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Tempo-Adjusted Period Parity Progression Measures, Fertility
Postponement and Completed Cohort Fertility

Hans-Peter Kohler1 Jośe Antonio Ortega2

Abstract

In this paper we introduce a new set of tempo-adjusted period parity progression mea-
sures in order to account for two distinct implications caused by delays in childbearing:
tempo distortionsimply an underestimation of the quantum of fertility in observed period
data, and thefertility aging effectreduces higher parity births because the respective expo-
sure is shifted to older ages when the probability of having another child is quite low. Our
measures remove the former distortion and provide means to assess the latter aging effect.
The measures therefore provide a unified toolkit of fertility indices that (a) facilitate the
description and analysis of past period fertility trends in terms of synthetic cohort mea-
sures, and (b) allow the projection of the timing, level and distribution of cohort fertility
conditional on a specific postponement scenario. Due to their explicit relation to cohort
behavior, these measures extend and improve the existing adjustment of the total fertility
rate. We apply these methods to Sweden from 1970 to 1999.
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1 Introduction

Substantial fluctuations in the level of period fertility are often coupled with marked
changes in the timing of births. For instance, the postponement of fertility has impor-
tantly contributed to the emergence of low and lowest-low fertility in Europe during the
1990s (e.g., Kohler, Billari, and Ortega 2001). These changes in the timing of fertility are
of central relevance for demographers interested in the measurement and projection of
fertility. On the one hand, future postponement patterns have important implications for
cohort fertility and the recuperation of delayed childbearing. On the other hand, past and
current delays of childbearing affect the properties and interpretation of standard period
fertility measures. In particular, a postponement or anticipation of fertility renders the
level of standard period fertility measures different from the level that would have been
observed in the absence of tempo changes. These differences are calledtempo distortions,
and the period fertility level in the absence of tempo distortions is calledtempo-adjusted
fertility or quantum.

Despite the widespread agreement about the relevance of such tempo distortions, the
appropriate way of measuring and adjusting for these effects remains controversial. Bon-
gaarts and Feeney (1998, henceforth BF) have proposed an adjusted total fertility rate that
measures the total fertility rate that would have been observed in a calendar year if there
had been no change in the tempo of fertility during that year. Kohler and Philipov (2001,
henceforth KP) have extended this adjustment to include variance effects, i.e., changes
in the shape of the fertility schedule in addition to shifts in the mean age. Alternative
models for adjusting theTFR have also been proposed (e.g., Brass 1990; Le Bras 1997),
and virtually all of the above approaches are strongly influenced by the seminal work of
Norman Ryder (e.g., Ryder 1964, 1983) (see also the review of the literature on period
fertility measures in Ortega and Kohler 2002a).

In addition to the debate about the appropriate adjustment for tempo distortions, there
is also a controversy about the relation between tempo-adjusted fertility measures and
cohort fertility. For instance, while the adjustedTFR in the Bongaarts-Feeney and
Kohler-Philipov analysis provides an improved indicator of period fertility (or quantum),
it cannot be used to infer the completed fertility of the current cohorts of women. This
limitation is due to the fact that the completed cohort fertility depends on the future paths
of fertility quantumand tempo. It can only be properly projected with appropriate as-
sumptions aboutboth aspects of future fertility trends. Moreover, investigating these
implications of future quantum and tempo changes on cohort fertility requires an explicit
consideration of the fact that only women who are currently at parity zero, one, two, etc.,
are exposed to giving birth to their first, second, third, etc., child. This sequencing of births
is not explicitly considered in the calculation of the adjustedTFR or the standardTFR.
In many circumstances, therefore, these measures provide little—or even erroneous—
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information about the parity distribution and the completed fertility of cohorts (Kim and
Schoen 2000; Ortega and Kohler 2002b; van Imhoff 2001).

In order to overcome this limitation, we develop in this paper tempo-adjusted period
parity progression measures that are based on an explicit parity and age fertility model
with a long tradition in demographic research (e.g., Park 1976; Quensel 1939; Rallu and
Toulemon 1994; Whelpton 1946). These tempo-adjusted parity progression measures
provide a new and unified ‘tool-kit’ that can be used for two related purposes.First, they
remove tempo distortions and parity composition effects from the observed period fertil-
ity pattern and therefore provide an improved indicator of the period quantum of fertility.
In particular, our tempo-adjusted period parity progression measures suggest a natural
synthetic-cohort measure of period fertility and quantum, denotedperiod fertility index,
that is equal to the total fertility of women who experience the tempo-adjusted period
childbearing intensities (or adjusted age-specific parity progression probabilities) during
their life-course.Second, our measures allow a demographically correct and consistent
projection of the level, timing and distribution of the completed fertility of cohorts who
have not finished childbearing, conditional on the future paths of quantum and tempo. We
derive these assumptions about future quantum and tempo from observed period fertility
patterns. Our methods therefore provide an important input for population projections,
and future analyses can combine these methods with stochastic forecasting models that
explicitly consider the uncertainty about the future development of quantum and tempo.
Moreover, the close relationship between period fertility measurement and cohort pro-
jection reduces the traditional distinction between ‘cohort’ and ‘period’ approaches to
fertility (e.g., Ńı Bhrolch́ain 1992): our methods provide proper period measures of fer-
tility that can be combined with projection scenarios in order to assess the cohort fertility
that results from period fertility patterns.

2 Revisiting the Implications of Postponed Childbearing
on Period and Cohort Fertility

2.1 Intuitive introduction to tempo-adjusted period parity progres-
sion measures

We begin our paper with an intuitive discussion of our methods. The aim of this introduc-
tory discussion is to convey the main concepts and ideas of our analysis in a non-technical
manner. The formal development follows in Sections 3 to 5.

Our discussion in this section is based on the fertility trend in Sweden during the last
decades, which has been of great interest to demographers for its distinct and unusual
pattern (for a more comprehensive discussion, see Kohler and Ortega 2002). Whereas
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fertility levels stagnated or declined in many European countries during the 1980s, Swe-
den experienced a baby boom after 1985. Between 1985 and 1990 theTFR increased
from 1.74 to a level of 2.13, exceeding the replacement level. In the 1990s this baby
boom was displaced by an equally swift baby bust, and by 1998 the total fertility rate had
declined to an historically low level of 1.51 (Council of Europe 1999). Three questions
are of central importance in this context.First, how does the description of the Swedish
fertility trends change from the analysis based on the adjustedTFR to the analysis based
on our Period Fertility Index (PF ) that reflects synthetic cohort fertility?Second, what
inferences can be made about the completed fertility and the final parity distribution of
cohorts who have not finished childbearing as of 1999, on the basis of the most recent
fertility patterns?Third, how would a potential future postponement of fertility, which
mirrors the most recent postponement patterns observed in the 1990s, change the fertility
level and parity distribution attained by cohorts?

All three of the above questions can be answered with the measures proposed in this
paper. The data required for these analyses include the births by age and order in a cal-
endar year and a measure of the person-years lived by women who are ‘at risk’ of giving
birth to a first, second, third, etc., child. The former information is identical to the data
requirements for the adjustment of the total fertility rate. The latter information is more
specific. For instance, the exposure can be estimated by the mid-year female popula-
tion by age and parity. In countries with population registers it can be obtained from
the exact counts of the person-years lived by age and parity during a calendar year. The
primary advantage of these additional data is that they allow us to base our analyses on
occurrence-exposure rates, orchildbearing intensities, that reflect the age-specific ‘haz-
ard’ of experiencing another birth for women at some specific parity. In our specific case,
these childbearing intensities are calculated on the basis of Andersson’s (1999) data that
include annual births by parity and age in Sweden and estimates of the corresponding
person-years of exposure in all calendar years from 1970–1999 (see also Andersson and
Guiping 2001). These data are restricted to Swedish women and do not include foreign-
born women living in Sweden.

Childbearing intensities—and also age-specific parity progression probabilities—have
long been used to calculate period parity progression measures (Hoem and Jensen 1982;
Rallu and Toulemon 1994; Schoen 1988). Unfortunately, this standard calculation re-
mains affected by tempo distortions. In particular, a fertility postponement distorts the
parity progression ratios through two important pathways. On the one hand, tempo dis-
tortions lead to an underestimation of the probability that a woman in the synthetic cohort
experiences another birth conditional on her current age and parity. On the other hand,
the presence of a fertility postponement delays the age at which women are exposed to
the risk of higher parity births. This can potentially lead to a reduction of the progression
to higher parities, which we denote as thefertility aging effectassociated with a postpone-
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ment of childbearing. This effect can be partially or totally compensated for if the fertility
schedule at higher parities is shifted as a response to the postponement at lower parities.
In this case, we speak of anet fertility aging effect.

There is substantial micro-evidence that the compensation for delays in entering par-
enthood is not complete, and several recent analyses have shown that higher age at first
birth is causally associated with a lower completed fertility level (Billari and Kohler 2002;
Kohler, Skytthe, and Christensen 2001; Morgan and Rindfuss 1999). This evidence is ob-
tained from a variety of studies including Danish twin data and survey data from Italy,
Spain, Bulgaria, the Czech Republic, Hungary and Sweden; it is also consistent with
earlier micro-studies on the relationship between the timing and level of fertility (e.g.,
Bumpass and Mburugu 1977; Bumpass et al. 1978; Marini and Hodsdon 1981; Presser
1971; Trussell and Menken 1978). When considered together, these studies leave few
doubts that cohort fertility patterns are characterized by a net fertility aging effect. De-
spite the pervasive micro-evidence, however, fertility aging effects have not been carefully
investigated in aggregate analyses of contemporary fertility patterns. Our new measures
overcome this limitation and provide a possibility of studying the implications of fertility
aging with aggregate data.

We base our analysis on a parity and age model of fertility that can lead to net fertility
aging effects when a delay of first (or second, third,...) births is not compensated for by
a postponement at higher parities. [Note 1] In our subsequent analyses we formalize this
parity and age model, and we implement our tempo-adjusted period parity progression
measures via the following steps:First, we transfer the KP framework, which was initially
developed for the adjustment of the total fertility rate, to childbearing intensities. This
allows us to estimate adjusted childbearing intensities that are not distorted by tempo
effects. As in KP, our definition of tempo-change operates at the age-specific level and
therefore incorporates potential age-period interactions: there can be a differential pace
of fertility postponement at different ages, and there can even be a postponement at some
ages and an anticipation of fertility at other ages (see KP for further discussions).

Second, we use the adjusted childbearing intensities as building blocks for period
fertility measures and projection methods for cohort fertility. Specifically:

(a) Adjusted childbearing intensities can be used within a synthetic cohort model to mea-
sure and describe period fertility based on a variety of tempo-adjusted parity progression
measures, including: (i) theperiod lifetime birth probability ofn additional childrenthat
is equal to the probability that a woman, who experiences the tempo-adjusted period in-
tensities during her life-course, gives birth to at leastn additional children; and (ii ) the
period fertility index(PF ) that is equal to completed fertility of women who experi-
ence the tempo-adjusted period childbearing intensities. This period fertility index can be
regarded as a proper measure of the quantum of fertility.
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(b) Adjusted childbearing intensities can also be used for projection purposes to study the
fertility of cohorts who are still in childbearing ages, conditional on scenarios about the
future quantum and tempo of period fertility. In particular, our methods provide a tool
to investigate dependence of cohort fertility on the pace of fertility postponement and/or
recuperation during the life-course of a cohort. For simplicity, we concentrate in this
paper on two particular benchmark scenarios: (i) apostponement stops scenarioin which
we calculate the parity progression measures assuming that the postponement comes to a
halt after the reference year, i.e., assuming that there is no further delay of childbearing in
future periods; and (ii ) a postponement continues scenarioin which we assume that the
tempo change observed in a reference year prevails during the life-course of the cohort
for which fertility is projected.

In addition to improved period measurement and cohort projections, our tempo-adjust-
ed parity progression measures derived from period childbearing intensities also imply an
important advantage regarding empirical measurement of tempo changes. In particular,
childbearing intensities constitute occurrence-exposure rates that reflect the ‘risk’ of an
additional child conditional on parity and age. These intensities therefore constitute de-
mographic rates of type 1 (taux de premìere cat́egorie; see Henry 1972). They differ
from standardparity- and age-specific fertility incidence ratesor demographic rates of
type 2 (taux de deuxìeme cat́egorie; see Lotka and Spiegelman 1940), which are obtained
at each age by dividing births of a given order by the female population irrespective of
parity. Unfortunately, this lack of disaggregation in the denominator of incidence rates
can lead to severe distortions in the inferences of the level and particularly the timing of
fertility from period data. These distortions occur because the population distribution by
parity fluctuates over time, and these fluctuations induce changes in both the level and
age-pattern of period incidence rates (Feeney and Lutz 1991; Ortega and Kohler 2002b;
Rallu and Toulemon 1994; van Imhoff 2001). Changes in the population parity composi-
tion can therefore suggest tempo- and quantum changes in analyses of period incidence
rates, even if there have been no changes in an individual’s parity-specific fertility be-
havior (for a detailed discussion, see Ortega and Kohler 2002b). These compositional
influences are avoided if the analyses are directly based on childbearing intensities that
constitute occurrence-exposure rates of fertility.

2.2 Description of period fertility and comparison with adjustedTFR

The application of our measures to the description of period fertility patterns is illustrated
in Figure 1 that compares our parity progression based measures with the standard and
adjusted total fertility rate.

