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Tempo effects in mortality:
An appraisal
Michel Guillot 1

Abstract

This study examines the existence of tempo effects in mortality and evaluates the proce-
dure developed by Bongaarts and Feeney for calculating a tempo-adjusted life expectancy.
It is shown that the performance of Bongaarts and Feeney’s index as an indicator reflect-
ing current mortality conditions depends primarily on specific assumptions regarding the
effects of changing period mortality conditions on the timing of future cohort deaths. It
is argued that, currently, there is no clear evidence about the existence of such effects
in actual populations. This paper concludes that until the existence of these effects can
be demonstrated, it is preferable to continue using the conventional life expectancy as an
indicator of current mortality conditions

1Center for Demography and Ecology, University of Wisconsin-Madison, 1180 Observatory Drive, Madison,
WI 53706, USA. E-mail: mguillot@ssc.wisc.edu
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1. Introduction

There are three main uses of period indicators – such as the total fertility rate (TFR) or
the life expectancy at birth (e0) – in demography. First, period indicators are used as sum-
maries of period age-specific rates, in order to allow easy comparisons of arrays of rates
across populations and time periods. For example, aTFR that is lower in Population A
than in Population B implies that at least one age-specific fertility rate is lower in Popu-
lation A. In order to give a metric to these summary measures that is easy to interpret in
terms of the underlying demographic processes, demographers use the classic synthetic-
cohort scenario, which simulates a cohort of individuals exposed throughout their entire
life to the age-specific rates of one particular period. This transforms a set of period age-
specific mortality rates, for example, into years of life, interpreted as the life expectancy
at birth “under current rates”.

Second, period summary measures are used as indicators of current “conditions”,
which can be defined as all underlying factors affecting demographic behavior. For ex-
ample, an increase in life expectancy is often interpreted as a sign that progress is being
made with respect to public health, medical technology, personal health behaviors, living
standards, or other factors affecting survival. One way to conceptualize how current con-
ditions may produce a certain level of a demographic indicator is to hypothesize about a
scenario in which current conditions stay constant in the future. Under this scenario, one
would expect period demographic indicators to eventually stabilize at a level that would
be the product of these constant conditions. In the remainder of this paper, I will refer
to levels of demographic indicators that would eventually be observed in the population
if current conditions remained constant in the future as the “stationary-equivalent” levels,
or levels “under current conditions”.

Third, period summary measures are used as proxies for tracking the changing be-
havior of real cohorts in the absence of complete cohort information. For example, an
increase in the period life expectancy at birth is often interpreted as an indication that “we
are living longer”, i.e., that life expectancy is also increasing for real cohorts of individu-
als.

While the first use of period summary measures does not present any particular prob-
lem, the second and third uses are potentially undermined by the presence of “tempo
effects”. In fertility, tempo effects traditionally refer to the impact on the periodTFR of
changes in the timing of births within cohorts (Ryder, 1980). For example, in a population
where cohort fertility levels are constant, indicated by a constant cohortTFR, but where
the timing of births is changing, the periodTFR may not equate the value of the constant
cohortTFR and thus poorly reflects the behavior of real cohorts. Because of tempo ef-
fects, it is inappropriate to use the periodTFR of 3.7 in 1955 in the US as an indicator
of the level of fertility for some actual cohort, since no cohort contributing births during
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that year experienced such high fertility levels (the highest cohortTFR among cohorts
active in 1955 is3.2, for the cohort born in 1930). Also, the below-replacement period
TFRs currently observed in a number of countries may poorly reflect current fertility
conditions, because cohorts may be currently delaying their births while retaining fertility
goals at or above replacement. If the conditions affecting individuals’ completed fertility
remain constant in these countries, the cohortTFR may eventually stabilize at a level
that is higher than the one indicated by current periodTFRs. Tempo effects thus pose a
challenge for the interpretation of levels and trends in periodTFRs.

