
Demographic Research   a free, expedited, online journal 
of peer-reviewed research and commentary  
in the population sciences published by the  
Max Planck Institute for Demographic Research 
Konrad-Zuse Str. 1, D-18057 Rostock · GERMANY 
www.demographic-research.org 

 
 

 
 
 

DEMOGRAPHIC RESEARCH  
 
VOLUME 24, ARTICLE 22, PAGES 527-550 
PUBLISHED 31 MARCH 2011 
http://www.demographic-research.org/Volumes/Vol24/22/ 
DOI:  10.4054/DemRes.2011.24.22 
 
Research Article 

 
Significance of life table estimates for small 
populations: Simulation-based study of 
standard errors 

 
Sergei Scherbov  

Dalkhat Ediev  

 
© 2011 Sergei Scherbov & Dalkhat Ediev. 
This open-access work is published under the terms of the Creative Commons 
Attribution NonCommercial License 2.0 Germany, which permits use, 
reproduction & distribution in  any medium for non-commercial purposes,  
provided the original author(s) and source are given credit.  
See http:// creativecommons.org/licenses/by-nc/2.0/de/  

 



Table of Contents 

 1 Introduction: Data and methods 528 
   
2 Preliminary formal considerations and simulations design 529 
   
3 Life table procedures. Imputations for the open age interval 535 
   
4 Results 536 
4.1 General overview 536 
4.2 Standard errors of life expectancy estimates 537 
4.3 Biases 539 
4.4 Normality of life expectancy estimate’s distribution 540 
   
5 Illustrative examples 541 
   
6 General recommendations 543 
   
7 Acknowledgements 545 
   
 References 546 
   
 Appendix: Supplementary tables 547 
   



Demographic Research: Volume 24, Article 22 
Research Article 

http://www.demographic-research.org 527

                                                          

Significance of life table estimates for small populations:  
Simulation-based study of standard errors  

Sergei Scherbov1 

Dalkhat Ediev2 

Abstract  

We study bias, standard errors, and distributions of characteristics of life tables for 
small populations. Theoretical considerations and simulations show that statistical 
efficiency of different methods is, above all, affected by the population size. Yet it is 
also significantly affected by the life table construction method and by a population’s 
age composition. Study results are presented in the form of ready-to-use tables and 
relations, which may be useful in assessing the significance of estimates and differences 
in life expectancy across time and space for the territories with a small population size, 
when standard errors of life expectancy estimates may be high. 
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1. Introduction: Data and methods  

Life expectancy is a key characteristic of human longevity and development, and 
policies worldwide aim to increase it. While effective policies can be based on 
informative monitoring systems, estimating life expectancy for small populations may 
run into difficulties because of the small number of events and insufficient exposures, 
which lead to uncertainty in estimating death rates. This makes the development of 
methodology for estimating and comparing life expectancy for small populations a high 
priority. 

Using the Monte Carlo simulation approach, Silcocks, Jenner, and Reza (2001), 
Toson, Baker, and the Office of National Statistics (2003), Eayres and Williams (2004), 
as well as Williams et al. (2005) evaluated methodologies for the estimation of small-
area life expectancy in the United Kingdom (UK) context. They showed that life 
expectancy at birth is distributed normally and estimates of its standard error are 
distributed with a significant skew for the small population size. They also 
demonstrated that traditional life table methodology without special corrections for age 
bands with zero deaths in a small population performs quite well, and that the choice of 
the minimum age of the open age interval and modeling the mortality in that interval 
are important for estimating life expectancy and its standard error. Based on the 
simulated dependency of standard errors on population size, a minimum population 
years-at-risk size of 5,000 for estimating life expectancy at birth was recommended in 
the UK context. However, the age composition of a small population in all the tests was 
fixed and was only scaled up and down depending on the simulated population size. 
Apart from that, the effects of life expectancy level on estimation accuracy were not 
explored. In this paper we extend previous research by including the effects of 
population age composition and life expectancy level. 

Our work extends the previous research in several directions. First we confirm 
some of the findings in the literature in a wider context of mortality schedules and 
population structures. We conduct simulations based on all available male and female 
life tables for Austria, Italy, Japan, Spain, Sweden, and the UK, which were chosen as 
being representative of the variety of mortality situations in currently low-mortality 
countries. We use data from the Human Mortality Database (2010). For each life table 
scrutinized, we consider five stable population age compositions corresponding to -2%, 
-1%, 0%, 1%, and 2% annual population growth rates. Based on those mortality and 
population schedules, we consider eight population sizes of 1,000, 5,000, 10,000, 
25,000, 50,000, 100,000, 250,000 and 1 million people (in total, 43,680 populations). 

Second we present the empirical relations between the standard error of life 
expectancy indicators and the corresponding life table and population characteristics 
(life expectancy, and population growth rate). Third we evaluate standard errors for 
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both the life expectancy at birth and the life expectancy at age 60—two measurements 
that are essential in the context of policies oriented toward population aging and 
pension systems. Fourth we provide a more in-depth analysis of the normality of life 
expectancy estimates for small populations, and illustrate that age composition can 
crucially affect the normality of estimates (which is important for establishing 
confidence limits and the significance of the variation observed in terms of life 
expectancy). 

In contrast to previous work, we consider indicators of unabridged life tables. We 
also study the estimates for abridged life table calculations based on the age groups 0, 1, 
5, 10, ..., 85+ years. However both the previous work and our own study (not reported 
here) indicate that using abridged as opposed to unabridged life tables has only a small 
effect on estimation accuracy compared with the procedure chosen for the open age 
interval. At the same time, we find that estimates for abridged life tables tend to be 
systematically biased when the age composition deviates from that of the stationary 
population, irrespective of the population size. (These distortions are caused by a 
deviation from the stationary age composition within individual age intervals.) 
Therefore avoiding the use of abridged life tables is recommended unless the age 
composition of the population is fairly close to stationary. 

In the three works cited above, the open age interval was chosen to start at 85, 90, 
or 95 years; if no deaths occurred in the open age interval, the corresponding mortality 
rate was taken from a known life table and not from the simulated population. We use a 
different approach, adjusting the open age interval in such a way that there is at least 
one death in it; hence, we do not use (unavailable in practice) rates from a theoretical 
life table in order to infer a life table for the simulated population. 