Figure 1(a) shows the observed total fertility rate for first births, the corresponding ad-
justedTFR for first births and the period lifetime probability of having at least one child
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Figure 1: Left-hand graph: comparison of total fertility rate, adjustedTFR and period
lifetime birth probability for first births with and without tempo-adjustment.
Right-hand graph: comparison of total fertility rate, adjustedTFR (all birth
orders), period fertility index (PF) and the index of total fertility (TF) in the
postponement continues scenario.
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(or equivalently, the progression probability from parity zero to parity one). The latter
is depicted with and without an adjustment for tempo-distortions. All four measures are
indicators of the level of fertility for first births, and they fluctuate between 1970 and 1999
in accordance with the overall trend in total fertility: an initial increase is followed by a
decline and recovery during the baby boom; another decline occurs after 1990. Despite
this common overall pattern, however, there are important conceptual and empirical dif-
ferences among these measures. First, the adjustedTFR and the tempo-adjusted lifetime
probability of at least one child attempt to correct for tempo distortions in the observed
period pattern. The adjustedTFR and the adjusted lifetime birth probability, therefore,
exceed the corresponding measures obtained from the observed fertility pattern without
tempo-adjustment. This underestimation of first-birth fertility from the observed pattern
is greatest in periods with the most rapid delays in entering parenthood around 1980 and
in the 1990s. Second, the measures reflect quite different trends during the period from
1970 to 1999. For instance, the total fertility rate for first births and the adjustedTFR
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for first births exhibit large fluctuations over time. In comparison to these large fluctu-
ations, the period lifetime probability of having at least one child is relatively constant.
This is particularly the case after tempo-distortions are removed, and the tempo-adjusted
lifetime birth probability neither increases nor decreases as pronouncedly as the standard
or adjusted total fertility rate for first births. On the one hand, these different develop-
ments are partially due to the fact that changes in the parity distribution of a population
subsequent to economic changes or policy interventions can cause fluctuations in period
fertility measures that are unrelated to behavioral changes in that specific period. Since
Sweden experienced varying socioeconomic conditions and family-policies during the
period under investigation (Andersson 1999, 2000; Hoem 2000; Hoem and Hoem 1996;
Hoem 1990), the total fertility rate for first births therefore overestimates the volatility of
fertility behavior (for related analyses see Ortega and Kohler 2002b; van Imhoff 2001).
On the other hand, the differences between the measures in Figure 1(a) are partially due
to the fact that neither the standard nor the adjusted total fertility rate for first births rep-
resent synthetic cohort measures. Neither measure can thus properly reflect the number
of first-births that occur to members of a synthetic cohort based on the level of first-birth
fertility in a given period.

Both of the above limitations are avoided using a parity progression based indicator
of period fertility, and these measures therefore yield a different—and in our opinion
improved—picture of fertility trends for first births. In particular, the tempo-adjusted
period lifetime probability of at least one child does not fluctuate substantially during
the observation period, and it does not substantially decline in the baby-bust period after
1990.

While the level of first birth fertility has been relatively constant during the baby
boom and bust after 1985 in Sweden, this is not the case for the period fertility index
(PF ) that exhibits substantial fluctuations from 1970 to 1999 (Figure 1b). This index,
which equals the complete fertility of women experiencing the tempo-adjusted period
childbearing intensities, increases from less than 1.8 in the early 1980s to more than 2.1
in 1990 and subsequently declines again to about 1.7. Since tempo-adjusted lifetime birth
probabilities for the first child have remained relatively constant, this analysis implies that
the baby boom and bust is primarily due to fluctuations in the parity progression ratios to
the second and third child (for related studies, see Andersson 1999, 2000; Hoem 2000;
Hoem and Hoem 1996; Hoem 1990; Kohler and Ortega 2002).

Figure 1(b) also allows a comparison ofTFR-based fertility measures with the mea-
sures proposed in this paper. The most important insight from this comparison is that the
fertility attained by the synthetic cohort can deviate substantially from the level suggested
by the adjustedTFR, which is due to the compositional distortions in theTFR and in
the inference of tempo changes (see also Kim and Schoen 2000; van Imhoff and Keil-
man 2000). In addition, the parity progression measures in Figure 1(b) reflect how the
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differential tempo changes at different parities potentially affect completed fertility. For
most periods, the changes in the tempo of fertility tend to be faster for lower parity births
and slower for higher parity births. This suggests the presence of a net fertility aging
effect so that a continued postponement of fertility tends to reduce the completed fertility.
This reduction of total fertility in the postponement continues scenario, as compared to
the period fertility index, reaches its highest levels based on the patterns observed around
1980 and in the 1990s. Only in the late 1980s do the differences diminish or even reverse,
which is due to the fact that the delayed onset of parenthood is compensated for by suffi-
ciently fast tempo changes at second birth. Since a continued delay of childbearing for the
foreseeable future seems more likely than an imminent leveling off in the pace of fertil-
ity postponement, the period fertility index, which assumes no further postponement, can
be regarded as an upper bound for the completed cohort fertility implied by the fertility
pattern of a given reference year.

2.3 Continued fertility postponement and cohort fertility

In addition to the measurement of period fertility, our tempo-adjusted parity progression
measures are also attractive because they provide a direct application to the projection of
cohort fertility. In Figure 2(a), for instance, we consider the cohorts who are 17 and 24
years old in 1999, and we project the proportion of women who will still be childless in
the years 2005, 2010,... under the assumption that the 1999 parity-specific fertility levels
prevail in the future. These calculations are augmented in Figure 2(b) with the projected
level of final childlessness in all cohorts who are still in childbearing ages in 1999.

The full line in these two figures reflects the transition into parenthood that is obtained
from the observed childbearing intensities, and these calculations project an ultimate level
of childlessness around 23%. However, because the pace of fertility postponement has
been quite high during the 1990s in Sweden, this projection is distorted by tempo effects
and does not reflect the true cohort experience that is implied by the 1999 level of fertility.
The unbiased calculations based on the adjusted childbearing intensities with no further
postponement of fertility (dashed lines) project a substantially more rapid transition into
parenthood and a substantially lower level of ultimate childlessness of about 15%. Hence,
projections based on the observed childbearing intensities, which are tempo-distorted in
periods of a fertility postponement, tend to underestimate the fraction of women who are
going to experience at least one child given the current level of fertility.

This ultimate level of childlessness in cohorts does not depend on assumptions about
future postponement patterns. [Note 2] However, important differences exist between the
postponement stops and the postponement continues scenario with respect to the timing
of entering parenthood. If the postponement of fertility is assumed to continue at the pace
observed in 1999, the transition into parenthood is delayed (Figure 2a and Table 1). This
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Figure 2: Projection of fertility behavior for cohorts who have not finished childbearing
in 1999 based on the level of fertility and postponement pattern observed in
1999
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Notes: The postponement stops (dashed line) and postponement continues (dashed-dotted line) are based on
the tempo-adjusted fertility intensities and assume either no further delays in childbearing or a further delay in
childbearing that mirrors the 1999 postponement pattern. In Graph (b) these two postponement scenarios imply
identical results and are not distinguished from each other. The full line in all graphs indicates the projection
obtained from the observed fertility intensities.
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Table 1: Projected mean age at birth for women in the cohorts born 1982 (age 17 in 1999)
and born 1975 (age 24 in 1999)

Cohort age 17 Cohort age 24
in 1999 in 1999

Mean age at first birth
postponement stops scenario 28.34 28.56a

postponement continues scenario 31.56 30.03
calculated from observed data 28.86 28.79

Mean age at second birth
postponement stops scenario 31.05 31.18a

postponement continues scenario 33.76 32.44
calculated from observed data 31.42 30.30

Mean age at birth, all parities
postponement stops scenario 30.01 30.16a

postponement continues scenario 32.57 31.27
calculated from observed data 30.37 30.27

Notes: (a) The difference in the mean age at birth between the 1982 and 1975 cohort in the
postponement stops scenario is due to a different age-distribution of births that occur prior to
1999.

effect of a continued postponement on the transition into parenthood is more pronounced
in the younger cohort because the postponement continues for a prolonged time until this
cohort reaches the primary ages of childbearing.

In Figure 2(c) we shift our analysis to the combined fertility across all birth orders
and report the cumulative cohort fertility for women who are age 17 and 24 in 1999. In
both cohorts an ongoing postponement of fertility implies a lower cumulative fertility in
all years after 1999 as compared to the postponement stops scenario. This pattern is due
to two factors. On one hand, the entry into parenthood is postponed towards older ages.
On the other hand, the delayed onset of parenthood shifts the beginning of being ‘at risk’
of a second and higher order births to ages (see Table 1), and at these relatively old ages
the probability of experiencing a second or third birth declines rapidly. Corresponding
calculations from observed childbearing intensities suggest a cumulative fertility that is
below the postponement stops scenario, and this difference is due to the tempo distor-
tions in the observed period intensities. However, the relation is no longer as clear-cut if
the postponement of fertility is assumed to continue. In particular, the observed intensi-
ties and the postponement continues scenario imply an approximately equal cumulative
fertility until about 2010 in the cohort who is age 24 in 1999, and afterwards a contin-
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ued postponement suggests a higher cumulative fertility due to some late first and higher
order births. In the cohort that is age 17 in 1999, the postponement continues scenario
implies a cumulative fertility level until about 2020 that is substantially below the level
suggested by the observed intensities. Due to relatively late childbearing the completed
fertility in this cohort will exceed the completed fertility suggested by the observed data,
but it will fall substantially short of the level attained by the cohort in the postponement
stops scenario. [Note 3] This pattern, which is illustrated for the cohorts who are 17 and
24 years old in 1999, pertains similarly to all cohorts who have not completed fertility as
of 1999 (Figure 2d). While the completed fertility of cohorts starts to stabilize at a level
of about 1.7 for cohorts who are below age 25–30 in 1999 under the postponement stops
scenario, cohort fertility continues to decline in young cohorts if the postponement of fer-
tility continues at the pace observed in 1999. These further declines in the postponement
continues scenario are due to a net fertility aging effect: the number of higher order births
is reduced by an ongoing delay of childbearing because women tend to be ‘at risk’ of
second and higher order births only at ages when the probability of experiencing second,
third, and fourth births is already quite low. [Note 4]

3 Adjusting Parity Progression Rates for Tempo and Vari-
ance Effects

3.1 A parity and age model of fertility

In this section we begin our formal development of the tempo-adjusted period parity pro-
gression measures that we introduced in the previous application to Sweden. As we have
pointed out in the previous sections, we develop these measures within a parity and age
fertility model that relies on the following assumption:

Assumption 1 Determinants of fertility: Fertility behavior in the population depends
only on age, period and parity, and it is independent of the timing of any previous births.

Given this assumption, multi-state population theory (Hoem and Jensen 1982; Schoen
1988) provides the tools for studying the family building process based on the ‘hazard’
of experiencing a birth of a given parity at different reproductive ages. In our model,
this ‘hazard’ is given by theparity- and age-specific childbearing intensity at time t for a
women age a at parity j, denoted asmj(a, t). It can be calculated by dividing the order-
(j + 1) births occurring to women at agea by the person years lived in a calendar year by
women who are agea and parityj. Formally the age-specific childbearing intensities are
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defined as

mj(a, t) = lim
∆t→0

Pr(birth of orderj + 1 birth occurs between timet

andt + ∆t | agea, time t, parityj)/∆t, (1)

where the conditional probability in Eq. (1) is the probability that a woman who is agea
and parityj at timet experiences a birth of orderj + 1 before timet + ∆t. [Note 5]

Childbearing intensities can be easily converted into parity progression probabilities.
For instance, the probability that a woman agex and parityj at timeT experiences at
least one additional birth prior to agey, denotedpT

j (x, y), follows from the integration of
the childbearing intensitiesmj(a, t) in Eq. (1) along the cohort line in the Lexis diagram
as

pT
j (x, y) = 1− exp[−

∫ y

x

mj(a, T + (a− x))da].

3.2 Tempo distortions in childbearing intensities

In order to analyze tempo distortions in childbearing intensities and derived period par-
ity measures, we also need to specify how changes in the tempo and level of fertility
affect the observed childbearing intensities. For this purpose we utilize the assumption
that age, parity and period are the only determinants of fertility (Assumption 1), and we
separate the observed childbearing intensities into two factors: first, a level effect,qj(t),
that proportionally increases the parity-j childbearing intensities at all ages; and second,
an age-pattern of childbearing intensities,hj(a, t), that evolves over time only due to the
postponement of fertility (an analog assumption also underlies the adjustment of the total
fertility rate in BF and KP).

Assumption 2 Observed childbearing intensities:The observed intensity schedule for
parity j women can be decomposed as

mj(a, t) = qj(t) · hj(a, t), (2)

where the termqj(t) is a parity- and period-specific level effect that proportionally in-
creases or decreases childbearing intensities at all ages, andhj(a, t) is a schedule that
determines the age-pattern of the parity-j childbearing intensities at timet.

Our model therefore assumes a very general definition of level effects that proportionally
increases the parity-j childbearing intensities at all ages. Any influences on fertility that
do not affect childbearing intensities proportionally at all ages alter the shape of the in-
tensity schedule and introduce a tempo-change. Moreover, the schedulehj(a, t) changes
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over timeonlydue to changes in the timing of fertility at parityj, and it remains constant
in periods when there is no postponement or anticipation of fertility at any age. The char-
acterization of fertility postponement in our analyses can therefore be based exclusively
on the evolution of the age-patternhj(a, t) over time.

In order to provide a benchmark for measuring changes in the timing of fertility, we
choose an arbitraryreference yearT . We then specify a hypothetical intensity schedule
φT

j (a) that reflects the age-pattern of childbearing intensities that would prevail after the
reference yearT in the absence of changes in the tempo of fertility subsequent to the
reference yearT :

Assumption 3 Age-pattern of childbearing intensities in absence of tempo changes:
If tempo changes are absent at all time periodst ≥ T , the age-pattern of childbearing
intensities at parityj does not change over time and is given by a standardized schedule
φT

j (a). We assume for simplicity that the integral of this standardized schedule equals

unity, i.e., we assume that
∫

φT
j (a)da = 1.

In general, the age-pattern of the intensity scheduleφT
j (a) is unknown and needs to be

identified and estimated on the basis of the observed age-patternhj(a, t) and its evolu-
tion over time. In order to solve this inverse estimation problem, our analysis needs to
establish the formal relation between the observed age-pattern of childbearing intensi-
ties,hj(a, t), and the hypothetical age-pattern,φT

j (a). Once this relation is established
within our model, the evolution of observed age-patternhj(a, t) over time can be used to
estimate both the extent of tempo changes and the unobserved age-patternφT

j (a) in the
reference yearT (see Section 3.3).