Tempo effects have been extensively studied for fertility and marriage (Ryder, 1956,
1964, 1980; Keilman, 1994; Bongaarts, 1998, 1999; Kohler, 2002; Goldstein, 2003;
Winkler-Dworak and Engelhardt, 2004). Various approaches have been proposed to ad-
just period measures for tempo effects. It is important to state that the solution for the
adjustment may vary depending on the purpose of the correction, i.e., measuring period
conditions or tracking real cohort behavior. In fertility, the first purpose involves estimat-
ing the level at which theTFR would eventually stabilize if factors affecting individuals’
completed fertility remained constant at the levels of a particular period. The second
purpose involves estimating theTFR that would have been observed during that partic-
ular period if cohorts had not modified the timing of their births, while retaining their
potentially changing completed fertility. These two scenarios differ and may thus yield
different solutions. Differences in objectives explain in part why different procedures for
tempo adjustments in fertility have yielded different results.

More recently, the concept of tempo effects has been applied to mortality (Bongaarts
and Feeney, 2002, 2003, 2005). The authors argue that the conventionally-calculated
period life expectancy at birth is affected by tempo effects whenever mortality is changing.
They propose an alternative period measure of longevity, which they claim adjusts for
tempo effects. Although not explicitly stated, the purpose of the adjustment is to obtain a
measure that better reflects current conditions, i.e., the level at which the life expectancy
at birth would eventually stabilize if mortality conditions, defined as all factors affecting
survival, remained constant at current levels.

In this paper, I first examine the existence of tempo effects in mortality, by looking at
historical discrepancies between period and cohort mortality measures. I then discuss the
strategy proposed by Bongaarts and Feeney. I argue that the performance of Bongaarts
and Feeney’s tempo-adjusted life expectancy as an indicator reflecting current mortality
conditions depends primarily on specific assumptions regarding the effects of changing
period mortality conditions on the timing of future cohort deaths, and that currently there
is no clear evidence about the existence of such effects in actual populations. I conclude
that until the existence of such effects can be demonstrated, it is preferable to continue
using the conventional life expectancy as an indicator of current mortality conditions.

http://www.demographic-research.org 3
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2. The existence of tempo effects in mortality

There are interesting parallels between mortality and fertility with regards the study of
tempo effects. The mortality index for which the parallel best applies is the total mortality
rate (TMR) (Bongaarts and Feeney, 2003). In a cohort (real or synthetic), theTMR is
the number of lifetime deaths divided by the initial size of the cohort. In a life table with
a radix of one, theTMR can be calculated by adding all age-specific life table deaths.
Obviously, theTMR in a cohort, real or synthetic, is invariably one. The following
equation pertains to a real cohort born at timet:

TMRc(t) =
∫ ∞

0

dc(x, t)dx (1)

wheredc(x, t) is the number (or proportion) of deaths at agex for a cohort born at timet
(radix= 1).

TheTMR can also be calculated in a cross-sectional fashion by calculating for each
cohort the proportion of deaths occurring during a particular period, and by summing
these proportions across all cohorts:

TMR(t) =
∫ ∞

0

dc(x, t − x)dx (2)

The periodTMR can be interpreted as the proportion of cohort deaths that are occurring
during periodt. If all cohorts have the same age distribution of deaths, the periodTMR is
constant at1.00. If the age distribution of deaths changes from cohort to cohort, however,
the periodTMR deviates from one. For example, if cohort deaths are being progressively
spread out over a longer period of time, with smaller proportions occurring during a given
period, the periodTMR is less than one. This means that less than 100% of cohort
deaths are occurring during periodt, which is a sign that cohort deaths are being delayed,
i.e., that mortality is declining. Conversely, the periodTMR is greater than1.00 during
periods of increased mortality, when increased proportions of cohort deaths are occurring
at the same time.

Figures 1 and 2 show long-term trends in the periodTMR among French males and
Swedish females. (The data come from the Vallin-Meslé database for France, and from
Human Mortality Database for Sweden.) The periodTMR is generally below1.00, indi-
cating mortality decline. However,TMRs above1.00 were experienced by French males
during WWI and WWII, and by Swedish females in 1918 during the influenza epidemic.