In this paper we present auxiliary formal relations and describe how the 
simulations are designed; we then continue with a discussion of life table calculations, 
followed by the presentation of results. We conclude by presenting illustrative case 
studies and general recommendations. The paper is supplemented by an Appendix with 
tabular material. 

 
 

2. Preliminary formal considerations and simulations design  

Our study is based on simulations, as analytical approximations of standard errors of 
life expectancy estimates (Chiang 1984) are biased for small population (Eayres and 
Williams 2004). However formal considerations are still useful for understanding the 
mechanism behind the standard errors and biases of life expectancy estimates. Those 
considerations are in this section.  
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xqIndividuals in a population of size  at exact age x all have a probability of dying  
during one year. There is no migration. The number of deaths is binomially distributed. 

xN

A maximum likelihood estimator of  is xq
x

x
x N

D
=q̂ xD

( )

 where  is the observed 

number of deaths (Chiang 1984, eqs. (5.1) and (5.12)). The variance of  equals xq̂
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and (3.8)). 
Assuming a constant force of mortality , the death probability  equals 

. The occurrence‐exposure rate 
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− exp1
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x P
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=m̂ x
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xD

 ( P  stands for the population 

person-years exposed at age x to x+1, which may be approximated by the mid-year 
population for all age groups except the youngest and oldest ones) is a maximum 
likelihood estimator of . It is unbiased, consistent, and asymptotically normal when 
the number of deaths ( ) is large (Rao 1973, Chiang 1984). The asymptotic variance 

of  equals xm̂ ( )
x

x

P
q−1xm

xm̂−

 (Chiang 1984, eq. (3.5)). Using the constant force of mortality 

assumption and the invariance properties of maximum likelihood, one finds that 
. ( )xq 1ˆ = exp−

The model described above is applied to each of a number of age intervals 
(x, x+1), with age x running from 0 to 109, while x=110+ represents the open interval 
for the highest ages. Independence across ages is assumed. 

 
 

Why a bias in life expectancy estimates?  

We begin by illustrating why and how life expectancies can be biased when they are 
estimated from small population data.  

In his classic monograph, Chiang (1984:161) shows that sample life expectancy is 
“an unbiased estimate of the corresponding unknown true expectation of life.” This 
conclusion was based on the assumption that “the observed expectation of life [life 
expectancy calculated from observed death rates—Scherbov and Ediev] at a given age 
is the sample mean lifetime of individuals living beyond this age.” Yet, such an 
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assumption can only be asserted for cohort life tables obtained from observations over 
individual lifetimes. In our study we focus on estimates of period life expectancies; 
therefore, Chiang’s proposition about non-bias in the life expectancy may be violated 
(and, indeed, is, as follows from our and others’ simulations and the following formal 
relations). 

Consider first the estimate of probability of surviving to a given age, which is a 
function of accumulated mortality rates  (these represent the mortality rates and not 
the individual lifetimes upon which the period life table calculations are based): 

xm̂
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Mortality rates are unbiased estimates of the underlying theoretical rates:  
(Chiang 1984). Separating the expected values in (1) and expanding by Taylor’s 
theorem, yields: 
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Hence, assuming independence and non-bias in individual mortality rates, the estimated 
survival probability is biased upwards: 
 

( ) ( ) ( )

( ) ( ).ˆ
2
1ˆ

2
1

ˆ
2
1ˆˆ

1

0

21

0

2

2
1

0

1

0

∑+=⎥⎦
⎤

⎢⎣
⎡
∑ −+=

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡
∑ −+∑ −−≈

−

=

−

=

−

=

−

=

x

y
yxx

x

y
yyxx

x

y
yyx

x

y
yyxxx

mllmmEll

mmElmmElllE

σ

 (3) 

 
Similar relations apply to the probabilities of surviving from a given age x to another 
given age a. The life expectancy is the sum of such survival probabilities, which 
explains why it must be biased upwards. The results of adding more terms into the 
Taylor series expression in (3) cannot be exactly calculated analytically. However, at 
small population sizes the third central moment of binomial distribution is negative (at 

typically low mortality levels, the occurrence‐exposure rate 
x

x

P
D

=xm̂  is approximately 
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proportional to the binomially distributed enumerator). Therefore, both third- and 
fourth-degree terms in the Taylor expansion yield additional upward bias.  
 
 
How are biases related to population size?  

As noted above, variance of the occurrence‐exposure mortality rate is inversely 
proportional to the population exposed  in the respective age group; asymptotically 
(Chiang 1984), 

xP
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( )
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Hence, bias in (3) and in life expectancies must increase as population size decreases. 
eq. (4) also suggests that as population size increases, standard errors of estimates of 
life expectancy decrease (asymptotically) as an inverse square root of population size.  

 
 

How are standard errors related to population size?  

To roughly estimate variance of the survival probability, we drop the quadratic term in 
(2): 
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which, given eq. (4), implies that the standard errors of survival probabilities are 
asymptotically inversely proportional to the square root of the population size. The 
same applies to the probabilities of surviving from one given age to another and to life 
expectancy. At small population sizes when the contribution of the third and fourth 
moments in the Taylor series become considerable, there is an additional increase in 
standard errors. This effect is also visible in simulations. In our study the inverse 
proportionality between the standard errors and the population size may be used for 
populations of at least 5,000 people.  
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How skewed are the distributions of the estimates?  

The relation of survival probability to mortality rates is also indicative of how skewed 
its distribution might be. At typically low mortality levels, the occurrence‐exposure rate 

x

x
x P

Dm =ˆ  is approximately proportional to the binomially distributed and not skewed 

enumerator. A full Taylor’s expansion in (2) would combine non-skewed distributions 
generated by odd-powered summands and positively skewed distributions generated by 
even-powered summands. Hence, survival probabilities (and thus life expectancies) 
must be positively skewed. This means, in particular, that at sufficiently small 
population numbers, the distribution of life expectancies will deviate from normal. 
 