We introduce thecumulated tempo changeRT
j (a, t) as the primary indicator of tempo

changes. In a formal sense, the cumulated tempo change is merely a function that allows a
transformation of the age-pattern of childbearing intensities over time; its interpretation in
terms of fertility postponement will become apparent after our formal definition of fertility
postponement below. Specifically, we will show that the cumulative tempo increases with
age in periods when births are delayed and decreases with age (and possibly becomes
negative) when births are anticipated. Moreover, with the exception of some technical
restrictions, the cumulated tempoRT

j (a, t) can be specified in a quite arbitrary manner.
Our analyses can therefore capture very general postponement patterns that vary across
age, cohort and period. (Note: In the following, we use the notation∆a and∆t to denote
partial derivatives of a function with respect to agea and timet, and we use∆a,t as a
shortcut to denote the aging operator(∆a + ∆t) = ∂

∂a + ∂
∂t ):

Assumption 4 Cumulated tempo change:Denote asRT
j (a, t) a smooth function that

represents the cumulated tempo changes that have occurred between the reference yearT
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and timet for women of parityj. We require thatRT
j (a, T ) = 0 and∆aRT

j (a, t)|t=T = 0
at all agesa, and additionally we require thata−RT

j (a, t) is increasing ina. [Note 6]

This definition merely specifies the formal properties of the functionRT
j (a, t) and does

not yet provide an interpretation of cumulated tempo changes in terms of changes in the
timing of fertility. In the next step we therefore provide an explicit notion offertility post-
ponement(or delays in childbearing) that is defined and measured in terms of cumulated
tempo changesRT

j (a, t) at each parityj. This definition of fertility postponement is based
on a comparison of the observed age-pattern of childbearing intensities,hj(a, t), and the
age-patternφT

j (a) that would prevail att ≥ T if there were no further postponement of
fertility after the reference yearT .

In order to facilitate this comparison, we define two hypothetical probabilities of ex-
periencing a birth at parityj. These probabilities are based on the intensity schedules
hj(a, t) andφT

j (a) respectively. The specification in terms of these intensity schedules
implies that we consider a situation in which there are no changes in the parity-specific
level effects; the postponement of fertility is the only process that affects childbearing
intensities over time.

First, we consider a woman who is agex and parityj in the referenceT , and who
experiences the childbearing intensitieshj(a, t). We then denote asph

j,T (x, y′) the prob-
ability of a birth of orderj + 1 to the above woman during the age interval(x, y′], or
equivalently, during the time interval(T, T ′] whereT ′ = T + (y′ − x). This probabil-
ity follows by integrating the childbearing intensitieshj(a, t) along the cohort line in the
Lexis diagram as

ph
j,T (x, y′) = 1− exp[−

∫ y′

x

hj(a, T + (a− x))da]. (3)

We also define a second probability, denoted aspφ
j,T (x, y′′), that reflects the likelihood of

a birth of orderj +1 to the above woman in the case that there is no further postponement
of childbearing after the reference yearT . In this case, the age-pattern of childbearing
intensities for all timest ≥ T is time-invariant and is given byφT

j (a) (see Assumption
3). The probability that the above woman experiences a birth of orderj + 1 during the
age interval(x, y′′] on the basis of these intensities is obtained by integrating the intensity
scheduleφT

j (a) as

πφ
j,T (x, y′′) = 1− exp[−

∫ y′′

x

φT
j (a)da]. (4)

The comparison of the above probabilities then provides a formal definition of fertility
postponement:
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Definition 1 Postponement of fertility:A postponement of fertility at parityj implies
that for all agesx andy′ the probabilitiesph

j,T (x, y′) andpφ
j,T (x, y′′) satisfy

ph
j,T (x, y′) = πφ

j,T (x, y′ −RT
j (y′, T + (y′ − x))), (5)

that is, a postponement of fertility implies thatph
j,T (x, y′) is equal topφ

j,T (x, y′′) evaluated
at y′′ = y′ −RT

j (y′, T ′) with T ′ = T + (y′ − x).

For illustration, consider a cohort of women who are agex and parityj in the reference
yearT , and assume that the ‘risk’ of a birth at parityj is given by the observed age-pattern
of childbearing intensitieshj(a, t). In the presence of a postponement, the fraction of
women who experience a birth of orderj + 1 between agex andy′ (or equivalently,
during the time period fromT to T ′ = T + (y′ − x)) is given byπh

j,T (x, y′). If there
had been no postponement of fertility after the reference yearT , then the same fraction
of women would have experienced their births of orderj + 1 between agex andy′′ =
y′−RT

j (y′, T ′), or equivalently during the time interval fromT toT ′−RT
j (y′, T ′). These

age and time intervals are shorter than the corresponding intervals(x, y′] and (T, T ′]
whenever the cumulative tempoRT

j (y′, T ′) is positive; that is, whenever there has been a
delay of childbearing over time.

The above definition therefore captures the essential element of the postponement of
fertility: if there is no change in the level effectqj(t) over time, then delayed childbearing
implies that age and time intervals are stretched without affecting the probability of giving
birth during these intervals. This condition is reflected in the fact that the birth probabil-
ities in the presence and absence of the postponement,πh

j,T (x, y′) andπφ
j,T (x, y′′), are

equal. The births at parityj that occur during the age interval(x, y′] in the presence of a
postponement, therefore, would have occurred in the age interval(x, y′ − RT

j (y′, T ′)] in
the absence of a postponement.

This relation is further illustrated by the Lexis diagrams in Figure 3. In this Lexis
diagram, we have chosen the year 1990 as reference periodT for measuring the delay of
childbearing. We then consider the births at parityj that occur during the person-years of
exposure that are indicated by the parallelogram ABCD. That is, we consider the births of
orderj +1 that are observed during the period from 1990 to 1991 to the cohort of women
who are age 30–31 and parityj in 1990. We assume that the period 1990–91 has been
characterized by a constant level effectqj(t) and a delay of childbearing at parityj.

If this delay of childbearing after 1990 had been absent, then all births in the parallel-
ogram ABCD would have occurred in the area AEFD. The presence of a postponement
betweent = 1990 andt = 1991, therefore, extends the area AEFD to the larger parallel-
ogram ABCD. The same number of births occurs over a larger number of person-years,
which in turn implies that the postponement of fertility leads to a downward distortion of
childbearing intensities.
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Figure 3: Postponement of fertility in the Lexis diagram

Year

A
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1990 1991 1992

30
31

32

(a) no age-period interactions

cohort born
at time 1960

cohort born
at time 1959

A

D
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B

F

E

Reference year T = 1990

Year

A
ge

1990 1991 1992
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31

32

(b) with age-period interactions

cohort born
at time 1960

cohort born
at time 1959

A

D

C

B

F

E

Reference year T = 1990

Notes:In the left-hand graph the cumulated tempo is a function of only time and not age, while in the right-hand
graph the cumulated tempo depends on both time and age. In the former case, the initial parallelogram ABCD
is transformed into another parallelogram AEFD. In the latter case, the transformation is more general and the
area AEFD is no longer a parallelogram. Such age-period interactions in the postponement of fertility can lead
to changes in the shape of the intensity schedule over time.

The extent of fertility postponement during the period 1990-91 in Figure 3 is reflected
by the horizontal and vertical distances between right-side corners of the parallelograms
ABCD and AEFD. In addition, this extent is measured by the cumulated tempo at time
t = 1991. For instance, the vertical and horizontal distance between the points B,E
equalsR1990

j (31, 1991), i.e., it is equal to the additional postponement of fertility that
has occurred during the period fromt = 1990 to t = 1991 for women who are age
31 in 1991 and were age 30 and parityj in 1990. Similarly, the vertical and horizontal
distance between the points C,F is equal toR1990

j (32, 1991), which reflects the additional
postponement during the period 1990–91 for women who are age 32 in 1991 and were
age 31 and parityj in 1990. Births that occur at age 31 and time 1991 (see point B in
Figure 3), therefore, would have occurred at time1991 − R1990

j (31, 1991) and at an age
31−R1990

j (31, 1991) if the fertility postponement had been absent (see point E). Since the
choice of time periods and cohorts in the above discussion is arbitrary, the same relation
holds more generally: births of orderj + 1 that occur at agea at timet to women who
are parityj in the reference year would have occurred at an ageα = a − RT

j (a, t) at

http://www.demographic-research.org/ 107



Demographic Research- Volume 6, Article 6

time τ = t − RT
j (a, t) in the absence of tempo changes after the reference year, where

RT
j (a, t) reflects the cumulated tempo changes that have occurred between the reference

yearT and timet.
The graphs in Figure 3 also reveal the importance of defining the postponement of

fertility in the absence of changes in the level effectqj(t). In the case whenqj(t) is held
constant over time, the number of births occurring during the person years indicated by
ABCD and AEFD are equal: a postponement of fertility at parityj implies that births at
parity j are delayed but not foregone. This property is the essence of our definition of
fertility postponement in Eq. (5). In periods when the level effectqj(t) is not constant,
however, this equality between the number of births in the presence and absence of a
postponement may not hold. In particular, if a delay of childbearing is combined with
a declining level effect, the number of births during the person-years ABCD areless
than the number during the person-years AEFD. This difference is due to the fact that
the postponement of fertility leads to a ‘stretching’ of the person-years AEFD into the
larger parallelogram ABCD. This stretching implies that some exposure to births of order
j + 1 is moved to later time periods. During these later time periods, indicated by the
area EBCF in Figure 3, the level effectqj(t) is lower than in earlier periods indicated by
ABCD. The declining level effect therefore reduces childbearing intensities in addition to
the tempo-distortions caused by the delay of childbearing. The number of births occurring
during the person-years AEFD and ABCD, therefore, are no longer equal. This implies,
for instance, that differences across cohorts in their mean age at first (or second) birth
do not necessarily identify the extent of postponement that is relevant for the adjustment
of childbearing intensities. In particular, these cohort differences can be due to either
trends in the level effect or transformations of the age-pattern of childbearing intensities.
Without further assumptions, pure cohort comparisons cannot separate these two aspects.
The distinction, however, is essential since only the second aspect, changes in the age-
pattern of childbearing intensities, leads to tempo distortions.

On the basis of the above theoretical framework, we can now obtain our first and
central result. This result specifies the formal relation between the intensity schedules
φT

j (a) andhj(a, t) that reflect respectively the age-pattern of childbearing intensities in
the presence and absence of a fertility postponement. The detailed proof of this result (and
also of all subsequent results) is given in the Appendix. This proof relies on a change of
variable in the integration of the probabilitiesπh

j,T (x, y′) andπφ
j,T (x, y′′). This change

transforms the variable of integration from the agea and timet, indicating when births
occur in the presence of a postponement, to the agea − RT

j (a, t) and timet − RT
j (a, t)

that indicate when these births would have occurred in the absence of this postponement.
The Jacobian of this transformation, which needs to be considered during this change of
variable, equals(1−∆a,tR

T
j (a, t)).
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Result 1 Observed age-pattern of childbearing intensities:If births are postponed ac-
cording to Definition 1, the observed age-pattern of childbearing intensities at parityj
are given by

hj(a, t) = (1−∆a,tR
T
j (a, t)) · φT

j (a−RT
j (a, t)). (6)

Inserting this relation in Eq.(2) then yields the observed childbearing intensities at parity
j, mj(a, t), as

mj(a, t) = qj(t) · (1−∆a,tR
T
j (a, t)) · φT

j (a−RT
j (a, t)). (7)

The observed parity-j childbearing intensities at agea and timet therefore consist of the
period-specific level effectqj(t), the Jacobian of the transformation froma and t to α

andτ , and finally the standardized scheduleφT
j (a−RT

j (a, t)) evaluated at the age when
births would have occurred in the absence of a fertility postponement after the reference
yearT .

Unfortunately, however, the decomposition ofmj(a, t) in Result 1 does not yet have
an interpretation in terms of ‘adjusted childbearing intensities’ and ‘tempo distortions’
caused by a postponement of fertility. This limitation is overcome in our next step:

Definition 2 Adjusted age-specific childbearing intensities:Denote asm′
j(a, t) the ad-

justed age-specific childbearing intensities at parityj that are defined as

m′
j(a, t) = qj(t) · (1−∆aRT

j (a, t)) · φT
j (a−RT

j (a, t)). (8)

This definition, in combination with Assumption 4, implies that the adjusted childbearing
intensities in reference periodT are equal tom′

j(a, T ) = qj(T ) · φT
j (a).

The adjusted childbearing intensities in Eq. (8) are the product of three terms: the period-
specific level effectqj(t), a correction term(1−∆aRT

j (a, t)), and the fertility rateφT
j (α)

that would have been observed at ageα = a−R(a, t) at timet if there had been no fertility
postponement and no level effects. The correction term is necessary because age-period
interactions in the postponement of fertility transform the shape of the intensity schedule.
The term(1−∆aRT

j (a, t)) entails that these transformations in the shape of the schedule
in itself do not change the level of the integrated childbearing intensities

∫
m′

j(a, t)da.
All changes in this level are attributed to the period-specific level effectsqj(t):

Result 2 Level of fertility: The adjusted childbearing intensities reflect the level effect
qj(t) since ∫

m′
j(a, t)da = qj(t).
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In the presence of a fertility postponement, however, the observed childbearing intensities
are distorted and they do not reflect the level of fertility at parityj and timet. In particular,
the observed childbearing intensities at parityj in the presence of a fertility postponement
are only a fraction of the intensities that would be observed at timet in the absence of
tempo changes. The observed intensities can thus substantially underestimate the level of
fertility at parity j in periods with postponed childbearing:

Result 3 Observed versus adjusted childbearing intensities:The observed childbearing
intensitiesmj(a, t) and the adjusted childbearing intensitiesm′

j(a, t) are related as

mj(a, t) = (1− rj(a, t)) ·m′
j(a, t), (9)

where the age-and-period specific tempo changerj(a, t) is defined as

rj(a, t) =
∆tR

T
j (a, t)

1−∆aRT
j (a, t)

. (10)

Finally, we point out that the above definition of adjusted childbearing intensitiesm′(a, t),
as well as the relations in Results 2–3, are independent of the choice of the reference year
T . The above model can therefore be restated in terms of any other arbitrary yearT ′:

Result 4 Choice of reference year:The choice of a reference yearT can be altered to
any other reference yearT ′ by specifying the standardized scheduleφT ′

j (a) asφT ′
j (a) =

(1−∆aRT
j (a, t)|t=T ′) · φT

j (a−RT
j (a, T ′)) and redefining the cumulated tempo change

RT ′
j (a, t) so that it satisfiesRT

j (a, t) = RT ′
j (a, t) + RT

j (a − RT ′(a, t), T ′). After this
redefinition of the reference year, all changes in the age-pattern of fertility are then ex-
pressed relative to the scheduleφT ′

j (a), and this schedule is proportional to the adjusted
childbearing intensities in the new reference yearT ′.