In Figures 1 and 2, changes in the periodTMR can be attributed to changes in the
timing of deaths from cohort to cohort. Because of these changes, the periodTMR is
a poor indicator of the “stationary-equivalent”TMR, i.e., the periodTMR that would
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Demographic Research: Volume 14, Article 1

Figure 1: Period life expectancy,e0(t); cohort life expectancy,ec
0(t); and period

total mortality rate, TMR(t).
France, males, 1806-1998.

Note: Data source: Vallin-Meslé database. http://www.ined.fr/publications/cdromvallin mesle/contenu.htm

Note:ec
0(t) is plotted at time when the cohort was born.

eventually be observed if current mortality conditions remained constant in the future.
Indeed, under this constant-conditions scenario, one would expect the age distribution of
deaths to be eventually identical for all cohorts, and the periodTMR to reach a value of
1.00 eventually. The periodTMR is also a poor indicator of the trend in the cohortTMR,
which is constant at1.00 for all cohorts. Making a parallel with fertility, it can be stated
that the periodTMR is affected by tempo changes, defined as changes in the timing of
deaths within cohorts. Unlike the cohortTFR, however, there are no quantum variations
in the cohortTMR, since it is constant at1.00. This implies that deviations from1.00 in
the periodTMR can beentirely attributed to tempo effects, and that a “tempo-adjusted”
periodTMR necessarily equals1.00.

In mortality, the most important period indicator is not theTMR, but the period life
expectancy at birth,e0. In order to assess the presence of tempo effects ine0, one may
first examine the existence of situations in whiche0 has no relevance for actual cohorts.
Figure 1 shows trends in period life expectancy in France, along with trends in cohort life
expectancy (ec

0), plotted at the time of birth. This figure illustrates the fact that in France,
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Figure 2: Period life expectancy,e0(t); cohort life expectancy,ec
0(t); and period

total mortality rate, TMR(t).
Sweden, females, 1752-1998.

Data source: Human Mortality Database. www.mortality.org.

Note:ec
0(t) is plotted at the time(t) when the cohort was born.

there are a few years – the WWI years – during which periode0 levels have no relevance
for any particular cohort. During these years, many cohorts had elevated mortality risks
at the same time, resulting in period life expectancies as low as27.2 years in 1915. But
these elevated risks were relatively short-term, and no actual cohort contributing deaths
during these years have experienced such low life expectancy levels (the lowest cohort
life expectancy among contributing cohorts is37.0 years for the cohort born in 1895). In
a sense, the sudden decline in life expectancy in 1915 gives an exaggerated indication of
mortality change occurring within cohorts. Changes in cohort mortality levels would have
been poorly predicted on the basis of these large drops ine0. This discussion of trends in
period life expectancy has parallels with discussions of trends in the periodTFR and the
difficulty to use this measure as an indicator of real changes in cohort completed fertility.

It is less easy to tell if the period life expectancy at birth is a biased indicator of the
“stationary-equivalent” life expectancy, or life expectancy under “current conditions”. If
today’s mortality conditions remained constant, would the life expectancy at birth sta-
bilize at the current period level or at some other level? Historical trends in cohort life
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expectancy are of little use for answering that question, because cohorts are exposed to
constantly-changing period conditions.

3. Bongaarts and Feeney’s tempo-adjusted life expectancy

The goal of Bongaarts and Feeney’s alternative measure of survival is precisely to resolve
potential discrepancies between period levels and stationary-equivalent levels of life ex-
pectancy. As said earlier, the goal of their tempo-adjusted measures is not to better track
real changes in cohort life expectancy, so I will not discuss here how their approach per-
forms this task. There are a number of papers in this volume and elsewhere which deal
with this somewhat different issue (Guillot, 2003; Schoen and Canudas-Romo, 2005;
Goldstein, 2006).

Bongaarts and Feeney (referred to as BF in the remainder of the paper) compare three
mortality indexes:

CAL(t) =
∫ ∞

0

pc(x, t − x)dx (3)

wherepc(x, t − x) is the proportion of cohort survivors agedx at timet.