 
On Chiang’s approximation  

Chiang (1984:161-165) proposed a useful method for approximating standard errors of 
life table estimates for small areas. His recurrent method was based on first-order 
approximation to Taylor’s series of life expectancy as a function of survival 
probabilities. Earlier studies (Toson, Baker, and the Office of National Statistics 2003; 
Eayres and Williams 2004) suggested, in the UK context, the effectiveness of Chiang’s 
approximate method. Eayres and Williams report a good fit of the method for the 
standard error of life expectancy at birth at large population sizes; yet, at population 
size 5,000 the reported bias of the method already amounts to a decimal digit. We also 
studied the method using Japanese female life tables in 1947, 1977, and 2007 and came 
to results similar to those reported earlier. We found that the method yields strong 
biases at small population size (in our simulations, the method underestimates, on 
average, the standard error of life expectancy at birth by up to 0.3 years at population 
size 5,000 and by up to 0.8 years at population size 1,000; those biases are up to 0.4 and 
6 years, respectively, for the life expectancy at age 60). At large population size, its 
bias, being small in absolute value, amounts to 5% of the true standard error (results are 
similar for life expectancy both at birth and at age 60). A drawback, in the context of 
our study, of Chiang’s method for the standard errors is its inability to provide sample 
distributions of the estimated life expectancies and their standard errors. Therefore, our 
prime method of studying the standard errors in the work was based on simulations, and 
not on Chiang’s approximation. Although Chiang’s method may be used without 
significant problems starting from a population size of about 10,000, we also provide 
ready-to-use tables, which might be more convenient in practice at any population size. 
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Simulation design  

Each life table defines a stationary population (e.g., Keyfitz 1977). For one particular 
life table, we selected a certain population size N, and simulated populations with sizes 
N equal to 1,000, 5,000, 10,000, 25,000, 50,000, 100,000, 250,000 and 1 million 
people. The life table defines a probability of dying qx at each age interval. Given N, we 
also know the number of people Nx 

at each age x. The number of deaths in each age 
interval was drawn from a binomial distribution with probability qx and size Nx. One 
simulation run resulted in one specific value for the number of deaths in each age 
interval. This resulted in one life table and one set of values for the life expectancies at 
various ages. Repeated simulation gave us many sets of such life expectancies, and we 
report below the average values and standard errors of e

0 
and e

60 
across all simulations.  

In addition to the case of a stationary population, we also simulated life tables 
based on stable populations with growth rates r equal to ‐2%, ‐1%, +1%, and +2%. For 
a given life table and a given growth rate r, the age structure of the corresponding stable 
population can be constructed (e.g., Keyfitz 1977). Given the size N of each stable 
population, we computed Nx, the number of people at each age x, and simulated life 
tables and life expectancy values as described above for the case of a stationary 
population. 

 
 

How many simulations per sample?  

The number of simulations used in our study (25,000) is considerably higher than that 
used in the previous literature (2,000 by Silcocks, Jenner, and Reza 2001 as well as 
Toson, Baker, and the Office of National Statistics 2003; 10,000 by Eares and Williams 
2005). Such a high number was chosen so as to reduce statistical errors of the outcome 
of the simulations to an acceptable minimum, as described next. The standard error of 

normal sample standard error S  is given as 
( )12
1
−

≈
nS σσ , where σ  is an 

unknown standard deviation estimated by , and  is the sample size (Ahn and 
Fessler 2003). At , the standard error amounts to about 1.6% of the standard 
deviation, which, being relatively small, may nonetheless considerably affect the 
outcome of the estimates (especially given the need to study the normality of the 
estimates and their confidence limits). We increased the number of simulations to 
25,000 so that the relative standard error of the standard error falls below 0.5%. 

S n
2000=n
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3. Life table procedures. Imputations for the open age interval  

Small population size creates specific problems when a life table is being constructed in 
the usual way (see details in Eayres and Williams 2004). In particular, the absence of 
deaths at the open age interval implies immortality. Toson, Baker, and the Office of 
National Statistics (2003) as well as Eayres and Williams (2004) showed that life tables 
with zero death rates at age groups other than the open age group perform better than 
those with artificially imputed low death rates (we also came to a similar conclusion 
based on simulations of the Russian case, not presented here).  

For the open age interval, Toson Baker, and the Office of National Statistics 
(2003) and Eayres and Williams (2004) proposed to impute an externally determined 
mortality (e.g., from the national life table) for the open age interval with no deaths 
observed. We have examined this method and, indeed, extra knowledge about mortality 
at open age intervals improves the life expectancy estimates considerably. However in 
many practical cases there is no basis for assuming that old-age mortality in a certain 
small population will be exactly the same as that observed elsewhere or on a nationwide 
basis. Often the very purpose of estimating life expectancy for small areas is to reveal 
the differences; for this purpose imputing standard mortality at open age intervals may 
not be sufficient.  

We therefore present here an alternative approach, where the boundary of the open 
age interval is lowered to such a level (from the original level of 110 years) that it 
comprises at least one observation of death. As rough as it may be, this method 
performed better in our simulations than alternatives with a minimum of 2, 3, …, 7 
death observations in the open age interval (we do not present the results for those 
alternatives here). Except for very small and growing populations, standard errors of 
life expectancy estimates produced by this method were comparable to standard errors 
of estimates produced by imputing the theoretical mortality from the original life table 
for the open age interval. For a stationary population of 1,000 people, the former 
standard error is about 20% higher than the latter; for 2,000 people it is 5% higher; for 
5,000 people, 2% higher; and for a stationary population of 25,000 people, 1% higher. 
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4. Results  

4.1 General overview  

In this section we outline the general variation of estimation biases and standard errors 
according to population size, stable growth rates, and mortality levels. A more detailed 
analysis of the factors of standard errors follows in the sections below. 

Although there are distinguishable differences in the results for males and females, 
the differences are far smaller than the standard errors themselves. We therefore pool all 
the results together, irrespective of the gender of the population. 

Mortality level and population age structure, on the other hand, have strong effects 
on the outcomes. Standard errors for estimates of life expectancy at birth tend to peak at 
life expectancy at birth of around 50 years, while standard errors of life expectancy at 
age 60 increase monotonically as life expectancy at birth increases. Population growth 
increases standard errors for life expectancy at age 60, while its effect on standard 
errors for life expectancy at birth interacts with the level of the life expectancy.  

