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Research Article

Decomposing demographic change
into direct vs. compositional components

James W. Vaupel1

Vladimir Canudas Romo2

Abstract

We present and prove a formula for decomposing change in a population average into two
components. One component captures the effect of direct change in the characteristic of
interest, and the other captures the effect of compositional change. The decomposition
is applied to time derivatives of averages over age and over subpopulations. Examples
include decomposition of the change over time in the average age at childbearing and
in the general fertility rate for China, Denmark and Mexico. A decomposition of the
change over time in the crude death rate in Denmark, Germany and the Netherlands is
also presented. Other examples concern global life expectancy and the growth rate of the
population of the world.
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1.   Introduction

Change in a population average can be accounted for in three alternative ways, which
might be called level-0, level-1 and level-2 explanations. A level-0 explanation is simply
that the data are erroneous. A level-1 explanation is that the observed population change is
produced by a direct change in the characteristic of interest. A level-2 explanation is that
the change is attributable to a change in the structure or composition of the population.

This article focuses on level-1 vs. level-2 explanations. We present a new method for
decomposing change in a population average into two components, one capturing the ef-
fect of direct change and the other capturing the effect of compositional change. We begin
with some notation and the proof of the decomposition formula. Then we provide some
illustrative examples. In the examples shown here, two kind of compositional change are
studied: change in the age-structure of the population and in the size of subpopulations.

2.    Formula for Decomposing Derivatives of
Averages

Our results pertain to derivatives of averages, i.e., to change over instants of continuous
time or some other continuous variable. The focus is on means, also known as expected
values or expectations. LetE(v), the expectation operator, denote the mean value of
v(x; y) overx. This average will sometimes be denoted by the alternative notation�v(y),
with

E(v) � Ew(v) � �v(y) =

R
1

0
v(x; y)w(x; y)dxR
1

0
w(x; y)dx

; x continuous; (1)

=

P
x
vx(y)wx(y)P
x
wx(y)

; x discrete; (2)

wherev(x; y) is some demographic function andw(x; y) is some weighting function. The

variablex can be continuous or discrete; the variabley is continuous. In the applications
presented in this article,x sometimes denotes age and sometimes subpopulations whereas
y is always time, but other application are also of interest.

We use a dot over a variable to denote the derivative with respect toy,

_v � _v(x; y) =
@

@y
v(x; y) (3)
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and an acute accent to denote the relative derivative or intensity with respect toy,

�v � �v(x; y) =

@

@y
v(x; y)

v(x; y)
=

@

@y
ln [v(x; y)] : (4)

This use of the acute accent, which reduces the clutter in many demographic formulas,
was originated by Vaupel (1992) and is used in Vaupel and Canudas Romo (2000). Note
that for simplicity we often omit the argumentsx andy.

The key formula in this article was developed a decade ago by Vaupel (1992), who
extended a result published by Preston, Himes and Eggers (1989). The formula can be
simply and memorably expressed as

_�v = �_v + Cov(v; �w): (5)

The change in the average,_�v, is

_�v =
@

@y

R
1

0
v(x; y)w(x; y)dxR
1

0
w(x; y)dx

: (6)

The average change,�_v, is

�_v =

R
1

0

h
@

@y
v(x; y)

i
w(x; y)dx

R
1

0
w(x; y)dx

: (7)

And the covariance can be calculated as

Cov(v; �w) = E
�
(v � �v)

�
�w � ��w

��

= E (v �w)�E (v)E ( �w)

=

R
1

0
v(x; y) �w(x; y)w(x; y)dxR

1

0
w(x; y)dx

�

R
1

0
v(x; y)w(x; y)dxR
1

0
w(x; y)dx

R
1

0
�w(x; y)w(x; y)dxR
1

0
w(x; y)dx

: (8)

Proof

If v(x; y) andw(x; y) are continuous functions inx andy, then taking the derivative
with respect toy in formula (1) yields

