)), though it is possible that mortality was slightly higher in the 
1918 and 1920 cohorts but lower in the 1922 cohort. However, there appears to be 
substantial heterogeneity across countries within cohorts: out of 312 countries within 
cohorts, 42 had 95% credible intervals that did not include zero (22 above, 20 below, 
Figure 3; β2s from equation (3)). False discovery rates are not generally a concern with 
Bayesian sampling methods.  

Figure 3 also shows that the three lowest mortality rates are for the 1919 cohorts of 
England and Wales, New Zealand, and Canada; the same three countries have some of 
the highest mortality rates in the following year, 1920. We believe these results are 
likely a data artifact. There is no reason to suspect that 1920 mortality should be 
particularly high for these three countries, which, being members of the 
Commonwealth, would share more in terms of record-keeping than in terms of 
demography. If there were misallocation of births from 1920 to 1919 (either in the 
original records or based on smoothing done in the Human Mortality Database), 1919 
and 1920 mortality rates would appear symmetrically low and high respectively, as we 
observe. We cannot definitively determine if this is an artifact; nonetheless, we felt it 
prudent to run the analysis excluding these countries. When we do, the 1919 residual 
mortality rates increase and the 1920 rates decrease, as expected (Figure 2b). Under this 
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model, both 1918 and 1919 rates are higher than zero and are the two highest observed, 
but 1922 rates are the farthest from the overall average. Thus, there does appear to be 
high mortality in the 1918-1919 cohorts (though not outside the range of normal 
variation), a pattern not seen when all 24 countries are included. 

Next, following the suggestion of Bruckner and Catalano (2009) that effects of 
early disease might be strongest at younger ages, we looked for differences in mean 
cohort residual mortality for younger age groups, 5-30, 5-45, and 15-45. For the first 
two analyses, years of available data constrained us to include only 11 countries: 
Belgium, Denmark, England & Wales, Finland, France, Italy, the Netherlands, Norway, 
Spain, Sweden, and Switzerland; for the 15-45 analysis we were additionally able to 
include Australia and Canada. None of the analyses showed appreciable differences in 
mortality among any of the cohorts 1911-1923 (Figure 4) 

Lastly, we tested whether the 1918 and 1919 cohort-specific residual mortality 
rates within each country (subset of β2s from the model in equation (3)) correlated with 
severity of the pandemic in each country as measured by excess flu mortality (taken 
from Murray et al. 2006). The correlation was not significant in either year (1918: r=-
0.29, p=0.23; 1919: r=0.27, p=0.26), so there does not appear to be an association with 
severity of the pandemic by country and late-life mortality rates. 
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Figure 2a: Estimated Bayesian deviations of residual mortality rates with 50% 
credible intervals (boxes) and 1.5 times interquartile range 
(whiskers) for the cohorts 1911-1923 for all 24 countries. 
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Figure 2b: Estimated Bayesian deviations of residual mortality rates with 50% 
credible intervals (boxes) and 1.5 times interquartile range 
(whiskers) for the cohorts 1911-1923 for 21 countries, excluding 
England and Wales, New Zealand, and Canada. 
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Figure 3: Estimated Bayesian deviations of residual mortality rates with 50% 
credible intervals (boxes) and 1.5 times interquartile range 
(whiskers) for the 42 country-cohort combinations whose 95% 
credible intervals do not span zero.  
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The 270 country-cohorts that do not differ from zero are not shown here, but would fall in the center of the figure between Germany, 

West 1918 and Hungary 1922. Estimates are from the cohort-within-country model (equation (3) in text), and show substantial 
heterogeneity. 
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Figure 4a: Estimated Bayesian deviations of residual mortality rates with 50% 
credible intervals (boxes) and 1.5 times interquartile range 
(whiskers) for the cohorts 1911-1923 at ages 5-30. 
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a) and b) include 11 countries (listed in text), and c) includes 13.  No appreciable variation in cohort mortality is apparent for any 

cohorts in any of the age groups. 
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Figure 4b: Estimated Bayesian deviations of residual mortality rates with 50% 
credible intervals (boxes) and 1.5 times interquartile range 
(whiskers) for the cohorts 1911-1923 at ages 5-45. 
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a) and b) include 11 countries (listed in text), and c) includes 13.  No appreciable variation in cohort mortality is apparent for any 

cohorts in any of the age groups. 
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Figure 4c: Estimated Bayesian deviations of residual mortality rates with 50% 
credible intervals (boxes) and 1.5 times interquartile range 
(whiskers) for the cohorts 1911-1923 at ages 15-45. 
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a) and b) include 11 countries (listed in text), and c) includes 13.  No appreciable variation in cohort mortality is apparent for any 

cohorts in any of the age groups. 
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3.2 Life expectancy  