The effect of the population size, the most important driver of standard errors, may 
be modeled as a square-root function, as suggested by the theoretical considerations 
above. Starting from population size 5,000, the standard errors rescaled to populations 
of 1,000 people— 

 
100000 NSDs = , (6) 

       10006060 NSDs =′ , (7) 

       1000606060 += NSDs , (8) 
 
—are already fairly constant, where  and  are the standard errors for life 
expectancy at birth and at age 60, respectively;  and  are the total population 
size and population at age 60 and above. However with extremely small population 
sizes, the rescaled standard errors shift upwards. This problem is particularly strong for 
growing populations. We therefore present results separately for populations of 1,000 
and 5,000 or more people. 

0SD 60SD
N +60N
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4.2 Standard errors of life expectancy estimates  
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0s

Simulated standard errors for life expectancy estimates at different levels of life 
expectancy at birth, population size, and growth rate are presented in Appendix, Table 
A1. In the table we present rescaled errors (6)–(8) obtained from simulations for 
populations of 5,000 and over. Results for the smallest population size (1,000) are 
singled out because, as noted above, the square-root approximation underestimates the 
standard errors for populations of this size.  

There is a curvilinear association between the rescaled standard errors  and the 
underlying true life expectancy at birth (see e.g., Figure 1 for stationary populations). 
This kind of association can be explained by a combination of processes with opposite 
effects in period mortality:  

 
(i) Decrease in infant and child mortality increases the role of adult mortality; this 

pushes up the standard errors of estimates of the life expectancy at birth. To 
see that, a stylized model with a known infant mortality may be considered, 
where ( ) 10 ˆ1 eq  and the variance 0ê −≈ ( ) ( ) ( )1

22
00

2 ˆ1ˆ eqe σσ −≈  goes up when 
infant mortality declines. With declining infant mortality, the effect eventually 
levels off. 

(ii) An opposite effect is due to mortality compression (e.g., Fries 1980). As adult 
mortality decreases, the distribution of period life table deaths becomes more 
concentrated around the mean age at death. This also suppresses the standard 
error of the life expectancy estimate (our simulations suggest a tight positive 
association between the standard error of the life expectancy estimate and the 
standard deviation of life table age at death). 

 
Despite the evident overall association between the life expectancy at birth and its 

standard error, the particularities of mortality age patterns may strongly affect the 
standard errors (note the case of Russian males also presented in the figure for 
illustrative purposes). 

Therefore, the results of our study could be used in the context of mortality 
estimates (both contemporary and historical) in populations with mortality resembling 
that observed in modern developed countries. Situations with expected deviant age 
patterns of mortality must be addressed separately (e.g., by conducting additional 
simulations). 
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Figure 1: Association between standard errors of estimates and underlying 
theoretical values of life expectancy at birth for the stationary 
populations analyzed (one dot represents an average over 25,000 
simulations) 
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Standard errors of estimates of life expectancy at 60, not affected by the specific 

influence of infant mortality, follow a more consistent association with life expectancy 
at 60, irrespective of the population growth rate (see Figure 2 for standard errors 
averaged over all five population growth rates analyzed). The wide variety of simulated 
cases may be described by the following regression: 
 

errees +⋅−⋅= 2
606060 0010.0082.0 ,  (9) 

 
with a standard error of 0.04 years. Note that the relation applies at any population 
growth rate; the effects of population growth rate on age structure are well captured in 
rescaling (8) to a population of 1,000 persons at age 60+. Also note that eq. (9) yields, 
naturally, more accurate estimates than those presented in Appendix Table A1, where it 
is the life expectancy at birth that is used as the input variable instead of the life 
expectancy at age 60. 
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Figure 2: Association between standard errors of estimates and underlying 
theoretical values of life expectancy at 60 (one dot represents an 
average over 25,000 simulations). 
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Table A1 demonstrates the importance of population age composition for accurate 

estimation of life expectancy in small populations. This suggests additional simulations 
may be required  for populations whose age composition strongly differs from that of 
stable populations. 

 
 

4.3 Biases  

As suggested by the introductory theoretical considerations, there are upward biases in 
life expectancy estimates. The biases are notable for all population sizes up to 10,000 
people.  

For stationary and shrinking populations, the biases (for both life expectancy at 
birth and at age 60) amounted to about one year for populations as small as 1,000 
people, and 0.2 years for populations of 5,000 people. For growing populations, these 
estimates must be doubled. However, the biases were significantly smaller than the 
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standard errors of the life expectancy estimates. According to our simulations, 
estimation biases may be neglected for population sizes exceeding 10,000.  

Given the strong dependency of the bias on age structure, we recommend that 
individual corrections in each specific case should be considered depending on the 
actual age composition of the population at a population size of under 5,000. 

Simulations indicate that there is a significant association between estimation 
biases and standard errors. For the sample set of stable populations examined, we found 
the following regression relation which may be used to roughly assess the estimation 
bias for life expectancy at birth: 
 

errrSDSDSDBias +⋅⋅+⋅+⋅= 0
2

000 050.0015.010.0   (10) 
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1.0
 
where =errσ  years (r is the stable population growth rate in percentage per annum: 

1=r  for 1% growth rate, etc.) 
The estimation bias of  is also correlated with the standard error of the 

estimation: 
60e

 
errrSDSDSDBias +⋅⋅−⋅+⋅= 60

2
606060 0094.00265.0366.0  (11) 

 
04.0=errσ  years. with 

 
 

4.4 Normality of life expectancy estimate’s distribution  

Previous research (Silcocks, Jenner, and Reza 2001; Eayres and Williams 2004; 
Williams et al. 2005) suggested that the distribution of estimates may be considered as 
approximately normal, which might simplify the practical use of standard errors of 
estimates (in applications such as the construction of confidence intervals, hypothesis 
testing, examining the significance of temporal or geographical variation of life 
expectancy, etc.) Strictly speaking the distribution of life expectancy estimates is not 
normal at any finite population size (see introductory formal considerations for 
explanations). For example, at 10,000 simulations, the Pearson test is powerful enough 
to reject normality of the simulated distribution of life expectancy even at a population 
of 100,000 people, when population growth is 2% per year. However, these are certain 
distribution percentiles rather than the normality of distributions as such, that are 
important for most applications. Estimates of selected percentiles derived from 
simulated distributions and from the corresponding normal distributions are presented 
in Appendix Tables A2 and A3. Percentiles obtained assuming the normality of 
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estimates of life expectancy at birth or at age 60 are fairly close to those obtained 
directly from simulated distributions at a population size of 50,000 or more. Assuming 
normality for a population of 5,000 or less might be discouraged, unless the tested 
difference in life expectancies falls far beyond the confidence limits. When studying 
populations of an intermediate size between 5,000 and 50,000, one must be aware of the 
possible effects of deviation of the age composition of the population from the 
stationary age composition. 