MAD(t) =

∫ ∞
0

x · dc(x, t − x)dx∫ ∞
0

dc(x, t − x)dx
(4)

M4(t) =
∫ ∞

0

exp
{
−

∫ x

0

µ(a, t)
TMR(t)

da

}
dx (5)

whereµ(a, t) is the force of mortality at agea at timet.
The first index,CAL(t) (= cross-sectional average length of life), sums actual pro-

portions of cohort survivors at timet, rather than proportions of survivors in the synthetic
cohort at timet as in the case ofe0(t). ThusCAL takes into account all mortality rates
previously experienced by cohorts whose survivors are present in the population at time
t. This index, which is described in detail elsewhere (Brouard, 1986; Guillot, 1999, 2003,
2005), has been used primarily for examining the impact of mortality change on popula-
tion growth.

The second index,MAD(t), is the mean age at death that would be observed at time
t if the studied population, while subject to actual mortality trends, had experienced con-
stant births per unit of time (constant-birth population) and had been closed to migration.
MAD can be interpreted as the population mean age at death at timet, controlling for
changes in the initial size of cohorts.

http://www.demographic-research.org 7
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The third index,M4(t), is a period life expectancy at birth where all age-specific death
rates are adjusted by a factor1/TMR(t). If the TMR is equal to.8, each death rate will
be adjusted upwards by a factor1.25, andM4(t) will be lower than the actuale0(t).

An important feature of these summary indexes of mortality is that when mortality
is constant over time, thenCAL(t) = MAD(t) = M4(t) = e0(t). If mortality varies,
however, these indexes diverge. In particular, if age-specific mortality rates have been
steadily declining,e0 will be systematically higher thanCAL, MAD or M4.

Bongaarts and Feeney calculate these three indexes in populations where mortality has
changed overtime. They demonstrate thatCAL = MAD = M4 under a specific pattern
of mortality change, which they claim is a good approximation of the current situation
in low-mortality populations. This quantity is then interpreted as a tempo-adjusted life
expectancy at birth. These two propositions are examined successively in the following
sections.

4. Evaluating Bongaarts and Feeney’s “proportionality” assumption

The first assumption proposed by Bongaarts and Feeney involves a quantity described by
Preston and Coale (1982) and Arthur and Vaupel (1984). This quantity may be called an
age intensity,ν∗:

ν∗(x, t) =
−∂pc(x, t − x)/∂x

pc(x, t − x)
. (6)

In Equation (6),ν∗ is the rate at which the proportion of cohort survivors in a population
at timet varies from one age to the next. It also corresponds to the age intensity of the
constant-birth population. It is in fact a special case of Arthur and Vaupel’s age intensity,
ν, which applies to the more general case of populations with varying births and open to
migration.

In their paper, Bongaarts and Feeney (2003) demonstrate thatCAL(t) = MAD(t) =
M4(t) if at time t the age intensityν∗(x, t) is proportional toµ(x, t), i.e., if the following
equation holds:

µ(x, t) = p(t)ν∗(x, t) (7)

They refer to this assumption as the “proportionality” assumption, and claim that this
assumption is a good approximation of the current situation in Sweden, France and the
US. As Wachter demonstrates in this volume, one situation which approximately pro-
duces proportionality is when all cohorts experience a Gompertz force of mortality and a
constant, age-invariant rate of decline in age-specific death rates (Wachter, 2005). More
generally, the proportionality assumption is immediately met in a given year if, during
that year, the proportions of cohort survivors shift along the age axis by an amount that is
identical for all cohorts, i.e., ifpc(x, t2−x) = pc(x−F (t), t1−x+F (t)), whereF (t) is

8 http://www.demographic-research.org
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the amount of the shift, in years, betweent1 andt2 (Bongaarts and Feeney, 2002). For ex-
ample, the proportionality assumption would be met if the proportion of cohort survivors
at age80 in 2000 was equal to the proportion of cohort survivors at age78 in 1995 (i.e., a
2-year shift in5 years), and if this correspondence could be established for all cohorts.