_�v =
@

@y

R
1

0
v(x; y)w(x; y)dxR
1

0
w(x; y)dx
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=

R
1

0

h
@

@y
v(x; y)

i
w(x; y)dx +

R
1

0
v(x; y)

h
@

@y
w(x; y)

i
dx

R
1

0
w(x; y)dx

�

R
1

0
v(x; y)w(x; y)dx

R
1

0

h
@

@y
w(x; y)

i
dx

�R
1

0
w(x; y)dx

�2

= �_v +

R
1

0
v(x; y) �w(x; y)w(x; y)dxR

1

0
w(x; y)dx

�

R
1

0
v(x; y)w(x; y)dxR
1

0
w(x; y)dx

R
1

0
�w(x; y)w(x; y)dxR
1

0
w(x; y)dx

= �_v + Cov(v; �w):

A similar proof holds for the case whenv(x; y) andw(x; y) are discrete functions ofx.
Q.E.D.

The first term on the right-hand side of (5), the average change, might be called the
direct component of change; it captures the level-1 effect. The second component, the
covariance term, is the structural or compositional component of change; it accounts for
the level-2 effect of change in population heterogeneity. In formula (5) the covariance is a
measure of the extent to which the underlying variable of interest rises and falls with the
relative derivative of the weighting function.

3.   Derivatives of Averages over Age

In several examples given here the weighting function,w(x; y), equalsN(a; t), the age-
specific population size over agea and timet. (See Arthur and Vaupel (1984) and Keiding
(1990) for a discussion of this basic but subtle quantity.) For instance, by substituting age
a for v(x; y), the average age of a population can be calculated as

�a =

R
!

0
aN(a; t)daR

!

0
N(a; t)da

; (9)

where! is the highest age attained.
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To study population aging, Preston, Himes and Eggers (1989) analyzed the derivative
of formula (9). Following Ansley Coale’s suggestion that they consider the covariance,
they found

_�a = Cov(a; r); (10)

wherer � r(a; t) is the age-specific growth rate of the population. Becauser(a; t) �
�N(a; t) and because_a = 0, formula (10) is a special case of (5) where there is no level-1

change. Schoen and Kim (1992) also derived a formula, similar to (10), in which there is
only compositional change and no direct change.

Variants of (10) can be developed by letting the weighting function be given by
K(a; t) = k(a; t)N(a; t). If the functionk(a; t) = I(a), whereI(a) is an indicator
that equals zero ifa < 65 and one ifa � 65, then we have a formula for the average age
of the elderly,

�a65(t) =

R !
0
aK(a; t)daR !

0
K(a; t)da

=

R !
65
aN(a; t)daR !

65
N(a; t)da

: (11)

The change in the average age of the elderly is given by

_�a65 = CovK(a; �K); (12)

where the subscriptK signifies that the weighting function in the covariance isK(a; t).
The indicator does not depend on time, so�I = 0. The relative derivative ofK(a; t) can
therefore be simplified to

�K =
@

@t
[I(a)N(a; t)]

I(a)N(a; t)
= �I + �N = �N; (13)

yielding

_�a65 = CovK(a; r); (14)

where, as before,r(a; t) is the age-specific growth rater(a; t) � �N(a; t).
To study the dynamics of average age at, say, childbearing,k(a; t) would beb(a; t),

the age-specific birth rate among women at timet. ThenK(a; t) = b(a; t)Nf (a; t), where
Nf (a; t) denotes the age-specific size of the population of women. In this caseK(a; t) is
equivalent toB(a; t), the number of babies born to women of agea at timet. Letting�aB

denote the average age at childbearing at timet, its dynamics are given by

http://www.demographic-research.org 5
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_�aB = CovB(a;�b+ rf ); (15)

whererf (a; t) is the age-specific growth rate of the population of women,r f (a; t) �
�Nf (a; t).