 
 

5. Illustrative examples  

Simulation results illustrate that estimations of life expectancy for small populations 
may be associated with quite high standard errors and biases. Those must be taken into 
account both in designing the system of statistical observations and in interpreting 
geographical, temporal, and other variations of longevity obtained from small 
populations. Below we present several illustrations of this kind. 

 
 

Case 1. Establishing confidence limits for life expectancy  
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9.3≈

Let life expectancy at birth be estimated at 86 years in a population of 20,000 people. 
What, roughly, would be the confidence limits for the actual life expectancy at the 95% 
confidence level, assuming stationary age composition? From Appendix Table A1, we 
may assess  (years per 1,000 persons). Hence the standard error calculated for 

the actual population size would be 
0s

9.9.3 1000
20000

0 ==SD  (years). Assuming normality 

this yields  years at a 95% confidence level. 7.1±860 =e
 
 
Case 2. Examining the significance of life expectancy variation  

Consider the hypothetical case of comparing life expectancy in two small populations. 
These populations may either represent two geographically or otherwise defined 
subpopulations of the total or the same population at two points in time. In the first 
case, we examine the significance of spatial or social variation in life expectancy, while 
in the second, we examine the significance of temporal variation. Suppose the two 
populations are characterized by the following indicators: 
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 Population 1 Population 2 
Total population, people 20,000 50,000 
Life expectancy at birth 86.0 83.5 
Population at age 60 or more 5,930 15,629 
Life expectancy at age 60 25.5 26.1 

 
 
Then assume that the age composition of both populations is near stationary. Is the 

difference in life expectancy between the two populations significant (say, at the 5% 
significance level)? 

To investigate the question above, we estimate standard errors of the estimates of 
life expectancy for the two populations. From Appendix Table A1 we may assess 

( ) (9.31 ≈0s  (years per 1,000 persons) for the first population and )2
0 ≈ 9.3s  for the 

second population. Hence, standard errors calculated for the actual population sizes 
would be: 

 
( ) 9.9.3 1000

200001
0 ==SD  and ( ) 6.9.3 1000

500002
0 ==SD  (years). 

 
Assuming the independence of the estimates for the two populations, we may 

compute the standard error of the difference between the estimates of life expectancy: 
 

( ) ( ) ( )( ) ( )( ) 0.1
22

0
21

0
21

0 =+=− SDSDSD  (years). 
 
Given the standard error and assuming normal distribution, the observed difference 

of 86.0-83.5=2.5 years yields p-value 1.6% (double-sided alternative) that is, the 
difference is significant at the 5% significance level. The two populations are different 
with respect to life expectancy at birth at the 95% confidence level. 

Let us examine the significance of the difference in life expectancy at age 60. 
From Appendix Table A1 we obtain ( ) 5.11

60 ≈s  and ( ) 4.12
60 ≈s  for the two populations 

analyzed (years per 1,000 people of age 60 or more). Hence, standard errors estimated 
for the actual population sizes would be 

 
( ) 6.05.1 1000

59301
60 ==SD  and ( ) 3.04.1 1000

156292
60 ==SD  (years). 

 
Assuming the independence of the estimates for the two populations, we may 

compute the standard error of the difference between the estimates of life expectancy: 
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( ) ( ) ( )( ) ( )( ) 7.0

22
60

21
60

21
60 =+=− SDSDSD  (years). 

 
Given the standard error and assuming normal distribution, the observed difference 

of 26.1-25.5=0.6 years yields p-value 40% (double-sided alternative), that is, the 
difference may not be considered significant at the 5% significance level. The two 
populations do not differ significantly with respect to life expectancy at age 60. 
 
 
Case 3. Minimal population size meeting the required level of estimation accuracy  

Consider a situation where life expectancy at age 60 is estimated to be about 25 years, 
the proportion of the population aged 60 and more is 30%, and the age composition is 
stationary. Then suppose that the policymaker demands measurements of life 
expectancy at age 60 to be made at the regional level, with errors not exceeding 0.75 
years at a 95% confidence level. What would the recommendation be about minimal 
population size for estimating the life expectancy at age 60 with the required accuracy? 
A difference of 0.75 years would not be statistically significant at the 95% confidence 
level at a standard error higher than 38.096.1

75.0 =  years (assuming normal distribution, 
double-sided hypothesis). For a stationary population with 2560 =e

43

, eq. (9) implies that 

 years, that is, the critical threshold 0.38 of standard 

error may be reached at population size 

.125001.025082.0 2
60 ≈⋅−⋅=s

14
38.0
43.1 2

60 =⎟
⎠
⎞

⎜
⎝
⎛=+N  (thousand) at age 60 or 

higher, that is, at total population size 46
3.0

14
≈=N  (thousand). Hence, estimation of 

life expectancy at 60 may be recommended for areas with at least 46,000 people. 
 
 

6. General recommendations  

We have shown that both the standard errors and the estimation bias become very high 
at a population size of around 5,000 or less. Additionally the distributions of standard 
errors deviate strongly from normality at such population sizes, which precludes 
building confidence limits and conducting other statistical analyses. Therefore 
estimating life expectancies for such populations must be discouraged. 
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Based on Appendix Table A1 and assuming that the standard error of the estimates 
of the life expectancy at birth is about one year or less, we may conclude that 
population exposure years should be about 15,000 people or more for a low-mortality 
population. To estimate life expectancy at 60 with a standard error of about 0.25 years, 
the population size should be about 100,000 or more for stationary populations, 65,000 
for populations declining at 2%, and 250,000 for populations growing at 2% per annum. 
These rough estimates only outline how strict the requirements regarding population 
size could be to secure relatively accurate estimations. 

We found the age composition of the population to be important for the accuracy 
of estimating life expectancy in small populations.  