While it is true that if Equation (7) holds at timet, thenMAD(t) = CAL(t) = M4(t),
there are deviations from the proportionality assumptions in real populations which pro-
duce important discrepancies between the three indicators. This can be shown by calcu-
lating the three indicators in real populations, without making any assumption about the
pattern of mortality change.

Figures 3 and 4 show that among French males and Swedish females, there are impor-
tant differences between the three indicators. Typically,CAL has the lowest value,MAD
has the highest value, andM4 is somewhere in between. The difference betweenCAL
andMAD is as large as9.46 years in 1953 in France. Although the gap between the two
measures has decreased over time, it is still2.76 years for French males in 1998, and2.08
years for Swedish females in 1997.

Figure 3: Period life expectancy,e0(t); cross-sectional average length of life,
CAL(t); mean age at death in the constant-birth population,
MAD(t); and Bongaarts and Feeney’sM4(t).
France, males, 1900-1998.

More importantly, Figure 3 and 4 also show thatCAL, MAD and M4 react very
differently to period variations in mortality. In particular,MAD andM4 are much more

http://www.demographic-research.org 9
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Figure 4: Period life expectancy,e0(t); cross-sectional average length of life,
CAL(t); mean age at death in the constant-birth population,
MAD(t); and Bongaarts and Feeney’sM4(t).
Sweden, females, 1862-1998.

sensitive to variations in period mortality, with a trajectory somewhat parallel to that of
the period life expectancy at birth, although at a lower level. In contrast,CAL is much
less reactive to period variations in mortality. Since in real populationsCAL, MAD and
M4 offer a different picture of changes in mortality over time, these three indexes should
not be interpreted interchangeably. In particular,CAL should not be interpreted as a
population mean age at death purged of changes in cohort size (MAD). Even if today, the
difference between the two indexes is not as large as earlier (though still significant), they
remain distinct conceptually.

The reason why BF do not find large differences betweenCAL, MAD andM4 is
that in their empirical examples, they make the additional assumption that there is no
mortality below age30 throughout the entire life time of all cohorts who have survivors
at timet (i.e., since the early 20th century for current estimates ofCAL, MAD or M4).
Indeed, if we discard mortality information below age30 and estimate the mean number
of years to be lived above age30 only, the proportionality assumption is met in France
and Sweden since the 1970s, and we obtain three indicators,CAL30, MAD30 andM4[30]

that are nearly equal for the recent period, as shown in Figures 5 and 6. (Note, however,
that they still differed by about.75 years in the early 1990s in France.)

10 http://www.demographic-research.org
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Figure 5: Period life expectancy,e30(t); cross-sectional average length of life,
CAL30(t); mean age at death in the constant-birth population,
MAD30(t); and Bongaarts and Feeney’sM4[30](t).
France, males, 1880-1998.

Note: Likee30(t), CAL30(t), MAD30(t), andM4[30](t) represent a number of additional years expected to

be lived above age30, given survival to age30.

In reality, mortality below age30 is not negligible, especially when considering earlier
decades of the twentieth century. Even in 1998 among French males, mortality below age
30 still produced a loss of1.37 years of period life expectancy at birth. As a result, when
all ages are taken into account, the proportionality assumption is not met, and this creates
important discrepancies betweenCAL, MAD andM4 which are not well addressed in
BF’s procedure. So far, BF’s procedure refers to mortalityabove age 30 only and does
not permit the calculation of a life expectancy at birth that is consistent with their overall
proposition. (In this volume, BF deal with mortality below age30 differently. Instead of
assuming that there is no mortality below age30, as in their earlier work, they assume
that there are no tempo effects below age30. This allows them to calculate an adjusted
life expectancy at birth which combines unadjusted rates below age30 with adjusted
rates above age30. This assumption of no tempo effects below age30, however, seems
somewhat arbitrary.)

http://www.demographic-research.org 11
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Figure 6: Period life expectancy,e30(t); cross-sectional average length of life,
CAL30(t); mean age at death in the constant-birth population,
MAD30(t); and Bongaarts and Feeney’sM4[30](t).
Sweden, females, 1832-1998.

Data source: Human Mortality Database. www.mortality.org.