Life expectancy analyses confirmed the results of the mortality analysis (Figure 5). 
There were marginal negative effects of being born in 1918 or 1919, particularly when 
England and Wales, New Zealand, and Canada were excluded from the analyses 
(Figure 5b). However, there were positive effects on life expectancy of similar 
magnitude in 1914 and 1922. Males and females showed similar patterns across years 
(Pearson’s r=0.83), though patterns in females seemed stronger. The largest effect  
 

 
Figure 5a: Mean residual life expectancy for ages 45-79 by cohort and sex, 

averaged across countries for all 24 countries. 
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observed was for females born in 1919 excluding the three Commonwealth countries, 
about 19 days less life expectancy. If we extrapolate that roughly half of babies born in 
1919 were in utero for substantial periods when the pandemic was raging, that roughly 
one-third of these were actually exposed to the flu, and that all of the 1919 effect is 
attributable to the pandemic, we can calculate that life expectancy is lowered 114 days 
by exposure to the flu in utero. However, this is a maximum estimate: it is not clear that 
the low life expectancy of the 1919 cohort is any different than might be expected based 
on random yearly variation (as opposed to the flu) nor that we should exclude the 
Commonwealth countries, and even if the effect is real the estimate for males is only 
about half as large. 
 

Figure 5b: Mean residual life expectancy for ages 45-79 by cohort and sex, 
averaged across countries for 21 countries excluding England and 
Wales, New Zealand, and Canada 
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3.3 France, Italy, and Switzerland with half-year Lexis pseudo-cohorts  

Using the Lexis pseudo-cohorts described above and the appropriate adjustments for 
fertility throughout birth year, we were able to test for differences in mortality across 
half-year cohorts, potentially detecting effects of the influenza pandemic on late-life 
mortality that are not apparent at a one-year time scale.  As in the above analysis, some 
cohorts in some countries had mortality that differed significantly from the overall 
average for that country (Figure 6). Across the three countries, there is no consistent 
trend for high or low mortality in the three cohorts of primary interest (second half of 
1918, both halves of 1919). In France (Figure 6a) all three cohorts have 95% credible 
intervals spanning zero, and in Italy (Figure 6b) the first half of 1919 appears to have 
low mortality but is well within the range of variation seen across other cohorts. In 
Switzerland (Figure 6c), the second half of 1918 and first half of 1919 have high 
mortality and the second half of 1919 has low mortality, with the latter two cohorts 
having the largest mean differences from the overall average of any cohorts in any of 
the three countries. However, the magnitude of the deviance is similar for both, and we 
cannot exclude the possibility that the apparent effect is due to some estimation 
problem of the proper cohort sizes for that year. A similar issue could account for the 
symmetrically high and low mortality rates of the two 1921 cohorts in Italy. 

 
 