3.3 Measuring and adjusting for tempo changes

Our previous discussion has been very general and allowed for virtually unrestricted post-
ponement patterns and cumulated tempo changes. The empirical implementation of the
above framework, however, requires specific assumptions about the functional form of the
cumulated tempoRT

j (a, t). Without such specific assumptions, the standardized sched-

ule φT
j (a) and the cumulated and age-and-period specific tempo changes,RT

j (a, t) and
rj(a, t) are not empirically identified.

In this paper we adopt the specification in Kohler and Philipov (2001) that allows for
both mean changesγj(t), leading to an increase in the mean age of the parity-j inten-
sity schedule, andvariance changesδj(t), leading to an increase of the variance of the
intensity schedule (see KP for a more detailed discussion of this framework):
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Assumption 5 Fertility postponement in terms of mean and variance changes:The
age-and-period specific tempo changesrj(a, t) are given by

rj(a, t) = γj(t) + δj(t)[a− (āj,T + GT
j (t))], (11)

whereγj(t) andδj(t) are smooth functions of time, andGT
j (t) =

∫ t

T
γj(z)dz. We assume

that rj(a, t) < 1 at all agesa at which the childbearing intensities are positive.
The cumulated tempo changes,RT

j (a, t), that correspond to age-and-period specific
tempo changerj(a, t) in Eq. (11), is specified by

RT
j (a, t) = GT

j (t) + [a− (āj,T + GT
j (t))] · (1− e−DT

j (t)), (12)

whereDT
j (t) =

∫ t

T
δj(z)dz.

The reason that motivates the above choice for the age-and-period specific tempo change
rj(a, t) and the cumulated tempoRT

j (a, t) is apparent from the following result about the
development of the mean age and variance of the adjusted intensity schedule over time:

Result 5 Mean age and variance of adjusted intensity schedule:The mean agēaj(t)
and the variances2

j (t) of the adjusted intensity schedulem′
j(a, t) are given by

āj(t) =
∫

a ·m′
j(a, t)da/qj(t) = āj,T + GT

j (t)

dāj(t)/dt = γj(t)

s2
j (t) =

∫
(a− āj(t))2 ·m′

j(a, t)da/qj(t) = s2
j,T · e2·DT

j (t)

d log s2
j (t)/dt = 2δj(t),

whereāj,T is the mean age ands2
j,T is the variance of the adjusted intensity schedule

m′
j(a, T ) at timeT . Moreover, inserting the first expression forāj(t) into the specification

of rj(a, t) in Eq. (11) yields a simplified version of the age-and period specific tempo
change as

rj(a, t) = γj(t) + δj(t)[a− āj(t)]. (13)

The specification of the fertility postponement in Assumption 5 thus leads to particularly
simple changes in the mean age and variance of the adjusted intensity schedulem′

j(a, t)
over time. Specifically, the incremental increase in the mean age at timet is given by
γj(t), and the incremental relative increase in the standard deviation is given byδj(t).
Moreover, the termGT

j (t) represents the total increase in the mean age of the intensity
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schedule between the reference yearT and some later timet, and the termexp[DT
j (t)]

measures the corresponding relative increase in the standard deviation.
The central insight provided by Result 5 is that the relevant information for the as-

sessment of tempo distortions is provided by the moments of the adjusted parity-specific
intensity schedules (a similar approach to model tempo changes is also used in Keilman
1994). The above specification in terms of mean changesγj(t) and variance changesδj(t)
is therefore particularly convenient for the empirical estimation of tempo changes. More-
over, the analog of the BF framework, which implies only shifts in the mean age of the
fertility schedules but no changes in the variances, emerges within the above specification
whenδj(t) is equal to zero at all times.

4 Parity Progression Measures under Alternative Post-
ponement Scenarios

In this section we utilize tempo-adjusted childbearing intensities defined in Section 3
for two main applications to (a) provide improved synthetic-cohort period measures of
fertility and (b) to complete the fertility of cohorts, who are still in childbearing ages,
under alternative postponement scenarios that determine future patterns of tempo changes.
We begin our formal development with application to cohort completion, and we then
present the measurement of period fertility as a special case of cohort completion that
considers cohorts at the beginning of childbearing ages under the postponement stops
scenario.

4.1 Extrapolation of fertility postponement to future periods

The primary task in the analyses of cohort fertility under different postponement scenarios
is to establish a relation between the childbearing intensities experienced by the cohorts
and the adjusted intensity schedule in a reference year. Since the adjusted intensity sched-
ule is a product of a level effect and an age-pattern of childbearing intensities, these two
determinants—combined with specific assumptions about future tempo changes—can be
used to characterize the intensities that are experienced by cohorts. We can therefore
provide general formulas for cohort completion conditional on the parity-specific level
effect in the reference year and an arbitrary postponement scenario. In the present pa-
per, we focus on two specific scenarios that are particularly pertinent. Thepostponement
stopsscenario assumes that any postponement that occurs in the reference yearT comes
to a halt and that there is no further postponement of fertility during the life-course of
the cohort. In contrast, thepostponement continuesscenario assumes that the mean- and
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variance changes observed in the reference yearT prevail in the future. The period in-
tensity schedule therefore continues to be shifted to later ages during the life-course of
the cohorts, and the annual extent of the shift equals the mean and variance change that
is observed in the reference yearT . Both scenarios assume that the parity-specific level
effects in the reference year,qj(T ), continue to prevail in the future for allt ≥ T .

We illustrate these two different postponement scenarios in the Lexis diagrams in
Figure 4. In this illustration we choose the year 2000 as the reference year for the calcu-
lations. Childbearing intensities are observed prior to this year, and the intensity schedule
for the year 2000 is the last available period information. We indicate these childbearing
intensities and their age-pattern in a simplified manner through an age range that indicates
the minimum, mean and maximum of the intensity schedule. Moreover, the example in
Figure 4 assumes that there is a delay of fertility during the years 1980-2000. This post-
ponement is reflected through the gradual upward-shift of the age-range of childbearing
intensities (for simplicity we assume that there is only a mean change and no variance
change). This delay prior to and atT = 2000 implies that the observed intensities in the
reference year are subject to tempo distortions. These distortions can be eliminated by the
adjustment discussed in the previous section. The resulting adjusted intensity schedule for
the reference yearT is then the basis for specifying the childbearing intensities that are
experienced by the synthetic cohort.

If the postponement stops in the reference yearT , then there are no further changes
in the age-pattern of childbearing intensities during the periodst ≥ T (Figure 4a). Thus,
there are no tempo-distortions at timet ≥ T , and the period intensity schedules at time
t ≥ T are equal to the adjusted intensity schedule in the reference year. Consider now the
cohort born in 1985 who is age 15 in the year 2000. If the postponement stops scenario
prevails, this cohort experiences the childbearing intensities along the diagonal cohort
line AB. These childbearing intensities, however, are identical to the adjusted intensities
observed in the reference yearT . The analysis along the line AB is therefore equivalent
to the analysis of the adjusted intensity schedule at timeT .

It is important to observe, however, that this postponement stops scenario represents a
break with the earlier development of birth timing that has been characterized by a delay in
childbearing. This discontinuity in the evolution of childbearing intensities is avoided in
the postponement continues scenario (Figure 4b). In this scenario, the mean change (and
also the variance change) observed in the reference yearT continues to prevail during
the periodt ≥ T . The age-range of childbearing intensities therefore continues to be
shifted upward, and the pace of this future postponement follows a constant annual rate
that equals the mean change in the reference yearT = 2000. In order to obtain the fertility
pattern of a cohort in this postponement continues scenario, we also need to integrate the
childbearing intensities along the cohort line in the Lexis diagram. The integration along
this line, however, needs to account for the shifting age-pattern of childbearing intensities
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Figure 4: Postponement stops and postponement continues scenario in the Lexis diagram
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after the reference year. The fertility of a cohort that is age 15 in the yearT = 2000, for
instance, is obtained by tracing the childbearing intensities along the line AB in Figure
4(b). In contrast to the postponement stops scenario, however, the intensities along the
line AB are no longer equal to the adjusted childbearing intensities in the reference year.
If postponement continues, the mean age of the period intensity schedule is continuously
shifted upwards, and the childbearing intensities that are experienced by the cohort along
the line AB are a transformation of the adjusted intensity schedule observed in the year
T = 2000.

Fortunately, we can capture this transformation by extending the formal framework
for the postponement of fertility that we have developed in the previous sections. In par-
ticular, we can use the observed tempo and variance changes in the reference yearT to
specify the cumulated tempo changes for all periodst ≥ T . The fertility measures for a
cohort therefore follow from the observed childbearing intensities in three conceptually
distinct steps: (a) the measurement of and adjustment for tempo-distortions in the ob-
served childbearing intensities; (b) the projection of all childbearing intensities fort ≥ T
based on the adjusted intensity schedule in the reference year and assumptions about the
future postponement of fertility; (c) the calculation of completed cohort fertility by inte-
grating the intensities obtained in (b) along cohort lines in the Lexis diagram (e.g., along
the line AB in Figure 4).

In the following we formalize the above discussion of Figure 4, and we establish the
childbearing intensities that would be observed after the reference yearT if the level of
the reference year and some arbitrary tempo change and variance change prevails for all
times thereafter. These childbearing intensities follow directly from our earlier Result 1
and Definition 2:

Result 6 Extrapolation of fertility postponement to future periods:Denote asms
j(a, t)

the parity-j childbearing intensities that would be observed at agea and timet ≥ T if
(a) the level effectqj(T ) observed in the reference yearT prevails for all t ≥ T , and
(b) fertility at parity j continues to be postponed with a constant annual mean change
γs

j and variance changeδs
j for all t ≥ T . In addition, denote asRs

j(a, t) the cumulated
tempo and asrs

j (a, t) the age-and-period specific tempo change that are obtained from
Eqs.(11–12)usingγj(t) = γs

j andδj(t) = δs
j for all t ≥ T . Then

ms
j(a, t) = qj(T ) · (1−∆a,tR

s
j(a, t)) · φT

j (a−Rs
j(a, t)) (14)

= (1−∆a,tR
s
j(a, t)) ·m′

j(a−Rs
j(a, t), T ). (15)

The corresponding adjusted intensity schedulems′
j (a, t) for all t ≥ T is given by

ms′
j (a, t) = (1− rs

j (a, t))−1 ·ms
j(a, t)

= qj(T ) · (1−∆aRs
j(a, t)) · φT

j (a−Rs
j(a, t)). (16)
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The mean agēas
j(t) and variances2

j,s(t) of the adjusted fertility schedulesms′
j (a, t) at

timet are given bȳas
j(t) = āj,T + γs

j · (t− T ) ands2
j,s(t) = s2

j,T e2·δs
j ·(t−T ), whereāj,T

and s2
j,T are the mean age and variance of the adjusted intensity schedulem′

j(a, T ) in
the reference yearT . Moreover, the integrals of the observed and adjusted childbearing
intensities for allt ≥ T are constant over time and equal respectively

∫
ms

j(a, t)da =
(1− γs

j) · qj(T ) and
∫

ms′
j (a, t)da = qj(T ).

The above result therefore allows us to calculate hypothetical intensity schedules that
would be observed at some timet ≥ T if (a) the level effect observed in the reference
yearT at parityj prevails in the future, and if (b) fertility is subject to a postponement
pattern with a constant annual mean changeγs

j and variance changeδs
j for all t ≥ T .

The mean age of the adjusted intensity schedule at parityj then increases annually by
γs

j years, and the standard deviation grows exponentially at an annual rate ofδs
j . [Note 7]

Moreover, the integral of the adjusted childbearing intensities remains constant for all
t ≥ T and equals the level effectqj(T ) in the reference yearT .

We subsequently use the phrase that calculations pertain to the ‘period-T cohort of
agex’ in order to describe the following assumption about the fertility experience of the
cohort for which parity progression measures are calculated:

Assumption 6 Parity progression measures for the period-T cohort of age x:In our
calculations of parity progression measures we assume a cohort, denoted period-T cohort
of agex, who (a) is agex in the reference yearT and (b) experiences the childbearing
intensities that are obtained by extrapolating the level of fertility and the pace of fertility
postponement observed in the reference yearT to all timest ≥ T . That is, we assume that
women in the period-T cohort of agex are subject to the childbearing intensitiesms

j(a, t)
defined in Eq.(14)when they attain agea at timet = T + (a− x).

We use the term ‘period-T cohort of agex and parityj’ if we additionally condition
on parity and consider women who are at exact parityj in the reference yearT .