The covariance has the property that

Cov(v; w1 + w2) = Cov(v; w1) + Cov(v; w2): (16)

Hence formula (15) can be expressed as

_�aB = CovB(a;�b) + CovB(a; rf ): (17)

Note there is no “direct” effect in the way discussed earlier. Instead there are two “compo-
sitional” effects. The effects describe the extent to which change in average age at child-
bearing is due to change in age-specific births rates vs. change in the age composition of
the population. For scholars interested in how age-specific birth rates affect average age at
childbearing, the first termCovB(a;�b) could be considered as capturing the change in the
variable of interest whereas the second termCovB(a; rf ) would measure compositional
change of the female population.

Table 1 shows the decomposition of the change in the average age at childbearing,
�aB(t), for China, Denmark and Mexico. The formula for�aB(t) is continuous but de-

Table 1: Average age at childbearing, �aB(t), and the decomposition of the annual
change over time from 1990 to 1995 for China, Denmark and Mexico.

China Denmark Mexico
�aB(1990) 25.352 28.231 26.784
�aB(1995) 25.147 29.254 27.234
_�aB(1992:5) -0.041 0.205 0.090
CovB(a;

�b) -0.131 0.172 0.039
CovB(a; rf ) 0.091 0.033 0.051
_�aB = CovB(a;

�b) + CovB(a; rf ) -0.040 0.205 0.090

Source: Authors’ calculations described in the Note, based on U.S. Census Bureau (2001).

mographic data are discrete, so we estimated the values in the table using the methods
described in the Note at the end of this article. In China the average age at childbearing
fell despite the aging of the female population. The change in age-specific birth rates cap-
tured by theCovB(a;�b) term pulled the average age at childbearing down. In contrast,
in Denmark and Mexico the two covariance terms are both positive. Population aging
and the shift in age-specific birth rates both contributed to the rise in the average age at
childbearing.

6 http://www.demographic-research.org
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The last row of Table 1 shows the change in the average age at childbearing as the sum
of the decomposition terms,_�aB = CovB(a;�b) + CovB(a; rf ): These values are�0:040
for China, 0:205 for Denmark and0:090 for Mexico. The estimated value for China
is slightly different from the actual figure of�0:041. This discrepancy arises because
discrete data over a 5-year period are used to approximate derivatives and averages at an
instant (see Note). Similar small discrepancies can be found in other tables in this article.

4.    Death, Birth, Growth and Other Rates

Let the functionv(x; y) be equivalent to the force of mortality�(a; t) at agea and timet
and let the weighting function be the age-specific population size. Then it follows directly
from formula (5) that

_�� = �_�+ Cov(�; r); (18)

where��(t) is the crude death rate of the population, sometimes denoted byd(t).
Table 2 illustrates formula (18), by determining the decomposition of the change in

the crude death rate for Denmark, Germany and the Netherlands from 1991 to 1997.

Table 2: Crude death rate, d(t), per thousand, and the decomposition of the annual
change over time from 1991 to 1997 for Denmark, Germany and the Netherlands.

Denmark Germany Netherlands
d(1991) 11.562 11.397 8.627
d(1997) 11.341 10.495 8.701
_d(1994) -0.037 -0.150 0.012
�_� -0.074 -0.273 -0.075
Cov(�; r) 0.037 0.124 0.087
_d = �_�+ Cov(�; r) -0.037 -0.149 0.012

Source: Authors’ calculations described in the Note, based on EUROSTAT (2000).

Germany benefited from sizeable reductions in the crude death rate in the years after
reunification. On the other hand, its neighbors Denmark and the Netherlands experienced
only small changes during this period. The German development is mainly due to the
direct effect of large reductions in mortality, particularly in the eastern part of Germany.
Note that in Germany both the level-1 and level-2 effects are larger than in Denmark and
the Netherlands.