4. Discussion  

4.1 Effects of the flu on late-life mortality  

We failed to detect any consistent effect of the 1918-1919 influenza pandemic on late-
life mortality for cohorts exposed to the pandemic early in life. Because so much of the 
population was exposed to the flu that year – roughly 25% in the US and 45% in 
Norway, for example (Crosby 1990; Mamelund 2004) – any major effect on late-life 
mortality should have been apparent from the population-level data we used. Moreover, 
the flu struck young adults, neonates, and the elderly most heavily (Noymer and 
Garenne 2000), implying that incidence was higher still among the fetuses (via pregnant 
women) and neonates that were of primary interest in this study. We made varying 
predictions that would have been supported by positive or negative effects, differential 
effects on neonates and those in utero during the pandemic, or some effect on all 
cohorts born before the pandemic, with strongest effects in the children youngest in 
1918-1919. None of these patterns were apparent in our data. 
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Figure 6a: Estimated Bayesian deviations of residual mortality rates with 50% 
credible intervals (boxes) and 1.5 times interquartile range 
(whiskers) for France 1914-1919. 
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Figure 6b: Estimated Bayesian deviations of residual mortality rates with 50% 
credible intervals (boxes) and 1.5 times interquartile range 
(whiskers) for Italy 1911-1923. 
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Figure 6c: Estimated Bayesian deviations of residual mortality rates with 50% 
credible intervals (boxes) and 1.5 times interquartile range 
(whiskers) for Switzerland 1910-1923. 
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There was potential evidence of an effect of the pandemic on late-life mortality 
when we excluded three Commonwealth countries with apparently spurious data – 
England and Wales, New Zealand, and Canada – from the analysis. (More detail on 
why we distrust the data from these countries is available in Appendix C.) The trend 
was still not significant at α=0.05 and the effect was small (less than 20 days lost life 
expectancy for females born in 1919), but we cannot exclude the possibility of a weak 
effect. There was also high mortality in Switzerland for those born in the second half of 
1918 and first half of 1919, but low mortality for those born in the second half of 1919. 
This would be consistent with negative effects on the long-term health of neonates but a 
selection effect on those early in utero during the pandemic. However, the symmetry of 
the 1919 effects suggests they could also be attributable to the same error in estimating 
the relative sizes of those cohorts that we believe biased the estimates in the three 
Commonwealth countries. Similar effects were not apparent in France or Italy, so it 
would be premature to draw any strong conclusions from the Swiss data. Moreover, the 
Swiss data do not confirm the Commonwealth-excluded analysis because the effects for 
the two halves of 1919 cancel each other out: none of the three countries we examined 
with Lexis pseudo-cohorts bolsters the case for a weak overall 1919 effect. 

There are a number of reasons we might have failed to detect major effects of the 
flu pandemic on late-life mortality. Most obviously, inflammation early in life may not 
systematically affect late-life mortality. Our results are certainly not sufficient to 
conclude this, but they at least raise the possibility that lifelong inflammation patterns 
are not set by developmental events. Second, there might be an effect of early 
inflammation on late-life mortality that is too weak to detect. A several-week bout of 
acute illness may not be sufficient to induce detectable changes in lifelong 
inflammation levels even if those levels are affected by perinatal levels. If this is the 
case, it is unlikely that any specific childhood disease would yield major inflammation 
sequellae that would last through adulthood, but it is possible that environmental factors 
that affect general propensity to disease could have such an effect. Lastly, it is possible 
that there are both positive and negative effects on health that cancel each other out in 
the net population statistics. As noted above, negative effects could arise due to 
allocation of resources that negatively affect development or due to high inflammation 
levels; positive effects could arise from selection or from priming of the immune 
system. At a disease-specific level, it could be that any increases in mortality due to 
heart disease are balanced by, say, decreases in cancer rates that might result from 
better functioning of the immune system against cancers. While it is not possible to say 
which of these explanations accounts for the lack of association we document here, it is 
clear that simplistic hypotheses about early exposure to disease having large effects on 
late-life mortality are not supported by this analysis.  
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Our results stand in contrast to several studies showing long-term effects of the flu. 
Azambuja (2004) and Mamelund (2003) showed potential negative health 
consequences for those who were adults or young adults when the pandemic hit. 
However, the lack of clear age specificity of such proposed effects makes it hard to 
fully distinguish period and cohort effects, and the trends must remain suggestive rather 
than conclusive of the flu as a causal mechanism. Mazumder et al. (2009), showed 
apparent effects of the pandemic on cardiovascular disease and adult height for those 
born around that time, particularly in early 1919. In a careful analysis incorporating 
both quarter of birth and state, Almond (2006) showed consistently poorer outcomes for 
the flu cohorts in the 1960, 1970, and 1980 U.S. censuses on economic measures 
including educational attainment, annual income, neighbors’ income, and disability 
status. A similar analysis of health outcomes such as self-reported health, history of 
stroke or diabetes, and functional impairment also found some worse outcomes for flu 
cohorts, but in many cases the effects were not consistent among flu cohorts born in 
different quarters, even for relatively similar measures such as Trouble Lifting or 
Trouble Walking At All (Almond and Mazumder 2005). Because worse economic and 
health outcomes should lead to higher mortality, it is somewhat surprising that we did 
not detect such effects in mortality.   