The maximum feasible age at childbearing (‘biological limit’) is given byω. We as-
sume that this age does not imply a restriction for the postponement of fertility in our
analyses, i.e., we assume that the childbearing intensities defined in Eq.(14) satisfy
ms

j(a, T + a− x) = 0 for all a ≥ ω. [Note 8]

Our two basic approaches to determine the pace of fertility postponement in the synthetic
cohort are specified as follows: (a) ‘extrapolate’ the postponement pattern observed at
timeT , i.e., assume that the mean changeγs

j and variance changeδs
j during the life-course

of the cohort equal the values ofγj(T ) andδj(T ) observed in the reference yearT for
all paritiesj; (b) assume that there are no further postponements of fertility subsequent to
time T , i.e., assume thatγs

j andδs
j are zero for all paritiesj. The former represents the
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postponement continuesand the latter thepostponement stops scenario. [Note 9] In our
subsequent notation, we indicate the postponement stops scenario as ‘γs

j = 0, δs
j = 0’

and the postponement continues scenario as ‘γs
j = γj(T ), δs

j = δj(T )’. For simplicity,
we often drop the subscriptj for fertility measures that combine several birth parities, and
we use ‘γs, δs’ as a shorthand notation for ‘γs

0, γ
s
1, . . . , δ

s
0, δ

s
2, . . .’.

4.2 Conditional parity progression probabilities

The primary building block for deriving the parity progression ratios for the period-T
cohort of agex is theconditional parity progression probabilitythat is calculated condi-
tionally on a postponement scenario described byγs

j andδs
j :

Result 7 Conditional parity progression probability:Consider a woman in the period-T
cohort of agex and parityj. This woman is exposed to a birth of orderj + 1 from agex
and timeT onwards. Denote aspT

j (x, y | γs, δs) the probability that this woman attains a
parity of at leastj + 1 at agey (with y ≥ x) by having at least one additional child prior
to agey.

Integrating the childbearing intensitiesms
j(a, t) experienced by the period-T cohort

of agex (see Eq.14)yields

pT
j (x, y | γs

j , δ
s
j) = 1− exp

[
−

∫ y

x

ms
j(a, T + a− x)da

]

= 1− exp

[
−

∫ y−Rs
j (y,T+(y−x))

x

m′
j(a, T )da

]
. (17)

In the specific casey = ω, the conditional lifetime parity progression probabilitypT
j (x, ω |

γs
j , δ

s
j) reflects the probability that a woman in the period-T cohort of agex and parityj

has at least one additional child and progresses to parityj +1 or higher. This probability
is given by the integral of the adjusted parity-j age-specific childbearing intensities at
timeT from agex onwards,

pT
j (x, ω | γs

j , δ
s
j) = 1− exp

[
−

∫ ∞

x

m′
j(a, T )da

]
,

and is thus independent of the assumption aboutγs
j andδs

j .

An important insight from Eq. (17) is that the conditional parity progression probability—
independent of the assumption about the future postponement of fertility—can be calcu-
lated directly from the adjusted childbearing intensities in the reference yearT . Different
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assumptions about future mean- and variance changes at parityj affect only the upper
limit of the integral in Eq. (17). The conditional parity progression probability—as well
as all subsequent parity progression measures—can therefore be obtained without ever
calculating the childbearing intensitiesms

j(a, t) (see Eq. 14) that are experienced by the
period-T cohort of agex. This feature makes the calculation of different postponement
scenarios particularly simple. All postponement scenarios are obtained by integrating the
adjusted intensity schedule in the reference yearT , and the assumptions about the future
postponement of fertility only need to be considered in the upper limit of the integral.

The above result has several interesting implications. First, the exponent of the in-
tegral of the adjusted childbearing intensities yields a proper assessment of conditional
parity progression probabilities in cohorts. Second, in order to estimatepT

j (x, ω | γs
j , δ

s
j),

i.e., the probability that a woman who is agex and parityj at timeT has another child, it is
sufficient to know the adjusted age-specific childbearing intensitiesm′

j(a, T ). No further
assumptions about the future path of fertility postponement are necessary. Third, since
in periods of fertility postponementm′

j(a, t) exceeds the observed intensitiesmj(a, t),
a calculation of the conditional parity progression probabilitypT

j (x, y | γs
j , δ

s
j) on the ba-

sis of the observed childbearing intensities would underestimate the probability to have
another child:

Result 8 Distortion of conditional parity progression probability due to tempo changes:
The calculation of the conditional parity progression probabilitypT

j (x, ω | γs
j , δ

s
j) in Eq.

(17) based on the observed instead of the adjusted childbearing intensities is distorted.
In the specific case whenδj(T ) = 0 and δs

j = 0, i.e., in the absence of variance
changes for parityj, the calculation based the observed intensities yields1 − (1 −
pT

j (x, y | γs
j , δ

s
j))

1−γj(T ). This probability is smaller than the correct valuepT
j (x, y |

γs
j , δ

s
j) obtained from the adjusted childbearing intensities whenever the mean change

γj(T ) at timeT is positive. Moreover, the calculations based on the observed intensities
always underestimates the correct value of the lifetime birth probability,pT

j (x, ω | γs
j , δ

s
j),

wheneverγj(T ) > 0 andδj(T ) ≥ 0.

The failure to account for tempo distortions therefore leads to erroneous inferences of
period parity progression probabilities and related measures.

4.3 Conditional parity progression ratios

In this section we derive parity progression ratios and some related measures from the
conditional parity progression probabilities introduced above. These calculations of parity
progression ratios follow mostly from the application of standard multi-state population
theory (e.g., Hoem and Jensen 1982; Schoen 1988). [Note 10] We begin with the parity
distribution attained by the period-T cohort of agex:
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Result 9 Conditional Parity distribution in a cohort:Consider a woman in the period-
T cohort of agex and parityj. Denote as the parity distributionnDT

j (x, y | γs, δs) the
probability that this woman is at exact parityj + n at agey (with n ≥ 0 andy ≥ x) con-
ditional on the postponement scenario given byγs

j , γ
s
j+1, . . . γ

s
j+n andδs

j , δ
s
j+1, . . . δ

s
j+n.

For simplicity, we denote this postponement scenario in our notation as ‘γs, δs’.
The probability of remaining at parityj until at least agey then follows by setting

n = 0 and is given by0DT
j (x, y | γs, δs) = exp[− ∫ y

x
ms

j(a, T + a − x)da] = 1 −
pT

j (x, y | γs
j , δ

s
j). The probability of attaining an exact parityj +n with n > 0 is obtained

via

nDT
j (x, y | γs, δs) =

∫ y

x
n−1D

T
j (x, a | γs, δs) ·ms

j+n−1(a, T + a− x) ·

sT
j+n(a, y | γs

j+n, δs
j+n)da, (18)

wheresT
j+n(a, y | γs

j+n, δs
j+n) is the probability of remaining at parityj + n until agey,

conditional on being at exact parityj + n at agea; this probability is calculated as

sT
j+n(a, y | γs

j+n, δs
j+n) = exp[−

∫ y

a

ms
j+n(a, T + a− x)da]

=
1− pT

j+n(x, y | γs
j+n, δs

j+n)
1− pT

j+n(x, a | γs
j+n, δs

j+n)
.

Consider, for example, the parity distribution of the cohort of women who are age 15 and
parity 0 at timeT . In terms of the above notation this impliesx = 15 andj = 0. The frac-
tion of these women who are still childless at agey is then given by0D

T
0 (15, y | γs, δs)

and follows directly from the probability of ‘surviving’ in the childless state. For first
and higher order births the parity distributionnDT

0 (15, y | γs, δs) needs to be solved iter-
atively. For instance, for first birth (i.e.,n = 1), the terms within the integral in Eq. (18)
represent respectively the fraction of the initial cohort who is at exact parity 0 at agea,
the risk of experiencing the first birth at timeT + a − x when the cohort is at agea (see
Eq. 14), and the probability of not having another child prior to reaching agey. The ad-
vantage of the above calculation is that all terms entering Eq. (18) can be obtained from
the conditional parity progression probabilities, which in turn are calculated by simply
integrating the adjusted intensity schedules in the reference yearT (independent of the
assumptions about the future postponement of fertility). [Note 11]

The final parity distribution conditional on the postponement scenario follows from
the above calculations as:

Result 10 Final parity distribution in the cohort: Consider the period-T synthetic co-
hort of agex and parityj. The final parity distribution in this cohort is given bynDT

j (x, ω |
γs, δs), whereω is the highest feasible age at child-birth.
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Closely related to the parity distribution in Results 9–10 is the period lifetime birth
probability of Park (1967, 1976), which is extended here to the case of a continued post-
ponement of fertility:

Result 11 Conditional period birth probability of n additional children:Consider the
period-T cohort of agex and parity j. Denote asnFT

j (x, y | γs, δs) the period birth
probability ofn additional children that represents the probability that a woman in this
cohort gives birth to at leastn additional children—and thus reaches parityj + n or
higher—prior to agey (with y ≥ x), conditional on the postponement scenario given by
γs andδs.

For n = 0 we define0FT
j (x, y | γs, δs) = 1 since a woman who is at parityj at agex

always hasj or more children when she reaches agey. For n > 0 we obtain

nFT
j (x, y | γs, δs) =

∫ y

x
n−1D

T
j (x, a | γs, δs) ·ms

j+n−1(a, T + a− x)da.

Moreover, we denote as theperiod lifetime birth probability of n additional children
the special casenFT

j (x, ω | γs, δs) that is obtained by setting the second age limit to the
maximum feasible age at childbearingω.

The period birth probabilities and parity distributions are related as

nFT
j (x, y | γs, δs) =

∑
k≥n

kDT
j (x, y | γs, δs).

Finally, we can use the above framework to derive parity progression ratios that are free
of tempo-distortions and allow for a continued postponement of childbearing. Moreover,
we can use these parity progression ratios to calculate the completed cohort fertility:

Result 12 Conditional parity progression ratios and conditional total fertility:Con-
sider again the period-T cohort of agex and parity j. Denote asnπT

j (x | γs, δs) the
conditional parity progression ratio that equals the probability that a woman in this co-
hort gives birth to at leastn additional children, conditional on giving birth to at least
n− 1 additional children and conditional on the postponement scenario given byγs and
δs.

If n = 1, the parity progression ratio follows directly from the lifetime birth probabil-
ity as1π

T
j (x | γs, δs) = 1F

T
j (x, ω | γs, δs). For higher paritiesn > 1, the period parity

progression ratios follow as

nπT
j (x | γs, δs) =

nFT
j (x, ω | γs, δs)

n−1FT
j (x, ω | γs, δs)

. (19)
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Completed fertility for the period-T cohort of agex and parity j is given by the
conditional index of total fertility,TFT

j (x | γs, δs), that is calculated as

TFT
j (x | γs, δs) = j +

∑
k≥1

kFT
j (x, ω | γs, δs)

= j + 1π
T
j (x | γs, δs) + 1π

T
j (x | γs, δs) · 2πT

j (x | γs, δs) + ...

4.4 Conditional cohort mean age at birth

Our analyses in the previous sections have emphasized various indicators of completed
cohort fertility such as parity progression ratios, lifetime birth probabilities and the index
of total fertility. The relevant indicators for changes in the timing of fertility in that context
are provided by the intensity schedule mean age and variance at different parities (see
Result 5). It is important to note, however, that the mean age and variance of the parity-j
intensity schedule arenot equivalent to the average age at birth of orderj + 1 in either
real or synthetic cohorts. Similarly, the mean changeγj does not represent the change
in the mean age at birth in synthetic or real cohorts over time. The parity-specific mean
age and variance of the intensity schedules are therefore merely characteristics of the
age-pattern of the childbearing intensities at different parities. They provide the basis for
detecting changes in the timing of fertility, but they do not have a cohort interpretation.
The distribution of births of a given order in real or synthetic cohorts differs from the
age-pattern of the childbearing intensities and is obtained using the translation formulae
for non-repeatable events (Keilman 1994; Keilman and van Imhoff 1995). In order to
obtain the mean age at birth for the completed cohorts, we therefore extend some existing
translation results and apply them to the framework developed in this paper. Moreover,
we are able to develop an explicit relation for the mean age at first birth as a function of
the annual mean changeγs

0 at parity zero.
We use the termconditional cohort mean age at birth(CMAB) in order to distinguish

the average age at birth from the intensity schedule mean age. The basic idea underlying
theCMAB was initially introduced by Hajnal (1947, 1953) and applied to first marriage.
These results for first marriage can be directly transferred to first births, and they apply
in an analog fashion to second and higher parity births. In this paper we extend this
framework to allow for different postponement scenarios, including a continued delay of
childbearing during a cohort’s life-course.

Result 13 Conditional cohort mean age at birth of order j:Consider the period-T syn-
thetic cohort of agex and parityj. Denote as the synthetic cohort mean agenCMABT

j (x |
γs, δs) the average age at birth of orderj + n in this cohort as a function of the annual
parity-specific mean changesγs

j+k and variance changesδs
j+k, wherek = 0, . . . , n− 1,
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that prevail during the life-course of this cohort. Then

nCMABT
j (x | γs, δs) =

1

nFT
j (x, ω | γs, δs)

· [
∫ ω

x

a · n−1D
T
j (x, a | γs, δs) ·

ms
j+n−1(a, T + a− x)da]. (20)

For the special case whenn = 1, Eq.(20)can be transformed into Hajnal’s formula as

1CMABT
j (x | γs, δs) = x +

1
1− 0DT

j (x, ω | γs, δs)
· [

∫ ω

x
0D

T
j (x, a | γs, δs)da−

(ω − x) · 0DT
j (x, ω | γs, δs)].

The above conditional cohort mean age at birth therefore provides a translation of the
period fertility pattern into the corresponding cohort birth timing. For most applications,
the above calculations will be performed for relatively young childless cohorts so that
x equals, say, 15 years andj is set to zero. For our later projection of cohort fertility,
however, the more general framework introduced above is useful.

The overall mean age at birth, which accounts for births of all orders, then follows by
averaging across birth-orders as:

Result 14 Overall conditional cohort mean age at birth:Consider again the period-T
cohort of agex and parityj. The overall conditional mean age(including all births of
order j + 1 and higher) in this cohort is given by the weighted average

MABT
j (x | γs, δs) =

1
TFT

j (x | γs, δs)− j
[
∑

n≥1
nFT

j (x, ω | γs, δs) ·

nCMABT
j (x | γs, δs)],

wherenFT
j (x, ω | γs, δs) is the lifetime birth probability ofn additional children and

TFT
j (x | γs, δs) is the conditional index of total fertility for the above cohort.