Similarly, letb(a; t) denote the age-specific birth rate, letNf (a; t) be the age-specific
female population size and let�g(t) be the general fertility rate (GFR), which is simply the

http://www.demographic-research.org 7
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number of babies divided by the number of women at reproductive ages. The change in
this rate is given by

_�g = �_b+ Cov(b; rf ): (19)

Table 3 shows calculations based on formula (19) that decompose the change in the GFR
for China, Denmark and Mexico from 1990 to 1995. Table 3 indicates that the GFR fell in

Table 3: General fertility rate, �g(t), in percentage, and the decomposition of the
annual change over time from 1990 to 1995, for China, Denmark and Mexico.

China Denmark Mexico
�g(1990) 7.871 4.850 11.083
�g(1995) 6.283 5.373 9.671
_�g(1992:5) -0.317 0.105 -0.282
�_b -0.280 0.081 -0.286
Cov(b; rf ) -0.036 0.023 0.004
_�g =

�_b+Cov(b; rf ) -0.316 0.104 -0.282

Source: Authors’ calculations described in the Note, based on U.S. Census Bureau (2001).

China and Mexico and rose in Denmark. In all three countries the dominant component of
this shift was the average change in age-specific birth rates. Changes in age-composition,
captured by the covariance term, had a relatively minor impact, especially in Mexico.

More generally,v(x; y) could be identified with some age-specific migration rate,
morbidity rate, criminality rate, etc., and a formula similar to (18) and (19) would follow.
An interesting case is whenv(x; y) is equivalent to the age-specific growth rate. Then

_�r = �_r + Cov(r; r) = �_r + �2(r); (20)

so the change in a population’s growth rate is given by the average change in the age-
specific growth rates plus the variance in the age-specific growth rates.

5.    Averages over Subpopulations

The discussion so far has focused on averages over age. Age heterogeneity is only one of
the multitudinous dimensions of population heterogeneity - some observed and some un-
observed. In this section we present two examples of averages over another characteristic,
namely nationality.

8 http://www.demographic-research.org
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Consider a population composed of different subpopulations. The life expectancy at
birth at timet for the entire population,�eo(t), is the average over the subpopulations’ life
expectancy at birth

�eo(t) =

P
i
eo;i(t)Ni(t)P
i
Ni(t)

; (21)

whereNi(t) is the size of subpopulationi andeo;i(t) is the subpopulation life expectancy
at birth. The change in�e over time can be decomposed as

_�eo = �_eo + Cov(eo; r); (22)

whereri(t) is the population growth rate of theith subpopulation,r i(t) � �Ni(t).
In Table 4 formula (22) is applied to changes in life expectancy of the world popula-

tion. The world experienced an increase in life expectancy with an annual change of more

Table 4: Life expectancy at birth, �eo(t), for the world and decomposition of the
annual change over time in life expectancy from 1980 to 1990.

World
�eo(1980) 62.790
�eo(1990) 65.401
_�eo(1985) 0.261
�_eo 0.314
Cov(eo; r) -0.053
_�eo = �_eo + Cov(eo; r) 0.261

Source: Authors’ calculations described in the Note, based on World Bank data (2001). The subpopulations are
the populations of the countries of the world for which data were available.

than three months per year (_�eo(1985) = 0:26). The covariance between life expectancy
and population growth rates among the subpopulations is modest. Hence the change in
the world life expectancy is roughly the same as the average change in life expectancy
of the world’s countries. Because the covariance is negative, the countries with long life
expectancy tend to have slow rates of population growth. The increase in life expectancy
of the world is thus lower than the average increase in national life expectancy.

The people of the world live in over two hundred countries. The population growth
rate of the world is the weighted average of the population growth rates of these countries.
Consequently, the change in the world population growth rate can be expressed by a
formula that is identical in appearance to (20), except that now the average is taken over
countries instead of over ages. The change in the world’s population growth rate is given

http://www.demographic-research.org 9
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by the average change in growth rates of the countries plus the variance in the growth
rates

_�r = �_r + �2(r):

Two theoretical implications deserve note. First, if the population growth rate of every
country were constant (albeit at different levels from country to country), then the popu-
lation growth rate of the world would be increasing. The countries with the largest growth
rates would account for a larger share of the world’s population. Second, even if the pop-
ulation growth rate of every country were declining, the world’s population growth rate
could be increasing.