There are several potential explanations for the discrepancy between our results 
and these other studies. First, many of the economic outcomes could be determined by 
factors earlier in life: educational attainment, for example, is almost certainly not 
caused by health later in life, since nearly all individuals in these cohorts would have 
reached their maximum level of education by their mid-twenties. While it is 
conceivable that early health status could affect both educational attainment and late-
life health, there is not a requisite causal link. Second, if the causal pathway is Poor 
Early Health → Low Educational Attainment → Low Economic Status → Poor Health 
→ High Mortality, or something similar, we should expect the effects to be diluted with 
each successive causal link (arrow), with the link to mortality being hardest to detect. 
Third, mortality is a composite of many processes, and it is quite possible that 
countervailing effects might average themselves out here (e.g., lower cancer rates but 
higher heart disease) in ways that are not predicted by the economic measures.  Fourth, 
it is possible there was a real effect in the U.S. but no effect in all the countries 
aggregated together. In the U.S. mortality was significantly higher in the 1918 cohort 
(t=6.67, p<0.0001) and lower in the 1919 cohort (t=-3.65, p=0.0005) compared to all 
other cohorts. There was no net effect pooling the two cohorts (t=1.08, p=0.28), but the 
1918 effect was larger, potentially indicating a pattern in the U.S. that we missed by 
using one-year cohorts.  

Although it was not our goal to test more generally for cohort effects, our data 
show clear evidence of fine-scale differences among cohorts. Within France, Italy, and 
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Switzerland, many of the cohorts had mortality significantly above or below average. 
Forty-two of 312 country-cohort combinations also had mortality above or below the 
overall average. There was also significant heterogeneity in mortality across cohorts in 
our base model (Fig. 1). Lastly, the strong correlation between cohort-specific male and 
female life expectancy suggests real trends rather than random deviations. It is possible 
that the cohort effects are an artifact of imperfect control for age and period, but given 
that we detect them in multiple analyses and that our age-period-sex model explained 
more than 99% of the variation, we view this as unlikely. Real cohort effects are not 
likely attributable to events later in life, since there are few events that would discretely 
affect one age-class but not another adjacent to it. The events that do have such discrete 
effects are almost always legal in nature and thus not generalizable across countries. 
The cohort effects we detect are thus likely attributable to environmental factors very 
early in life. It is paradoxical that we detected no specific effect of the flu, one of the 
most salient early-life environmental factors on record, but detected more general 
evidence for such effects operating at a very fine scale. It is not clear what sorts of 
variation are causing these cohort effects.  

 
 

4.2 Methodological advances  

Many approaches have been taken to solve the age-period-cohort identification problem 
(e.g., Caselli and Capocaccia 1989; Horiuchi 1983; Myrskylä 2008; Yang 2006). While 
no single approach can be considered best in all circumstances, we feel the spline model 
approach taken here has some strengths that will make it appropriate for a number of 
situations, including this one: (a) it allows for interaction terms, which often turn out to 
be highly significant; (b) there are far fewer spline terms and interactions than data 
points, so it is easily identified and retains substantial power; (c) it accounts for 
continuity (i.e., non-independence) of adjacent age-classes and periods; and (d) it does 
not make any of the assumptions of parametric models. It is a good model for looking 
for clear, concentrated cohort effects expected to occur in a small number of cohorts or 
to vary clearly across adjacent cohorts; this is because the 10-year spline terms mean 
that short-term cohort effects are not controlled away by the age-period interaction 
terms. The converse of this is that our model would not be appropriate for detecting 
diffuse cohort effects that build and decline gradually over several years. Our model is 
also more appropriate for measuring relative than absolute differences among cohorts – 
the calculated residual log mortalities have no clear absolute interpretation because the 
incremental difference in raw mortality for a given residual log-mortality differs as raw 
mortality varies with age, period, and sex. That said, the model here allows for 
substantial flexibility in understanding forces that affect mortality. Using residual 
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mortality as an outcome variable in regression models means that any characteristic 
which varies across cohorts can be tested or controlled for its effects on cohort 
mortality. 