Precise assessments of standard errors and of minimal population size may vary 
considerably depending on actual population age composition and mortality schedules. 
Even the requirements for standard errors may vary from population to population, 
depending, for example, on observed spatial and social variation of mortality as well as 
on policy demands. In a country with high spatial diversity in life expectancy (e.g., 
Russia), even a low-precision estimate of life expectancy at the municipal level may 
reveal important regional differences, while for a country with more homogeneous 
regional mortality variation, like many western European countries, estimates must be 
conducted with higher precision, so that they reveal informative variations of mortality 
levels and not the random sample-size effects. 

In most applications of standard errors, it is convenient to assume a normal 
distribution of the estimates. Our simulations indicate that such assumptions may safely 
be used starting from a population size of 50,000 people. For populations of 5,000 or 
less, such assumptions are not acceptable. In intermediate situations, normality 
assumptions may be used only as a rough approximation. More precise assessments, if 
necessary, may demand a detailed analysis and perhaps additional simulations tailored 
to the particular situation.  

We do not find any advantages in using abridged life tables instead of unabridged 
ones even for a small population with many age groups containing no death 
observations. What is more, abridged life table calculations may lead to strong biases 
when the population age composition deviates from the stationary composition. Hence, 
it might well be advisable to use the unabridged life tables rather than the abridged ones 
when the population is not stationary. 

Our simulation results show that procedures for the open age interval are crucial 
for the efficiency of life expectancy estimation. Although we found efficiency in our 
simple approach based on adjusting the open age interval in such a way that there is at 
least one death observed, more research on procedures for the open age interval could 
be important. 
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Appendix: Supplementary tables  

Table A1: Standard for life expectancy estimates at different life expectancy, 
population growth rate, and size (see explanatory notes below the 
table) 

Population size 1,000 persons Population size >= 5,000 persons Range of life 
expectancy at birth, 
years 0SD 60 0s 60s SD  60s   ′  60s  

At population growth rate 0%: 
35 or less 5.6 (0.5) 4.2 (0.3) 1.4 (0.1) 5.3 (0.5) 2.6 (0.2) 0.9 (0.1) 
35-40 6.3 (0.2) 3.8 (0.2) 1.3 (0.1) 6.0 (0.2) 2.4 (0.1) 0.9 (0.0) 
40-45 6.5 (0.2) 3.8 (0.2) 1.4 (0.1) 6.3 (0.2) 2.4 (0.1) 0.9 (0.1) 
45-50 6.8 (0.2) 3.8 (0.2) 1.4 (0.1) 6.5 (0.2) 2.5 (0.1) 0.9 (0.1) 
50-55 7.0 (0.2) 3.7 (0.2) 1.5 (0.1) 6.7 (0.2) 2.5 (0.1) 1.0 (0.1) 
55-60 6.9 (0.2) 3.6 (0.2) 1.5 (0.1) 6.6 (0.2) 2.5 (0.1) 1.0 (0.1) 
60-65 6.4 (0.4) 3.5 (0.2) 1.5 (0.1) 6.1 (0.4) 2.5 (0.1) 1.1 (0.1) 
65-70 5.6 (0.4) 3.4 (0.2) 1.5 (0.1) 5.3 (0.5) 2.4 (0.1) 1.1 (0.1) 
70-75 5.0 (0.3) 3.4 (0.2) 1.6 (0.1) 4.6 (0.4) 2.5 (0.1) 1.1 (0.1) 
75-80 4.7 (0.2) 3.5 (0.3) 1.7 (0.1) 4.2 (0.2) 2.6 (0.1) 1.3 (0.1) 
80 and more 4.4 (0.1) 3.4 (0.2) 1.8 (0.1) 3.9 (0.1) 2.6 (0.1) 1.4 (0.1) 

At population growth rate -1%: 
35 or less 6.2 (0.7) 2.9 (0.3) 1.1 (0.1) 6.0 (0.6) 2.1 (0.1) 0.8 (0.1) 
35-40 7.0 (0.3) 2.6 (0.1) 1.1 (0.0) 6.8 (0.3) 2.0 (0.1) 0.9 (0.0) 
40-45 7.3 (0.3) 2.6 (0.1) 1.1 (0.1) 7.1 (0.3) 2.1 (0.1) 0.9 (0.0) 
45-50 7.5 (0.3) 2.6 (0.1) 1.2 (0.1) 7.4 (0.3) 2.1 (0.1) 0.9 (0.1) 
50-55 7.7 (0.2) 2.5 (0.1) 1.2 (0.1) 7.6 (0.2) 2.1 (0.1) 1.0 (0.1) 
55-60 7.5 (0.3) 2.5 (0.1) 1.2 (0.1) 7.4 (0.3) 2.1 (0.1) 1.0 (0.1) 
60-65 6.9 (0.5) 2.5 (0.1) 1.2 (0.1) 6.8 (0.5) 2.1 (0.1) 1.1 (0.1) 
65-70 5.8 (0.6) 2.4 (0.1) 1.2 (0.1) 5.8 (0.6) 2.1 (0.1) 1.1 (0.0) 
70-75 4.9 (0.6) 2.4 (0.1) 1.3 (0.1) 4.9 (0.6) 2.1 (0.1) 1.2 (0.1) 
75-80 4.3 (0.3) 2.5 (0.1) 1.4 (0.1) 4.3 (0.3) 2.2 (0.1) 1.3 (0.1) 
80 and more 3.9 (0.2) 2.4 (0.1) 1.5 (0.1) 4.0 (0.2) 2.2 (0.1) 1.4 (0.1) 