An ongoing postponement of fertility affects this overall mean age at birth through two
pathways: On one hand, a postponement of fertility at some parityj + n increases the
cohort mean age at birth at parityj+n. On the other hand, an ongoing delay of childbear-
ing can imply fertility aging effects and therefore shift the final parity distribution in the
synthetic cohorts towards lower parities. The overall mean age at birth therefore increases
at a slower pace than the parity-specific cohort mean ages.

Unfortunately, the above results do not provide an explicit expression for the effect of
an ongoing fertility postponement of the synthetic cohort mean age at birth. In general,
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these effects need to be investigated numerically. For first births, however, we can obtain
a formula that relates the pace of a future postponement of fertility to the synthetic cohort
mean age at first birth:

Result 15 Comparison of conditional cohort mean age at first birth under different
postponement scenarios:Consider the period-T cohort of agex and parity zero. Denote
as1CMABT

0 (x | γs, δs = 0) the conditional cohort mean age at first birth in this cohort
for the special case when there is only a mean change at parity zero, specified byγs

0, and
no variance change(i.e., δs

0 = 0). Moreover, denote as1CMABT
0 (x | γs = 0, δs = 0)

the corresponding cohort mean age at first birth in the postponement stops scenario, i.e.,
the special case when neither a mean nor variance change occurs after the reference year
(γs

0 = 0 andδs
0 = 0).

The difference in the cohort mean age at first birth caused by the annual mean change
γs

0 during the life-course of the cohort then follows as

∆1CMABT
0 (x) = 1CMABT

0 (x | γs, δs = 0)− 1CMABT
0 (x | γs = 0, δs = 0)

=
γs

0

1− γs
0

[1CMABT
0 (x | γs = 0, δs = 0)− x], (21)

or equivalently,

1CMABT
0 (x | γs, δs = 0) =

1
1− γs

0

[1CMABT
0 (x | γs = 0, δs = 0)− x] + x. (22)

Moreover, consider childless cohorts who have not entered childbearing in the reference
yearT . For these cohorts, the cohort mean age at first birth in the postponement stops
scenario does not depend on the agex in the reference year, i.e.,ddx 1CMABT

0 (x | γs =
0, δs = 0) = 0. If the postponement continues after the reference year, however, these
cohorts differ in their mean age at first birth. In particular, the cohort mean age at first
birth in the postponement continues scenario changes across cohorts as

d

dx
1CMABT

0,1(x | γs, δs = 0) = − γs
0

1− γs
0

(23)

The above results for first births have several interesting implications: (a) The mean age
at birth in cohorts is centrally related to the fractionγs

0/(1−γs
0); in particular, the average

age at first birth of two cohorts, who have not entered childbearing ages, differs by the
product ofγs

0/(1 − γs
0) multiplied with the age-difference between these two cohorts

(see Eq. 23; for a related discussion in the context of the Bongaarts-Feeney formula see
Zeng Yi and Land 1999). (b) The change in the cohort mean age at first birth caused by an
ongoing delay of childbearing depends on the difference between the age of a cohort in the
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reference yearT and the conditional cohort mean age at first birth in the postponement
stops scenario (see Eq. 21). The greater this difference is, the larger the effect of an
ongoing delay of childbearing is. Or alternatively, the effect of a future postponement of
first births on the timing of cohort fertility increases the younger the cohort is and the later
the timing of childbearing is.

5 Using the Model: Measuring Period Fertility and Com-
pleting Cohort Fertility

In the previous sections we have completed our development of conditional parity pro-
gression measures for the period-T cohort of agex and parityj under alternative post-
ponement scenarios. The two main applications follow directly from this analysis: (a) an
improved measurement of period fertility on the basis of period parity progression mea-
sures that are free from tempo distortions, and (b) a possibility to complete and project the
fertility of birth cohorts, who are still in childbearing ages, under different postponement
scenarios.

5.1 Parity progression measures for measuring period fertility

The parity progression measures introduced in the previous section can be used for the
measurement of period fertility when they are applied to synthetic cohorts. This is partic-
ularly meaningful for the postponement stops scenario. In this case, the synthetic cohort
experiences the tempo-adjusted period intensities. If we choose a synthetic cohort that is
at the beginning of its childbearing ages, this calculation yields theperiod fertility index
(PF ). This index represents a tempo-adjusted version of thePATFR index introduced
by Rallu and Toulemon (1994), and it is equal to

PFt = TF t
0(α | γs = 0, δs = 0),

whereα is the earliest age at childbearing (in our calculations we have usedα = 15).
The primary advantage of the period fertility index,PFt, is its direct interpretation in

terms of synthetic cohort fertility: it is equal to the total fertility of women in a synthetic
cohort that experiences the tempo-adjusted childbearing intensities in periodt throughout
their childbearing ages. This measure is free of tempo and compositional distortions
because the calculations are based on tempo-adjusted childbearing intensities instead of
incidence rates. The period fertility index,PFt, is therefore a period measure of fertility
that can be interpreted as thequantum of fertilityin periodt, where quantum is defined
as the cohort fertility level associated with the tempo-adjusted childbearing intensities in
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a calendar year (for more extended discussions of measuring period fertility, see Ortega
and Kohler 2002a,b).

While the period fertility index reflects a central aspect of period fertility, namely
the period quantum of fertility, various other period parity progression measures can also
be applied to the synthetic cohort under the postponement stops scenario. For instance,
the period lifetime birth probabilities, the period parity progression ratios and the cohort
mean age at birth can also be used to characterize synthetic cohort fertility and to describe
period patterns.

If these measures are calculated under the postponement stops scenario, they can be
regarded as proper period measures of fertility. They are neither affected by composi-
tional distortions, which represent influences of prior fertility behaviors, nor by tempo
distortions, which are due to changes in the timing of fertility. In addition to these cal-
culations under the postponement stops scenario, it is often useful to calculate parity
progression measures under the postponement continues scenario to illustrate the impli-
cations of fertility aging. In particular, an alternative summary index that we will report
in our analysis is the index of total fertility for the postponement continues scenario,
TF t

0(α | γs = γ(t), δs = δ(t)). It measures the total fertility of women in a synthetic co-
hort that experience an ongoing delay of childbearing, at a pace that equals the mean- and
variance changes in periodt, throughout their childbearing years. This measure therefore
provides an overall assessment of the net fertility aging effect that is implied by the period
t postponement pattern.

5.2 Completing the fertility of cohorts

The second application of our period parity progression measures is the completion of co-
hort fertility. This completion is possible because the measures introduced in the previous
section provide conditional projections for the period-T cohorts at all ages and parities.
This allows us to take the parity distributionobservedin the reference yearT as the start-
ing point for the calculation. We then use period parity progression measures to fill in the
‘missing’ part of a cohort’s childbearing pattern conditional on future trends in the tempo
and parity-specific level of fertility. In the cohort completions that we present in this pa-
per, the projection of future fertility is based on the parity-specific level of fertilityqj(T )
in the reference year and the parity-specific postponement pattern given byγs

j andδs
j for

all paritiesj = 0, .... The completed fertility of birth cohorts then follows via a weighted
average of the conditional total fertility indexesTFT

j (x | γs, δs) across all parities in the
reference yearT , where the weights are equal to the observed parity distribution of the
cohort in the reference yearT . That is, ifjDT

obs(x) is the fraction of women at exact par-
ity j among all women who are agex in the reference yearT , the conditional completed
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fertility of the birth cohort agex in periodT is given by

CFT (x | γs, δs) =
∑

j≥0
jD

T
obs(x) · TFT

j (x | γs, δs).

This calculation is conditional on a specific postponement scenario that is represented by
‘γs, δs’ in the above notation. This postponement scenario can be freely chosen by the
analyst. Particularly interesting and appealing for cohort completion, in our opinion, are
the postponement stops (γs = 0, δs = 0) and the postponement continues (γs = γT , δs =
δT ) scenarios.

While the completed cohort fertility is a centrally important indicator of cohort fer-
tility, the analysis with our period parity progression measures is not restricted to this
measure. Other cohort fertility measures, such as the final parity distribution or the mean
age at birth (overall or at some specific birth order), can also be obtained by taking corre-
sponding weighted averages. For instance, the cohort mean age at birth of orderj can be
calculated via a weighted average between the mean age of women at order-j births prior
to the yearT and the order-specific mean age at order-j births that are projected to occur
in the future.

It is important to emphasize that the above completions of cohort fertility arenot de-
mographic forecasts that account for the uncertainty associated with the future level and
postponement of fertility. Our calculations are conditional on a specific postponement
scenario and they assume the parity-specific level effectsqj that prevail in the refer-
ence yearT . Assessing the uncertainty of cohort fertility requires either simulations
with alternative assumptions about the level of fertility and pace of fertility postpone-
ment, stochastic time-series models for the level, tempo and tempo changes similar to the
methods introduced in Lee (1974, 1993), or expert-based probabilistic approaches as in
Lutz et al. (1996). While these assessments of uncertainty are quite compatible with our
methods, the detailed discussion of these possibilities is beyond the scope of the present
analyses. Despite this limitation, the methods introduced here are very useful because
they allow a demographically correct and consistent projection of cohort fertility condi-
tional on a level of fertility and a postponement pattern that is derived from past period
trends.

6 Empirical Implementation

In the following we briefly discuss the empirical implementation and estimation of the
tempo-adjusted period parity progression measures proposed in this paper.S-plus pro-
grams to perform these calculations, and a more detailed discussion of the estimation
procedure, are available online at http://user.demogr.mpg.de/kohler. These calculations
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proceed in three steps. First, we obtain childbearing intensities. Second, we estimate
mean- and variance changes in the schedules of period childbearing intensities for each
calendar year and compute the adjusted childbearing intensities. Third, we use these
tempo-adjusted childbearing intensities to calculate fertility measures for the synthetic
cohort.

Age-, period- and parity specificchildbearing intensities(or occurrence-exposure
rates) are usually not published in standard demographic publications. In general, these
intensities need to be calculated on the basis of information about (a) births by age and
parity in a calendar year, and (b) a measure of the person years lived by women who are
‘at risk’ of giving birth to a first, second, third, etc., child. For instance, the exposure
can be estimated by the mid-year female population by age and parity. These data can be
easily obtained in countries with population registers. The data can also be reconstructed
for many other countries that have regular censuses with questions about parity. Another
possibility is to obtain childbearing intensities by using data on cohort fertility by age
and parity, since age- and parity-specific fertility rates for cohorts can be converted into
childbearing intensities. For instance, the Observatoire Démographique Européen has re-
constructed such cohort data for many countries (for publications that use these data, see
for instance Frejka and Calot 2001a,b or Kohler, Billari, and Ortega 2001).

The second step requires that we calculate the mean and variances of the adjusted
intensity schedules in all calendar years. In the presence of variance effects, the respective
estimation is somewhat more complicated than in the standard BF adjustment of the total
fertility rate because variance effects distort the shape of the intensity schedule. [Note 12]
The shape of the observed intensity schedule therefore differs from the adjusted intensity
schedule at parityj wheneverδj(t) 6= 0. In order to properly estimate the adjusted
intensity schedule along with its mean- and variance changes we therefore implement the
following iterative procedure: [Note 13]

1. We estimate the mean age and variance of all period intensity schedules for parities
j = 1, . . . J , whereJ is the highest parity. Since childbearing intensities for higher
parities tend to be quite variable at young ages, it is advisable to restrict the inten-
sities to ‘relevant’ ages (for instance, in our analyses for Sweden we have dropped
the childbearing intensities for third and fourth births below the ages of 20 and 21,
since third and fourth birth fertility below these ages do not contribute importantly
to the overall period and cohort fertility).

2. We estimate the mean and variance changes in the observed childbearing intensities.
In order to achieve a robust estimation, we use IRW methods based on state-space
smoothing (Garćıa-Ferrer et al. 2001; Young 1994), where the ratio of the variance
of the noise in the mean age series to the variance in the derivative (the so-called
Noise Variance Ratio,NV R) is fixed. [Note 14]
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3. We estimate the adjusted intensity schedule at parityj on the basis of the observed
childbearing intensities and the annual mean- and variance changes obtained in the
previous step (see Result 2).

4. We re-estimate the mean- and variance change,γj(t) andδj(t), for all calendar
years based on the adjusted intensity schedules obtained in the previous step.

5. We return to step 3 and re-estimate the adjusted intensity schedule based on the new
values ofγj(t) andδj(t). The iteration stops once the estimates for the mean- and
variance changes converge.

Once the adjusted intensity schedules have been estimated for all calendar years, the
tempo-adjusted parity progression measures proposed in this paper can be calculated by
using discrete-time versions of our earlier results.

Acknowledgments:We are greatly indebted to Gunnar Andersson for providing us with
the Swedish data used in this paper. This paper has also greatly benefited from earlier
discussions with Kenneth Wachter. In addition, we have received many very helpful com-
ments and suggestions from two anonymous reviewers, Juha Alho, Francesco Billari,
John Bongaarts, Tomas Frejka, Patrick Heuveline, Jan M. Hoem, Evert van Imhoff, Nico
Keilman, Ron Lesthaeghe and Laurent Toulemon. We greatly appreciate the support of
the Max Planck Institute for Demographic Research, where Ortega has been a guest re-
searcher from June 2001 to January 2002. Ortega has also received financial support from
CICYT, program PB98-0075.

128 http://www.demographic-research.org/



Demographic Research- Volume 6, Article 6

Notes

1. The alternative specification would have been a parity and duration model (e.g., see
Feeney and Yu 1987; Ńı Bhrolch́ain 1987; Rallu and Toulemon 1994) that does not exhibit
any fertility aging effects since childbearing intensities depend exclusively on the dura-
tion since the last birth. This implication is contrary to the current empirical evidence, so
the parity and age model is preferred on these grounds.