Some properties of the model require further exploration. In particular, we tested 
the residuals of the spline model for autocorrelation with respect to age and period. 
There was a significant period autocorrelation at lag 1, probably indicating that there is 
continuity in patterns over time. There were also significant age autocorrelations at lags 
of three, four, seven, and nine. We believe these arise through effects of the spline 
models, and that, rather than creating statistical problems, correcting for them with a 
generalized least squares model could actually bias our results by skewing the way the 
splines operate. However, confirming this will require validation studies beyond the 
scope of this study. 

Finally, we believe that the Lexis pseudo-cohort approach we developed here may 
be useful in other situations for distinguishing finer-scale cohorts than are initially 
apparent in the data. For example, several studies have shown that fall babies have 
higher life expectancy than spring babies (the “Doblhammer effect,” Doblhammer 
2004; Doblhammer and Vaupel 2001), but because linked date-of-birth and date-of-
death data are hard to acquire, the effect has only been shown in several countries. A 
Lexis pseudo-cohort approach should be able to substantially increase the number of 
countries and time periods for which inferences can be made, allowing analysis of 
historical trends in the strength and distribution of this effect. We are currently pursuing 
these analyses. 
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Appendix A:  

Lexis Pseudo-cohort methodology and details  

Traditional demographic analyses often rely on making a clear choice between using 
period and cohort analyses. If we have data on death year and age at death, we have 
period data; if we have data on birth year and age we have cohort data (Figure A1). The 
difference arises because a person born in year c (say, 1918) who dies at age a (say, 60) 
could die in either year a+c or a+c+1 (1978 or 1979), depending on when the birthday 
fell in the birth year and how close the person made it to age a+1. For example, 
someone dying at age 60.95 is still recorded as dying at age 60, but probably died in 
1979. When we wish to assess the effect of being born in a given year, we use cohort 
data; when we wish to assess the effect of events during a year on deaths across age-
classes, we use period data. 

 
Figure A1: Lexis diagram of what is known with cohort and age at death 

(“Cohort data” from the Human Mortality Database). 
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The problem that can arise here is one of scale of the divisions among cohorts, 
periods, or age classes. We might wish to detect a pattern with a clear threshold point 
that may be partway through a year, or with cyclical effects operating more rapidly than 
can be detected by dividing the data up by year.  So we’d like half-year cohorts (Figure 
A2). If we have only period and cohort data by year, there is generally no way to get 
information on a finer scale. However, sometimes we have Lexis data available, in 
which case both birth year and death year are present. This provides some additional 
information that we should be able to utilize for detection of finer scale patterns (Figure 
A3); the topic of this appendix is how to maximize the information we can gain by 
utilizing Lexis data. 

 
Figure A2: A Lexis diagram of what we’d like to know: half-year cohorts, with 

those born in the first half of 1918 in blue and those born in the 
second half in red. 
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Figure A3: Lexis diagram of what is known with cohort, year of death, and age 
at death (“Lexis data” from the Human Mortality Database). Blue 
shows those born in 1918, dying in 1978, at age 60. Red shows those 
born in 1918, dying in 1979, at age 60. 
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Birth 

 
 
At first glance, it is not immediately apparent how we can get more information.  

For example, our 1918-born 60-year-old can now be definitively assigned to, say, 1979 
as a death year, but we cannot say with certainty when in 1918 she was born or when in 
1979 she died. She could have been born early in 1918 (if she died even earlier in 1979) 
or have died late in 1979 (if she was born even later in 1918). So, unlike our source 
data, we cannot use absolute knowledge of birth or death at finer scale than a year; at 
best, we can get probabilistic information. 