At population growth rate 1%: 
35 or less 5.3 (0.4) 5.2 (0.3) 1.4 (0.2) 4.9 (0.4) 3.2 (0.3) 0.9 (0.1) 
35-40 5.9 (0.2) 5.1 (0.2) 1.5 (0.1) 5.5 (0.2) 3.0 (0.2) 0.9 (0.1) 
40-45 6.2 (0.2) 5.2 (0.2) 1.5 (0.1) 5.7 (0.2) 3.0 (0.2) 0.9 (0.1) 
45-50 6.6 (0.2) 5.4 (0.3) 1.7 (0.1) 6.0 (0.1) 3.0 (0.2) 1.0 (0.1) 
50-55 6.9 (0.2) 5.5 (0.3) 1.8 (0.1) 6.2 (0.1) 3.0 (0.2) 1.0 (0.1) 
55-60 6.9 (0.2) 5.5 (0.3) 1.9 (0.1) 6.1 (0.2) 3.0 (0.2) 1.0 (0.1) 
60-65 6.7 (0.3) 5.5 (0.3) 2.0 (0.1) 5.7 (0.3) 3.0 (0.1) 1.1 (0.1) 
65-70 6.3 (0.3) 5.4 (0.3) 2.0 (0.1) 5.1 (0.3) 2.9 (0.1) 1.1 (0.1) 
70-75 6.2 (0.3) 5.6 (0.3) 2.2 (0.1) 4.6 (0.3) 3.0 (0.1) 1.2 (0.1) 
75-80 6.3 (0.3) 5.9 (0.4) 2.4 (0.2) 4.3 (0.1) 3.1 (0.1) 1.3 (0.1) 
80 and more 6.4 (0.3) 6.0 (0.3) 2.7 (0.2) 4.1 (0.1) 3.1 (0.1) 1.4 (0.1) 
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Table A1: (Continued)  
Population size 1,000 persons Population size >= 5,000 persons Range of life 

expectancy at birth, 
years 0SD 0s 60s 60SD  60s   ′  60s  

At population growth rate -2%: 
35 or less 7.3 (0.9) 2.1 (0.1) 1.0 (0.1) 7.0 (0.8) 1.8 (0.1) 0.9 (0.1) 
35-40 8.3 (0.4) 2.0 (0.1) 1.0 (0.0) 8.0 (0.4) 1.8 (0.1) 0.9 (0.0) 
40-45 8.6 (0.4) 2.0 (0.1) 1.0 (0.1) 8.3 (0.4) 1.8 (0.1) 0.9 (0.0) 
45-50 8.9 (0.4) 2.0 (0.1) 1.1 (0.0) 8.7 (0.4) 1.8 (0.1) 1.0 (0.1) 
50-55 9.1 (0.3) 2.0 (0.1) 1.1 (0.1) 9.0 (0.3) 1.8 (0.1) 1.0 (0.1) 
55-60 8.9 (0.5) 2.0 (0.1) 1.1 (0.1) 8.8 (0.4) 1.9 (0.1) 1.1 (0.1) 
60-65 7.9 (0.7) 2.0 (0.1) 1.1 (0.1) 8.0 (0.6) 1.9 (0.1) 1.1 (0.1) 
65-70 6.7 (0.9) 2.0 (0.1) 1.1 (0.0) 6.8 (0.8) 1.8 (0.1) 1.1 (0.1) 
70-75 5.4 (0.8) 2.0 (0.1) 1.2 (0.1) 5.6 (0.8) 1.9 (0.1) 1.2 (0.1) 
75-80 4.6 (0.4) 2.1 (0.1) 1.3 (0.1) 4.8 (0.4) 2.0 (0.1) 1.3 (0.1) 
80 and more 4.1 (0.2) 2.1 (0.1) 1.4 (0.1) 4.3 (0.2) 2.0 (0.1) 1.4 (0.1) 

At population growth rate 2%: 
35 or less 5.0 (0.4) 5.0 (0.5) 1.1 (0.2) 4.7 (0.3) 4.3 (0.7) 0.9 (0.1) 
35-40 5.6 (0.2) 5.3 (0.3) 1.3 (0.1) 5.2 (0.1) 3.9 (0.5) 0.9 (0.1) 
40-45 6.0 (0.2) 5.4 (0.4) 1.3 (0.1) 5.5 (0.2) 3.9 (0.4) 0.9 (0.1) 
45-50 6.4 (0.2) 5.9 (0.3) 1.5 (0.1) 5.8 (0.1) 3.9 (0.4) 1.0 (0.1) 
50-55 6.9 (0.2) 6.4 (0.3) 1.8 (0.1) 6.0 (0.2) 3.8 (0.4) 1.0 (0.1) 
55-60 7.2 (0.3) 6.7 (0.4) 1.9 (0.1) 6.0 (0.2) 3.8 (0.4) 1.1 (0.1) 
60-65 7.2 (0.4) 6.8 (0.4) 2.0 (0.2) 5.7 (0.3) 3.8 (0.3) 1.1 (0.1) 
65-70 7.1 (0.4) 6.8 (0.3) 2.0 (0.2) 5.3 (0.3) 3.7 (0.3) 1.1 (0.1) 
70-75 7.5 (0.3) 7.4 (0.4) 2.4 (0.2) 5.0 (0.2) 3.8 (0.3) 1.2 (0.1) 
75-80 8.2 (0.4) 8.2 (0.5) 2.8 (0.2) 4.8 (0.2) 3.9 (0.3) 1.3 (0.1) 
80 and more 8.8 (0.5) 8.8 (0.5) 3.2 (0.2) 4.7 (0.2) 3.9 (0.2) 1.4 (0.1) 
 

Notes: , - standard error of the estimated life expectancy at birth and at age 60, respectively; 0SD 60SD 100060+N6060 = SDs  - 

standard error of the estimated life expectancy at age 60 rescaled to population size 1,000 at age 60 and above; 

10006060 NSDs =′1000N= 00 SDs , - standard error of the estimated life expectancy at birth and at age 60, respectively, 

rescaled to total population size 1,000. Standard errors are obtained by averaging sample standard deviations (rescaled for 
populations above 1,000 people) over all populations with life expectancies in a given range. Numbers in parentheses 
represent the standard error of indicators over the entire set of simulated populations. Results for Russian life tables are 
excluded while averaging because of considerably different patterns. 
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Table A2: Percentiles of distribution of estimates for life expectancy at birth, 
derived from simulated distribution and from corresponding normal 
distribution (simulations are based on stable populations and 
mortality schedules corresponding to the life table of the Japanese 
female population in 2007)  