Table 5: Population growth rate of the world, �r(t), and decomposition of the annual
change over time around January 1, 1979 and around January 1, 1982.

t 1979 1982
�r(t� 1:5) 1.722 % 1.732 %
�r(t+ 1:5) 1.732 % 1.711 %
_�r(t) 0.328 � -0.716 �

�_r -0.459 � -1.545 �

�
2(r) 0.787 � 0.829 �

_�r = �_r + �
2(r) 0.328 � -0.716 �

Source: Authors’ calculations described in the Note, based on U.S. Census Bureau (2001).
Note: � denotes per 10,000. Growth rates were calculated over intervals of 5 years (1975-1980, 1978-1983, 1981-

1986) to estimate growth rates for 1977.5, 1980.5 and 1983.5. Growth rates were estimated based on data
for all the countries of the world for which data were available.

As shown in Table 5, the population growth of the world started to decline around
1980. The pace of this decline was slowed by the variance in growth rates among the
world’s countries. The average change in country growth rates,�_r, was negative but the
variance term more than offset this in the late 1970s, yielding an increase in the rate of
world population growth of 0.328 per 10,000.

6.   Other Decompositions

In the examples above, the weighting function was associated with either age-specific
population size or national population size. Many other kinds of subpopulations could be
considered. The subpopulations might reflect social, ethnic, religious, socio-economic or
other characteristics. Suppose, for instance, a population consists of a number of subpop-
ulations with different crude birth ratesbi(t) and different growth ratesri(t). Let�b(t) be

10 http://www.demographic-research.org
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the birth rate of the overall population. Then the decomposition of the change over time
in the birth rate is

_�b =
�_b+ Cov(b; r): (23)

Alternatively,w(x; y) could be taken as representing the composition of the stable
population implied by a population’s age-specific birth and death rates or the composition
of the lifetable population implied by a population’s age-specific death rates. In the latter
case,w(x; y) would be equal tò (a; t), which, defined with radix one, is simply the
lifetable probability of surviving from birth to agea in periodt.

In addition, various demographic quantities can be substituted for the functionv(x; y).
Formula (5) provides a simple but powerful approach for decomposing direct vs. com-

positional change in many applications. In this article we provide a few illustrative ex-
amples. Many other applications are possible. Such applications will help demographers
understand the dynamics of population change.
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Notes

If data are available for timey andy + h, then we generally used the following approxi-
mations for the value at the mid-pointy + h=2. For the relative derivative of the function
v(x; y + h=2),

�v(x; y + h=2) �
ln
h
v(x;y+h)

v(x;y)

i

h
: (24)

The value of the function at the mid-pointv (x; y + h=2) was estimated by

v(x; y + h=2) � v(x; y)e(h=2)�v(x;y+h=2): (25)

Substituting the right-hand side of (24) for�v(x; y + h=2) in (25) yields the equivalent
approximation

v(x; y + h=2) � [v(x; y)v(x; y + h)]
1=2

: (26)

This is a standard approximation in demography (Preston, Heuveline and Guillot, 2001).
The derivative of the functionv(x; y + h=2) was estimated by

_v(x; y + h=2) = �v(x; y + h=2)v(x; y + h=2): (27)

We used (24)-(27) wherever we thought that the rate of change was more or less
constant over the time interval. In a couple of cases it seemed appropriate to assume that
change in the interval was linear. This was the case for estimating the change in the age-
specific death rates in Table 2 and the change in the population growth rate in Table 5.
Then we used

v(x; y + h=2) �
v(x; y + h) + v(x; y)

2
(28)

and

_v(x; y + h=2) �
v(x; y + h)� v(x; y)

h
: (29)

12 http://www.demographic-research.org
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