However, the probabilistic information should be relatively accurate, especially if 
we make two assumptions: (1) that there are roughly equal numbers of births on each 
day of a year, and (2) that age-specific mortality rates are constant throughout an age-
class (e.g., chance of dying at 60.00 is the same as at 60.99). Of course, neither 
assumption is strictly true, but they are both approximately true, and as we will see their 
violation should not undermine the validity of our analysis under most circumstances. 
The first assumption allows us to simplify the calculation of the probability of having 
been born in the earlier or later possible half-year cohort, given age at death and year of 
death – if numbers of births vary by season, so will the probability of having been born 
in a given season. The second assumption also helps simplify calculation. If death rates 
vary within age classes (presumably increasing with age), an individual dying in year a 
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+ c + 1 will be more likely to have been born in the second half of year c than otherwise 
expected because being born in the first half would imply having survived a greater 
fraction of year a than being born in the second, and the chance of this goes down if 
mortality rates increase with age within a.   

The basic insight that allows us to get probabilistic information is that a person 
born on Jan. 1 of a year is much more likely to die in the first than the second possible 
death year. If our example subject were born Jan. 1, 1918 the only way she could die in 
1979 at age 60 would be to die on Jan. 1 earlier in the day than the time she was born – 
highly unlikely relative to the probability of dying sometime in 1978. Given that we 
only know her age at death to the year, we can calculate this probability. If we know 
that she was born on Jan. 1, 1918 at 11:59 pm and died at age 60, there is a 1/365 
chance that she died in 1979 and a 364/365 chance that she died in 1978 (again, 
assuming constant death rates from age 60.00 to age 60.99). If she were born on Jan. 2 
at 11:59 pm, these probabilities would shift to 2/365 and 363/365 respectively, and so 
on. The probabilities always sum to 1, of course, and they are linear probability density 
functions of birth date within a year,  

 
  PDF = 1-x/365      (1) 
  PDF = x/365      (2) 
 

where x is Julian date within the year. Equation (1) is for those dying in the earlier year 
and equation (2) for those dying in the later year. The densities are shown graphically in 
Figure A4. These equations are for the joint distribution; the density functions for either 
of the pseudo-cohorts alone is its respective equation multiplied by two. 
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Figure A4: Probability of different Julian birthdays (i.e., days in the year 
numbered 1-365) for those dying in the earlier or later possible year 
for a given age and cohort. 
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All we know from our Lexis data is that someone died in the earlier or later of the 

two possible years. However, even with just this knowledge, we can establish the 
probability distributions of date of birth for these two groups as the lines in Figure A4. 
As can be seen, these distributions overlap but are markedly different. The mean date of 
birth for those who died in the first year is approximately May 2 (1/3 of the way 
through the year) and for those who died in the second year is approximately Sept. 1 
(2/3 of the way through the year). The expected birthday (in Julian days) can be 
calculated like the expected value for any random variable,  

 
  E(x) = ∫x*f(x)dx      (3) 
 

over the full range of x, 0 to 365, where x is Julian date and f(x) is the independent 
probability density function for each pseudo-cohort, that is 2*equation (1) for those 
dying in the earlier year and 2*equation (2) for those dying in the later. These evaluate 
to 365*1/3 and 365*2/3 respectively. 
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We thus can effectively create two probabilistic pseudo-cohorts with known mean 
birthdays, what we call “Lexis pseudo-cohorts.” For our purposes, we define Lexis 
pseudo-cohorts as Lexis triangles (and the data pertaining thereto) when they are used 
to make probabilistic inferences about the half-scale cohorts with which they overlap 
75%. If we conduct analyses on these Lexis pseudo-cohorts, we can now see patterns 
that emerge at finer scales than one year (Figure A5). Our precision will of course not 
be as good as if we had two distinct cohorts born with certainty in the first and second 
half of the year (the precision is 75%, to be precise, Figure A5), but if the effects we are 
looking for are strong enough we should still be able to detect them.  

 
Figure A5: A Lexis diagram of the 75% overlap between the “Lexis pseudo-

cohorts” and true half-year cohorts 
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. 
This figure is a composite of Figures A2 and A3 overlaid, and shows that 75% of 

the area of the blue in Figure A2 is the same as the blue in Figure A3, and likewise for 
red (in each case, three of four equal-sized triangles indicating hypothetical half-year 
age-period-cohort groups). Only 25% of each color in Figure A2 overlaps with the other 
color in Figure A3. This corresponds to 75% of the population if we assume constant 
birth and death rates throughout the cohorts (1918), ages (60.00-60.99), and years 
(1978-79) in question. Thus by knowing the Lexis triangles given by Lexis data (Figure 
A3) we can probabilistically infer differences between the half-year cohorts of interest 
(Figure A2). 