 Percentile: Population size Growth rate 
 2.5% 5.0% 50.0% 95.0% 97.5% 

5000 -2% Normal distribution 82.42 83.01 86.09 89.16 89.75 
  Actual distribution 81.66 82.61 86.33 88.67 89.08 
 -1% Normal distribution 82.69 83.24 86.10 88.96 89.50 
  Actual distribution 82.31 83.03 86.23 88.74 89.19 
 0% Normal distribution 82.70 83.26 86.15 89.04 89.60 
  Actual distribution 82.59 83.17 86.21 88.94 89.49 
 1% Normal distribution 82.49 83.10 86.31 89.51 90.12 
  Actual distribution 82.46 83.14 86.30 89.44 90.03 
 2% Normal distribution 81.80 82.55 86.46 90.37 91.12 
  Actual distribution 82.10 82.81 86.38 90.29 91.22 
10000 -2% Normal distribution 83.45 83.87 86.03 88.18 88.60 
  Actual distribution 83.15 83.70 86.15 87.97 88.25 
 -1% Normal distribution 83.65 84.04 86.05 88.06 88.44 
  Actual distribution 83.51 83.96 86.11 87.92 88.25 
 0% Normal distribution 83.69 84.07 86.08 88.09 88.47 
  Actual distribution 83.58 84.00 86.11 88.04 88.39 
 1% Normal distribution 83.49 83.91 86.14 88.36 88.79 
  Actual distribution 83.40 83.87 86.15 88.34 88.74 
 2% Normal distribution 83.14 83.64 86.23 88.83 89.32 
  Actual distribution 83.24 83.71 86.22 88.88 89.36 
50000 -2% Normal distribution 84.82 85.01 85.99 86.98 87.17 
  Actual distribution 84.77 84.97 86.02 86.93 87.11 
 -1% Normal distribution 84.91 85.09 86.01 86.93 87.10 
  Actual distribution 84.87 85.06 86.02 86.89 87.07 
 0% Normal distribution 84.94 85.11 86.01 86.91 87.08 
  Actual distribution 84.92 85.11 86.02 86.90 87.06 
 1% Normal distribution 84.83 85.02 86.00 86.99 87.17 
  Actual distribution 84.83 85.02 86.01 86.99 87.18 
 2% Normal distribution 84.69 84.90 86.03 87.16 87.38 
  Actual distribution 84.70 84.90 86.02 87.16 87.40 
100000 -2% Normal distribution 85.17 85.30 85.99 86.68 86.82 
  Actual distribution 85.13 85.28 86.01 86.66 86.77 
 -1% Normal distribution 85.21 85.33 85.99 86.64 86.76 
  Actual distribution 85.20 85.32 86.00 86.62 86.74 
 0% Normal distribution 85.23 85.35 85.99 86.63 86.75 
  Actual distribution 85.21 85.34 85.99 86.62 86.73 
 1% Normal distribution 85.17 85.30 85.99 86.68 86.82 
  Actual distribution 85.16 85.30 85.99 86.69 86.82 
 2% Normal distribution 85.08 85.23 86.01 86.80 86.95 
  Actual distribution 85.09 85.23 86.01 86.80 86.97 
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Table A3: Percentiles of distribution of estimates for life expectancy at age 60, 
derived from simulated distribution and from corresponding normal 
distribution (simulations are based on stable populations and 
mortality schedules corresponding to the life table of the Japanese 
female population in 2007)  

 Percentile: Population size Growth rate 
 2.5% 5.0% 50.0% 95.0% 97.5% 

5000 -2% Normal distribution 26.23 26.53 28.12 29.71 30.02 
  Actual distribution 26.24 26.53 28.14 29.70 30.00 
 -1% Normal distribution 26.05 26.39 28.15 29.92 30.26 
  Actual distribution 26.08 26.41 28.14 29.92 30.28 
 0% Normal distribution 25.77 26.17 28.23 30.29 30.68 
  Actual distribution 25.85 26.21 28.20 30.32 30.76 
 1% Normal distribution 25.29 25.78 28.35 30.92 31.41 
  Actual distribution 25.42 25.88 28.31 30.93 31.45 
 2% Normal distribution 24.45 25.11 28.55 31.99 32.65 
  Actual distribution 24.89 25.45 28.41 31.88 32.87 
10000 -2% Normal distribution 26.76 26.97 28.08 29.20 29.41 
  Actual distribution 26.75 26.98 28.08 29.20 29.41 
 -1% Normal distribution 26.64 26.87 28.10 29.33 29.57 
  Actual distribution 26.62 26.85 28.10 29.33 29.55 
 0% Normal distribution 26.40 26.68 28.13 29.57 29.85 
  Actual distribution 26.42 26.68 28.12 29.56 29.86 
 1% Normal distribution 26.12 26.45 28.20 29.94 30.27 
  Actual distribution 26.16 26.48 28.18 29.96 30.31 
 2% Normal distribution 25.67 26.09 28.31 30.52 30.95 
  Actual distribution 25.80 26.19 28.26 30.56 31.06 
50000 -2% Normal distribution 27.46 27.56 28.06 28.56 28.66 
  Actual distribution 27.46 27.56 28.06 28.57 28.67 
 -1% Normal distribution 27.40 27.51 28.07 28.62 28.73 
  Actual distribution 27.41 27.51 28.06 28.62 28.73 
 0% Normal distribution 27.33 27.45 28.08 28.71 28.83 
  Actual distribution 27.31 27.45 28.08 28.71 28.84 
 1% Normal distribution 27.16 27.30 28.07 28.84 28.98 
  Actual distribution 27.17 27.30 28.07 28.84 28.99 
 2% Normal distribution 26.96 27.14 28.10 29.05 29.24 
  Actual distribution 26.97 27.15 28.09 29.07 29.26 
100000 -2% Normal distribution 27.64 27.71 28.06 28.41 28.48 
  Actual distribution 27.63 27.70 28.06 28.41 28.48 
 -1% Normal distribution 27.59 27.66 28.06 28.45 28.52 
  Actual distribution 27.58 27.66 28.06 28.44 28.51 
 0% Normal distribution 27.53 27.61 28.06 28.51 28.59 
  Actual distribution 27.53 27.61 28.06 28.51 28.59 
 1% Normal distribution 27.42 27.52 28.06 28.60 28.70 
  Actual distribution 27.43 27.52 28.06 28.61 28.70 
 2% Normal distribution 27.29 27.41 28.08 28.75 28.88 
  Actual distribution 27.30 27.43 28.08 28.76 28.88 
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