2. As Laurent Toulemon commented in personal communication this is to a large extent a
result of the model. If transition to first birthrequiresearlier transitions out of education or
into cohabitation or marriage, these could be accommodated within an extended fertility
model as prior states. Postponement of such transitions would have consequences on the
ultimate level of childlessness.

3. Toulemon and Mazuy (2001) call this a strong independence hypothesis. Van Imhoff
(2001) advocates the use of the postponement stops scenario for the same reasons. We
note that if one believes that fertility postponement at lower parities will continue but that
the postponement at higher parities will compensate for the fertility aging effect, this is
not the same as the postponement stops scenario: while the ultimate level of fertility for a
cohort starting childbearing now would coincide, that of actual cohorts would be different
since the childbearing intensities would be applied to the wrong cohorts if one believes
that postponement will continue. We do not pretend to say ex-ante what the most likely
scenario would be; we simply provide the two present scenarios for illustrative purposes.
Fertility forecasting as compared to projection requires a modeling exercise that includes
an assessment of uncertainty. Such analyses, however, are is beyond the scope of this
paper.

4. In this paper we do not systematically address whether the high mean ages at first and
higher order births in the postponement continues scenario are realistic given the foresee-
able social changes and medical progress in the future. The goal of this paper is to study
the implications of postponed childbearing and to provide techniques to construct and
study future scenarios about the postponement of fertility. These scenarios can then pro-
vide the basis for analyses of the plausibility of these developments, and they can provide
the information for studies about the necessary social, demographic and medical changes
that are necessary in order to accommodate further delays in childbearing.

5. Several methods and models have been proposed to estimate period parity progression
ratios and related measures from vital registration data, survey data, or a combination of
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both (Barkalov and Dorbritz 1996; Chiang and van den Berg 1982; Feeney 1985; Hand-
cock et al. 2000; Henry 1953; Lutz 1989; Ortega and Kohler 2002a; Rallu and Toulemon
1993). The proposed methods differ in their demands for parity-specific data on births
and population, and in their assumptions about the determinants of fertility.

6. The requirement thatRj(a, T ) = 0 and∆aRj(a, t)|t=T = 0 at all agesa is an implication
of choosing timeT as ‘reference year’ in the sense that we measure changes in the age
pattern of childbearing intensities relative to the age pattern at timeT . By rescaling
the cumulated tempoRj(a, t), the reference yearT can be changed without affecting
any of the subsequent results of adjusted childbearing intensities. The assumption that
a−Rj(a, t) is increasing ina, or equivalently, that1−∆aRj(a, t) > 0, is a consistency
restriction that ensures that the mapping between the observedh schedule and the standard
φ schedule follows the natural age order. See Kohler and Philipov (2001) for a further
discussion.

7. See KP for expressions for the mean age and variance of the observed intensity schedule,
which differ from those of the adjusted intensity schedule when variance changes are
present, i.e., whenδs

j 6= 0.

8. In formal analyses, this condition can always be satisfied by choosingω sufficiently high.

9. In principle, our theoretical framework is sufficiently general so that any specific assump-
tion aboutγs

j andδs
j , which is deemed relevant and provides a plausible scenario for the

future fertility postponement, can be implemented.

10. An alternative to the integral calculations in the Results 9–12 is the use of a multistate life
table program that takes the childbearing intensitiesms

j(a, t) in Eq. (14) as an input and
integrates them along cohort lines; see for instance the LIPRO program by van Imhoff
and Keilman (1991).

11. In particular, the childbearingms
j(a, T + a−x) in Eq. (18) can also be obtained from the

conditional parity progression probability as

ms
j(a, T + a− x) = −∆a log(1− pT

j (x, a | γs, δs)), (24)

and the integral in Eq. (18) can then be expressed completely in terms of conditional
parity progression probabilities.
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Equation (24) follows as

∆a log(1− pT
j (x, a | γs, δs)) = ∆a[−

∫ a−Rs
j (a,T+(a−x))

x

m′
j(z, T )dz]

= −qj(T )(1−∆a,tR
s
j(a, t)|a,t=T+(a−x))φ

T
j (a)

= −(1−∆a,tR
s
j(a, t)|a,t=T+(a−x))m′

j(a, T )
= −ms

j(a, T + (a− x))

The first equality follows from the definition ofpT
j (x, a | γs, δs) in Eq. (17), the second

equality follows by differentiation, the third equality follows by insertingm′
j(a, T ) =

qj(T )φT
j (a) (see Definition 2), and the final equality follows from the definition ofms

j(a,
t) in Eq. (14).

12. See Kohler and Philipov (2001) for a detailed discussion of the distortions in the observed
fertility pattern that are caused by variance effects

13. This procedure is slightly different from the one implemented in Kohler and Philipov
(2001) and provides estimates of the adjusted intensity schedules and not only the mo-
ments of these schedules as in KP.

14. The model can be written as follows. The measurement equation states that the observed
series (in our case the mean age and standard deviation of the period intensity schedule at
parity j) is the sum of an unobserved trend component,Tt, and a noise component with
varianceσ2

ε:
Yt = Tt + εt (25)

The transition equations state that the trend component changes in each period through the
addition of a slope component (the derivative estimate) which changes over time through
the addition of a noise componentηt with varianceσ2

η:

Tt = Tt−1 + St−1

St = St−1 + ηt

The system depends on a single parameter, the noise variance ratioNV R = σ2
ε/σ2

η, that
reflects the variance of noise in the observed seriesYt relative to the noise in the under-
lying trend componentTt. The extraction of the trend and slope components implies the
forward application of the Kalman filter algorithm and the backward application of Fixed
Interval Smoothing. We implement this smoothing technique because of its desirable
spectral properties: there is a relationship between theNV R and the cut-off frequency of
the filter.
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Appendix: Proofs omitted in the text

Proof of Result 1: The relation between the two scheduleshj(a, t) andφT
j (a) can be

established by a change of variable from the observed agea and timet of a birth at parity
j to the hypothetical agea − RT

j (a, t) and timet − RT
j (a, t) at which this birth would

occur in the absence of any further fertility postponement after the reference yearT . The
Jacobian of this transformation from the observed to hypothetical occurrence of a birth is
(1−∆a,tR

T
j (a, t)). The relation betweenhj(a, t) andφT

j (a) therefore is given by

hj(a, t) = (1−∆a,tR
T
j (a, t)) · φT

j (a−RT
j (a, t)). (26)

Moreover, the above childbearing intensitieshj(a, t) in Eq. (26) satisfy our definition of
fertility postponement (see Eq. 5 in Definition 1) for all choices ofx andy. In particular,
the equality of the probabilitiesph

j,T (x, y) andpφ
j,T (x, z) in Definition 1 is obtained by

integrating

ph
j,T (x, y)

= 1− exp[−
∫ y

x

hj(a, T + (a− x))da]

= 1− exp[−
∫ y

x

(1−∆a,tR
T
j (a, t)|a,t=T+(a−x)) · φT

j (a−RT
j (a, T + (a− x)))da]

= 1− exp[−
∫ y−R(y,T+(y−x))

x

φT
j (α)dα]

= pφ
j,T (x, z) with z = y −R(y, T ′) andT ′ = T + (y − x).

The first equality follows from the definition ofph
j,T (x, y) in Eq. (3). The second equality

follows by inserting Eq. (26) and substitutingt = T + (a − x), where we have used the
notation ‘|a,t=T+(a−x)’ to indicate that the derivative∆a,tR

T
j (a, t) is evaluated at age

a and timet = T + (a − x). The third equality follows by changing the variable of
integration from the agea to the hypothetical ageα = a−RT

j (a, T + (a− x)) at which
births would have occurred in the absence of a fertility postponement. The Jacobian that
needs to be considered in this change of variable is(1 − ∆a,tR

T
j (a, t)|a,t=T+(a−x))−1.

This Jacobian cancels the first term within the integral sign. Moreover, the cumulated
tempo change evaluated in the reference yearT , RT

j (a, T ), is equal to zero at all ages
(Assumption 4) and there is no change in the lower limit of the integral after the change
of variable. The final equation follows directly from the definition ofpφ

j,T (x, z) in Eq. (4)
after insertingz = y −R(y, T ′) andT ′ = T + (y − x).

The above steps therefore establish for all values ofx andy the equalityph
j,T (x, y) =

pφ
j,T (x, z) with z = y−R(y, T ′) andT ′ = T +(y−x). Hence, the observed age-pattern
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of childbearing intensities given by Eq. (26) imply a postponement of fertility according
to Definition 1, and vice versa.

In combination with decomposition of the observed childbearing intensities in Eq. (2),
the result in Eq. (26) also yields the relation for the observed childbearing intensities in
Eq. (7).

Proof of Result 2: The result follows from the specification of the adjusted childbearing
intensities in Definition 2 and by integrating

∫
m′

j(a, t)da = qj(t)
∫

(1 − ∆aRT
j (a, t))

φT
j (a − RT

j (a, t))da. A change of variable froma to α = a − RT
j (a, t) then yields∫

m′
j(a, t)da = qj(t)

∫
φT

j (α)dα = qj(t), where the last equality follows from Assump-
tion 3.

Proof of Result 3: Result 3 follows directly by rewriting the Jacobian term in Eq. (7)
as(1 −∆a,tR

T
j (a, t)) = (1 − rj(a, t)) · (1 −∆aRT

j (a, t)), whererj(a, t) is defined in
Eq. (10).

Proof of Result 4: Cumulated tempo changes must be additive over time. We therefore
consider an arbitrary agea′ and timet′, where we assume for simplicity thatT < T ′ ≤ t′

(different sequences ofT , T ′ andt′ follow analogously), and we decompose the cumu-
lated tempo changes over time. In particular, in the caseT < T ′ ≤ t′, the relation

RT
j (a′, t′) = RT ′

j (a′, t′) + RT
j (a′ −RT ′(a′, t′), T ′), (27)

which must be satisfied by the cumulated tempo changes for the reference yearsT and
T ′according to Result 4, follows by separately considering and then adding the cumulated
tempo changes betweenT andT ′, and betweenT andt′:

First,RT
j (a′, t′) equals to the cumulated tempo changes at agea′ and timet′ measured

since the reference yearT . Second,RT ′
j (a′, t′) is the corresponding cumulated tempo

change measured since the reference yearT ′. Third, denote asα′ = a′ − RT ′
j (a′, t′)

the age when a birth occurring at agea′ and timet′ would have occurred if there had
been no further tempo changes since the reference yearT ′. Then RT

j (α′, T ′) repre-
sents exactly that part of the overall cumulated tempo changeRT

j (a′, t′) that occurs
between the old and new reference years,T and T ′. Adding these contributions then
yieldsRT

j (a′, t′) = RT
j (α′, T ′) + RT ′

j (a′, t′), which in turn yields Eq. (27) after insert-

ing α′ = a′ − RT ′
j (a′, t′). This new cumulated tempo also satisfies the condition in

Assumption 3 thatRT ′
j (a, t)|t=T ′ = 0.

The standardized schedule for the new reference yearT ′,

φT ′
j (a) = (1−∆aRT

j (a, t)|t=T ′)φT
j (a−RT

j (a, T ′)), (28)
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is obtained by evaluating Eq. (8) at timeT ′ and then dividing by the level effectqj(T ′)
in the new reference year. An integration with change of variable also shows thatφT ′

j (a)
satisfies the condition in Assumption 3 that

∫
φT ′

j (a)da = 1.
Moreover, applying the implicit function theorem to Eq. (27) yields

∆aRT ′
j (a, t)|a=a′,t=t′ =

∆aRT (a, t)|a=a′,t=t′ −∆aRT (a, t)|a=a′−RT ′
j (a′,t′),t=T ′

1−∆aRT (a, t)|a=a′−RT ′
j (a′,t′),t=T ′

(29)

∆tR
T ′
j (a, t)|a=a′,t=t′ =

∆tR
T (a, t)|a=a′,t=t′

1−∆aRT (a, t)|a=a′−RT ′
j (a′,t′),t=T ′

. (30)

Equation (29) implies thata − RT ′
j (a, t) is increasing ina as is required by Assumption

3. Moreover, the above relations (30–29) allow us to verify thatRT ′
j (a, t), combined with

the standardized scheduleφT ′
j , generates the same sequence of tempo-adjusted intensity

schedules. In particular, from Definition 2 we obtain

m′
j(a

′, t′) = qj(t′) · (1−∆aRT ′
j (a, t)|a=a′,t=t′) · φT ′

j (a′ −RT ′
j (a′, t′))

= qj(t′) · (1−∆aRT
j (a, t)|a=a′,t=t′) ·

φT
j (a′ −RT ′

j (a′, t′)−RT
j (a′ −RT ′

j (a′, t′), T ′))

= qj(t′) · (1−∆aRT
j (a, t)|a=a′,t=t′) · φT

j (a′ −RT
j (a′, t′)),

where the first equality follows from the definition ofm′
j(a

′, t′) in terms of the refer-
ence yearT ′, the second equality follows from inserting Eqs. (28) and (29), and the third
equality follows from Eq. (27). The last line, however, is identical to Eq. (8) in Definition
2, and the model therefore defines the same tempo adjusted childbearing intensities inde-
pendent of the choice of the reference years. This immediately implies that Result 2 holds
independent of the choice of reference year. Moreover, using Eqs. (29–30), we can also
show that the definition ofrj(a, t) in Eq. (10) does not depend on the choice of reference
year, and thus Result 3 also holds independent of the specification of the reference year.

Proof of Result 5: The result follows by integratinḡaj(t) =
∫

a ·m′
j(a, t)da/qj(t) and

s2
j (t) =

∫
(a− āj(t))2 ·m′

j(a, t)da/qj(t), and changing the variable of integration. The
steps are identical to the proof of Results 6 and 10 in KP.