620  http://www.demographic-research.org 



Demographic Research: Volume 22, Article 20 

Relaxing the assumptions  

One assumption of the probability distributions for our two cohorts is that there is no 
seasonality to birth rates. However, seasonality of births will not affect the probability 
of each year of death for a given birthday; it affects only the distribution of the 
birthdays within a year. This is easily incorporated into a model. Figure A6 uses a 
cosine function to illustrate the sort of effect seasonality could have on our probability 
distributions. A less symmetric seasonality could bias the original estimates somewhat 
(Figure A7). In all cases, seasonality could affect estimates of mean birthday for the two 
cohorts, but should not be strong enough to change the fundamental difference between 
an earlier and a later cohort that are approximately 50% distinct. 

 
Figure A6: Probability of different Julian birthdays (i.e., days in the year 

numbered 1-365) for those dying in the earlier or later possible year 
for a given age and cohort assuming seasonality of birth following a 
cosine function symmetrical around mid-year (dark blue). The pink 
and yellow lines are the cosine function multiplied by the linear 
probability density functions depicted in Figure A4. 
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Figure A7: Probability of different Julian birthdays (i.e., days in the year 
numbered 1-365) for those dying in the earlier or later possible year 
for a given age and cohort assuming seasonality of birth following a 
sine function that is not symmetrical around mid-year (dark blue).  
The pink and yellow lines are the sine function multiplied by the 
linear probability density functions depicted in Figure A4. 
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If we allow death rates to vary within an age class, there should be relatively little 

effect on our model except for infants. Infants have much higher death rates in the first 
few months of their first year than in the last few months, and this approach should not 
be used on infant data. However, at older ages death rates change little from year to 
year. For 60-year olds in Spain from 1916-1922, average death rate is 0.0108, and for 
61-year-olds is 0.0113, a difference of under 5% - small relative to the 75% overlap 
assumption we’ve already built into the model. This should result in a systematic 
overestimation of birthday (since people are more likely to have died at an older age 
and thus to have been born earlier). The effect is thus to slightly up-weight early births 
and down-weight late births (Figure A8). Again, we see that there should be no major 
effect on our ability to infer differences between the half-year cohorts based on 
differences between the Lexis pseudo-cohorts. 
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Figure A8: Probability of different Julian birthdays (i.e., days in the year 
numbered 1-365) for those dying in the earlier or later possible year 
for a given age and cohort assuming a 5% difference in allocation of 
births between the beginning and end of the year, based on the 
slightly higher probability of death at older ages (dark blue). The 
pink and yellow lines are the linear decline in birth probability 
(equivalent to a linear decline in mortality by age within an age class, 
dark blue) multiplied by the linear probability density functions 
depicted in Figure A4. 
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Appendix B:  

A selection of sensitivity analyses  

Figure B1a: Estimated Bayesian deviations of residual mortality rates with 50% 
credible intervals (boxes) and 1.5 times interquartile range 
(whiskers) for the cohorts 1911-1923 for ages 45-70 for all 24 
countries. 
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Figure B1b: Estimated Bayesian deviations of residual mortality rates with 50% 
credible intervals (boxes) and 1.5 times interquartile range 
(whiskers) for the cohorts 1911-1923 for ages 45-70 for 21 countries, 
excluding England and Wales, New Zealand, and Canada. 
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Figure B1c: Estimated Bayesian deviations of residual mortality rates with 50% 
credible intervals (boxes) and 1.5 times interquartile range 
(whiskers) for the cohorts 1911-1923 for ages 60-80 for all 24 
countries. 
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Figure B1d: Estimated Bayesian deviations of residual mortality rates with 50% 
credible intervals (boxes) and 1.5 times interquartile range 
(whiskers) for the cohorts 1911-1923 for ages 60-80 for 21 countries, 
excluding England and Wales, New Zealand, and Canada. 
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Figure B2a: Estimated Bayesian deviations of residual mortality rates with 50% 
credible intervals (boxes) and 1.5 times interquartile range 
(whiskers) for females only in the cohorts 1911-1923 for all 24 
countries. 
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Figure B2b: Estimated Bayesian deviations of residual mortality rates with 50% 
credible intervals (boxes) and 1.5 times interquartile range 
(whiskers) for females only in the cohorts 1911-1923) for 21 
countries, excluding England and Wales, New Zealand, and Canada. 
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Figure B3: Estimated Bayesian deviations of residual mortality rates with 50% 
credible intervals (boxes) and 1.5 times interquartile range 
(whiskers) for the cohorts 1911-1923 in the ten countries in our 
sample with low (<0.5%) mortality during World War II: Australia, 
Bulgaria, Canada, Denmark, New Zealand, Norway, Portugal, 
Sweden, Switzerland, and USA 