Proof of Result 6: The assumptions about the level and postponement of fertility under-
lying the intensity schedulesms

j(a, t) imply for all t ≥ T thatqj(t) = qj(T ), γj(t) = γs
j ,

andδj(t) = δs
j . The cumulated tempoRs

j(a, t) and the age-specific tempo changers
j (a, t)
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then follow from Assumption 5 withγj(t) = γs
j andδj(t) = δs

j . Equation (14) then fol-
lows directly from Eq. (7) after inserting the above assumptions about the determinants of
the childbearing intensities for the synthetic cohort. Equation (16) then follows directly
from Eqs. (14) and (9).

The statements about the mean and variance of the adjusted intensity schedulems′
j (a, t)

follow directly from Result 5. The statement
∫

ms
j(a, t)da = (1 − γs

j) · qj(T ) follows
by an analogous integration as in the proof of Results 7 and 10 in KP, and the relation∫

ms′
j (a, t)da = qj(T ) follows directly from Result 2.

Proof of Result 7: Consider the woman specified in Result 7. The probability that this
parity-j woman has another child and progresses to parityj + 1 follows as

pT
j (x, y | γs, δs)

= 1− exp[−
∫ y

x

ms
j(a, T + (a− x))da]

= 1− exp[−qj(T )
∫ y

x

(1−∆a,tR
s
j(a, t)|a,t=T+(a−x)) ·

φT
j (a−Rs

j(a, T + (a− x)))da]

= 1− exp[−qj(T )
∫ y−Rs

j (y,T+(y−x))

x

φT
j (α)dα]

= 1− exp[−
∫ y−Rs

j (y,T+(y−x))

x

m′
j(α, T )dα].

The first equality follows from the definition ofpT
j (x, y | γs, δs) and standard event-

history analysis. The second equality follows by inserting Eq. (14) and using the notation
‘ |a,t=T+(a−x)’ to indicate that the derivative∆a,tR

T
j (a, t) is evaluated at agea and time

t = T + (a − x). The third equality follows by changing the variable of integration
from the agea to the hypothetical ageα = α − RT

j (a, T + (a − x)) at which births
would have occurred in the absence of a fertility postponement. The Jacobian that needs
to be considered in this change of variable is(1−∆a,tR

T
j (a, t)|a,t=T+(a−x))−1, and this

Jacobian cancels the first term within the integral sign. Moreover, the cumulated tempo
change evaluated in the reference yearT , RT

j (a, T ), is equal to zero at all ages (Assump-
tion 4) and there is no change in the lower limit of the integral after the change of variable.
The final equality follows sincem′

j(a, T ) = qj(T ) · φT
j (a) (see Assumption 3). Finally,

changing the notation for the variable of integration yields Eq. (17) in Result 7.
The conditional lifetime parity progression probability is given by

pT
j (x, ω | γs

j , δ
s
j) = 1− exp[−

∫ ω−Rs
j (ω,T+(ω−x))

x

m′
j(a, T )da,
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where the upper limit of integration can be changed to∞ since all adjusted childbearing
intensitiesm′

j(a, T ) above agesω−Rs
j(ω, T +(ω−x) are equal to zero (this implied by

Assumption 6).

Proof of Result 8: Denote as̃pT
j (x, y | γs, δs) the conditional parity progression probabil-

ity that is obtained from the calculation in Eq. (17) when the observed childbearing inten-
sitiesmj(a, T ), instead of the adjusted childbearing intensitiesm′

j(a, T ), are used in the
integration. The error that is incurred by using the observed instead of the adjusted child-
bearing intensities then follows from the fact that the observed and adjusted childbearing
intensities at timeT are related asmj(a, T ) = (1−rj(a, T ))·m′

j(a, T ), whererj(a, T ) is

given in Eq. (13). TheñpT
j (x, y | γs, δs) = 1− exp[− ∫ y−Rs

j (x,T+(y−x))

x
mj(a, T )da] =

1 − exp[− ∫ y−Rs
j (x,T+(y−x))

x
(1 − rj(a, T ))m′

j(a, T )]da. Using Eq. (13) and denoting
ỹ = y −Rs

j(x, T + (y − x)), the exponential term can be further decomposed as

(1− p̃T
j (x, y | γs, δs))

= exp[−
∫ ỹ

x

(1− rj(a, T )) ·m′
j(a, T )]da

= exp[−
∫ ỹ

x

(1− γj(T )− δj(T )(a− āj,T )) ·m′
j(a, T )da]

= exp[−(1− γj(T ))
∫ ỹ

x

m′
j(a, T )da + δj(T )

∫ ỹ

x

(a− āj,T ) ·m′
j(a, T )da]

= (1− pT
j (x | γs, δs))1−γj(T ) · exp[δj(T )

∫ ỹ

x

(a− āj,T ) ·m′
j(a, T )da].

The calculation of the conditional parity progression probability based on the observed
intensities is therefore distorted. In the special case whenδj(T ) = 0, the terms in-
volving δj(T ) vanish and the calculation of the conditional parity progression probabil-
ity based on the observed childbearing intensities yieldsp̃T

j (x, y | γs, δs) = 1 − (1 −
pT

j (x, y | γs, δs))1−γj(T ). Moreover, sincēaj,T is defined as the mean age of the intensity
schedulem′

j(a, T ), the integral in the last term for the calculation of the lifetime prob-

ability satisfies
∫ ω̃

x
(a − āj,T )m′

j(a, T )da ≥ 0, whereω̃ = ω − Rs
j(x, T + (ω − x))

and all adjusted intensitiesm′
j(a, T ) are equal to zero fora ≥ ω̃ (implied by Assump-

tion 6). Forγj(T ) > 0 andδj(T ) ≥ 0 we therefore obtain(1 − p̃T
j (x, ω | γs, δs)) >

(1 − pT
j (x, ω | γs, δs)), or equivalentlyp̃T

j (x, ω | γs, δs) < pT
j (x, ω | γs, δs). The correct

value ofpT
j (x, ω | γs, δs) is thus underestimated when the calculation of this conditional

parity progression probability in Eq. (17) is based on the observed instead of the adjusted
childbearing intensities.
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Proof of Result 9: Consider a woman in the period-T synthetic cohort of agex and parity
j specified in Result 9. The relation forsT

j+n(a, y | γs
j+n, δs

j+n) in terms of conditional
parity progression probabilities follows directly from the integral for the survival prob-
ability and the definition ofpT

j (x, y | γs
j , δ

s
j). The parity distribution0D

T
j (x, y | γs, δs)

then just follows from the probability of ‘surviving’ in parityi from agex until agey as
0D

T
j (x, y | γs, δs) = sT

j (x, y | γs
j , δ

s
j) = 1− pT

j (x, y | γs
j , δ

s
j).

The parity distributionnDT
j (x, y | γs, δs), with n > 0, follows by integrating the

survival probabilitysT
j+n(a, y | γs, δs) multiplied by the probability of attaining parity

j + n at agea. This latter probability is given byn−1D
T
j (x, a | γs, δs) ·ms

j+n−1(a, T +
a− x), wheren−1D

T
j (x, a | γs, δs) is the probability of being at exact parityj + n− 1 at

agea andms
j+n−1(a, T + a− x) is the ‘hazard’ of experiencing a birth of orderj + n at

agea.

Proof of Result 10: The result follows directly from Result 9 by settingy = ω, whereω
is the maximum feasible age at childbirth.

Proof of Result 11: Consider a woman in the period-T synthetic cohort of agex and
parity j specified in Result 11. The birth probabilitynFT

j (x, y | γs, δs) follows by inte-
grating from agex to agey the probability of being at exact parityj + n − 1 at some
agea, given byn−1D

T
j (x, a | γs, δs), multiplied by the hazard of experiencing a birth of

orderj at agea, given byms
j+n−1(a, T + a− x).

Proof of Result 12: Consider a woman in the period-T cohort of agex and parityj
specified in Result 12. The parity progression ratio to thej + 1st child,1πT

j (x | γs, δs),
equals the lifetime birth probability forn = 1 that is given by1FT

j (x, ω | γs, δs). Forn >

1, i.e., for the transition to parityj + n, the parity progression probabilitynπT
j (x | γs, δs)

is the probability of progressing to parityj+n conditional on attaining parityj+n−1, and
the parity progression probability therefore follows from the lifetime birth probabilities
as in Eq. (19). The index of total fertility then follows by calculating the expected number
of additional children born to a women in the period-T cohort of agex and parityj from
either the period birth lifetime probabilities or period parity progression ratios and adding
the parity of the woman in the reference year.

Proof of Result 13: The conditional cohort mean age at birth in Eq. (20) follows from
the standard integration of the rate of attaining parityj + n at some agea, given by
n−1D

T
j (x, a | γs, δs) ·ms

j+n−1(a, T +a−x), times the agea, and dividing by the lifetime
probability of attaining a final parity of at leastj + n. For the special case ofn =
1, the parity distribution0DT

j (x, a | γs, δs) is the probability of ‘surviving’ in parityi
until agea and can be written in terms of the childbearing intensities experienced by the
synthetic cohort as0DT

j (x, a | γs, δs) = exp
[− ∫ a

x
ms

j(z, T + z − x)dz
]
. Integration by

parts then yields Hajnal’s formula.
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Proof of Result 14: The overall mean age at birth is just the weighted average of the
parity-specific mean ages, where weights are given by the lifetime birth probabilities for
the respective parities. The denominatorTFT

j (x | γs, δs)−j =
∑

k≥1 kFT
j (x, ω | γs, δs)

is the expected number of additional births of parity to women in the period-T cohort of
agex and parityj.

Proof of Result 15: The proof of Result 15 proceeds in four steps. For all steps we
consider the period-T cohort of agea and parityi that is specified in Result 15.

First, we consider the relation between the proportion of women surviving in the child-
less state in the two postponement scenarios. That is, we consider the relation between

0D
T
0 (x, a | γs, δs = 0) and0D

T
0 (x, a | γs = 0, δs = 0), which can be determined using

the childbearing intensities experienced in the two postponement scenarios. If the annual
mean changesγs

0 prevail during the life-course of the period-T cohort of agex and parity
zero, this cohort is subject to the first-birth intensitiesq0(T )(1− γs

0)φ
T
0 (a− γs

0 · (a− x))
when it attains agea. These intensities follow directly from Eq. (14) by inserting the
specific assumptions about the mean changeγs

0 and the variance changeδs
0 = 0. In the

postponement stops scenario, the synthetic cohort at agea is subject to the first birth
childbearing intensitiesm′

0(a, T ) = q0(T )φT
0 (a). We therefore obtain

0D
T
0 (x, a | γs, δs = 0)

= exp
[
−q0(T )(1− γs

0)
∫ a

x

φT
0 (z − γs

0(z − x))dz

]

= exp

[
−q0(T )

∫ a−γs
0·(a−x)

x

φT
0 (ζ)dζ

]

= 0D
T
0 (x, a− γs

0 · (a− x) | γs = 0, δs = 0), (31)

where the first equality follows from the definition of0D
T
0 (x, a | γs, δs = 0), the second

equality follows by a change of variable fromz to ζ = z − γs · (z − x), and the final
equality follows from the definition of0D

T
0 (x, a | γs = 0, δs = 0).

Second, sinceω constitutes the highest feasible age at childbearing,0D
T
0 (x, a | γs,

δs = 0) = 0D
T
0 (x, ω | γs, δs = 0) for all agesa ≥ ω, i.e., the proportion of women who

remain ultimately childless is fixed at the maximum age at childbearingω. In addition,
using Eq. (31) this also implies that0D

T
0 (x, a | γs = 0, δs = 0) = 0D

T
0 (x, ω | γs, δs = 0)

for all agesa ≥ ω − γs
0 · (ω − x), i.e., the proportion of women who remain ultimately

childless in the postponement stops scenario is fixed at an age that is slightly below the
maximum age of childbearing (ifγs

0 > 0) and it is equal to the proportion who remain
ultimately childless in the postponement continues scenario.
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Third, we consider the integral
∫ w

x 0D
T
0 (x, a | γs, δs = 0)da and obtain

∫ ω

x
0D

T
0 (x, a | γs, δs = 0)da (32)

=
∫ ω

x
0D

T
0 (x, a− γs

0 · (a− x) | γs = 0, δs = 0)da

=
1

1− γs
0

∫ ω−γs
0·(ω−x)

x
0D

T
0 (x, α | γs = 0, δs = 0)dα

=
1

1− γs
0

[
∫ ω

x
0D

T
0 (x, a | γs = 0, δs = 0)da− γs

0 · (ω − x) ·

0D
T
0 (x, ω | γs = 0, δs = 0)], (33)

where the first equality follows from Eq. (31), the second equality follows by changing
the variable of integration from agea to α = a − γs

0 · (a − x), and the forth equality
uses the fact that the distributionDT

0,0(x, ω | γs = 0, δs = 0)] is constant above all ages
a ≥ ω − γs

0 · (ω − x).
The expression for∆1CMABT

0 (x) in Eq. (21) then follows as

∆1CMABT
0 (x)

= 1CMABT
0 (x | γs, δs = 0)− 1CMABT

0 (x | γs = 0, δs = 0)

= (1− 0D
T
0 (x, ω | γs, δs))−1[

∫ ω

x
0D

T
0 (x, a | γs, δs = 0)da−

∫ ω

x
0D

T
0 (x, a | γs = 0, δs = 0)da]

= γs
0 · [

∫ ω

x
0D

T
0 (x, a | γs = 0, δs = 0)da− (ω − x)0D

T
0 (x, ω | γs = 0, δs = 0)]/

[(1− 0D
T
0 (x, ω | γs, δs))(1− γs

0)]

=
γs

0

1− γs
0

[1CMABT
0 (x | γs = 0, δs = 0)− x],

where the second equality follows from taking the difference between the two condi-
tional cohort mean ages using Hajnal’s formula, the third equality follows from Eq. (33)
and some further simplifications, and the final equality follows from the calculation of
CMABT

0,1(x | γs = 0, δs = 0) using Hajnal’s formula.
The expression (22) in Result 15 is merely a transformation of Eq. (21), and Eq. (23)

follows by differentiating Eq. (21) using the fact thatd
dx 1CMABT

0 (x | γs = 0, δs = 0) =
0 for cohorts who have not entered childbearing ages.
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