1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923

-0.010

-0.005

0.000

0.005

0.010

0.015

S
im

ul
at

ed
 re

si
du

al
 lo

g 
m

or
ta

lit
y

 
 
 

630  http://www.demographic-research.org 



Demographic Research: Volume 22, Article 20 

Figure B4: Estimated Bayesian deviations of residual mortality rates with 50% 
credible intervals (boxes) and 1.5 times interquartile range 
(whiskers) for the cohorts 1911-1923 in the four countries in our 
sample with very low (<0.1%) mortality during World War II: 
Denmark, Portugal, Sweden, and Switzerland. 
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Appendix C:  

Adjacent-bias artifacts  

When we first started this project, we ran a series of preliminary analyses.  One such 
analysis was to create pseudo-cohorts from period data in the Human Mortality 
Database (HMD) by subtracting age-at-death from year-of-death. While this is not a 
method we would seek to defend, it produced a striking result: in almost every country, 
mortality at older ages for the 1919 cohort was far lower than for any other cohort, and 
mortality for the 1920 cohort was far higher. Our pseudo-cohorts differed from actual 
cohorts in that they (a) had a mean birthday at Jan. 1, not halfway through the year, (b) 
had a range of birthdays that spans two years, not one, and (c) had a higher 
concentration of birthdays close to the center of the range rather than a uniform 
distribution. Based on this, we suspected that there was some protective effect of the flu 
on the very young in most cases (those born in the 1919 pseudo-cohort), but that those 
exposed very early in pregnancy (i.e., born in the second half of 1919 and thus likely in 
the 1920 pseudo-cohort) might have suffered severely. We then discovered that this is a 
known artifact in the HMD (John R. Wilmoth, personal communication). 

It is easy for such an artifact to arise when there is some confusion as to the 
allocation of either deaths or exposures between adjacent cohorts. For example, if a 
portion of the 1920 population is mistakenly allocated to 1919 but the death counts 
remain the same, the 1919 cohort mortality rates will appear low while the 1920 rates 
appear high. The biases should be of similar magnitude but in opposite directions. 
While such patterns can also be due to real phenomena – for example, periods of low 
birth rates are often followed by a baby boom – in most cases it is unusual to have 
symmetrically opposed effects in adjacent cohorts. This can thus serve as a check on 
data quality and the accuracy of the analysis: symmetrically opposed effects in adjacent 
cohorts should be treated with suspicion. In the data presented here, we notice such 
effects in several cases. In the three Commonwealth countries England and Wales, New 
Zealand, and Canada, we see low mortality in the 1919 cohorts and high mortality in 
the 1920 cohort. In Switzerland, we see high mortality for the spring 1919 cohort and 
low mortality for the fall 1919 cohort. In Italy, we see high mortality in the spring 1921 
cohort and low mortality in the fall 1921 cohort. In the case of Italy, there is good 
reason to suspect just such an allocation: the birth-rate calibration we used was with 
birth rates averaged across the years 1921-23, and a deviation from the average in 1921 
would produce just this effect. 

The trouble, of course, is that it is nearly impossible in such cases to demonstrate 
definitively whether the effect is real or an artifact. Nonetheless, worry about such 
artifacts should not undermine the overall analysis too much: in most cases, strong 
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effects should be apparent without potential artifacts, since it is rare for adjacent cohorts 
to show truly opposite trends. The fact that we show few such effects can be considered 
substantial negative evidence. 
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