Note:ec
0(t) is plotted at the time(t) when the cohort was born.

5. Bongaarts and Feeney’s definition of changes in period mortality
conditions

While departures from the proportionality assumption raises practical issues with the es-
timation of BF’s adjusted life expectancy, there are more fundamental considerations to
examine in order to evaluate the interpretation ofCAL, MAD or M4 as tempo-adjusted
indicators. These considerations apply even if the proportionality assumption is met.
SinceCAL = MAD = M4 under the proportionality assumption, this section focuses
on the behavior ofCAL only. I chooseCAL, because unlikeMAD or M4, it has rel-
evant properties (for example, Equation (8) later in this paper) that do not require any
assumption about the pattern of mortality change.

BF’s approach relies on a particular definition of changes in period mortality condi-
tions, which is different from the classic definition. Traditionally, demographers assume
that particular period mortality conditions generate a set of age-specific mortality rates
which completely reflect these conditions, as long as the population is homogeneous with

12 http://www.demographic-research.org
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respect to the risk of death. Therefore, it is assumed that changes in period age-specific
mortality rates completely reflect changes in period mortality conditions. Similarly, it is
assumed that when period mortality conditions stop changing, period age-specific mortal-
ity rates – ore0 – become constant. Under this assumption, the period life expectancy at
birth, as traditionally calculated, is an unbiased indicator of period mortality conditions,
and no adjustment is needed.

As in the classic approach, BF assume that populations are homogeneous with respect
to the risk of death, but they address mortality change differently. They define period
mortality changes in terms of changes overtime in thepc(x, t − x) curve. According to
them, a change in mortality conditions during a certain period is indicated by a change
in pc(x, t − x), producing a change in the value ofCAL. Conversely, they assume that
mortality conditions stop changing whenever the curvepc(x, t − x) – or whenCAL(t) –
becomes constant (Bongaarts and Feeney, 2002, p.17).

BF’s definition of mortality change implies that, as a result of new mortality conditions
appearing during a given period, all future cohort deaths are delayed by a certain amount
of time. These delays in future cohort deaths accumulate over time as mortality conditions
keep improving. When mortality conditions stop improving, no additional delay occurs,
which implies that the delays in future cohort deaths, already accumulated by previous
mortality change, remain unchanged.

This conception of mortality change is illustrated with a Lexis diagram in Figure 7.
The quantities in the Lexis areas refer to deaths in cohort life tables with a constant radix
at age zero. (For simplicity, this illustration uses a starting age of zero, but a similar argu-
ment could be developed for any starting age.) In this illustration, mortality conditions are
constant up to yearT − 1. As a result, up to yearT − 1, the age distribution of life table
cohort deaths,Dx, is constant over time and the periodTMR is equal to1.00. This sta-
tionary situation changes as a new set of mortality conditions appear in yearT (Diagram
A). According to BF’s definition of mortality change, these new mortality conditions gen-
erate postponements (or delays) in cohort deaths, and thus a certain proportion of deaths
“migrate” to the following year. These delays are illustrated with arrows indicating the
proportion of cohort deathsλ(T ) that are postponed to the following year as a result of the
new mortality conditions appearing in yearT . These proportions apply to the stationary
deathsDx that would have been observed during yearT and subsequently if no change in
mortality conditions had occurred during yearT . λ(T ) also corresponds to the amount of
delay (as fraction of a year) experienced by cohort deaths (Vaupel (2005) in this volume
refers to these delays asδ). It also corresponds to the amount (in years) by which the
curvepc(x, t − x) shifts along the age axis. Note that the new conditions of yearT do
not only generate delays during yearT , but during all future years. Delays resulting from
new period mortality conditions can be experienced many years after the new conditions
appeared. In the notationλ(T ), T refers to the time at which new conditions appear, gen-

http://www.demographic-research.org 13
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erating delays in future cohort deaths. It does not refer to the time when these delays are
actually experienced, because these delays can indeed be experienced many years later.

Figure 7: Lexis diagram illustrating Bongaarts and Fenney’s scenario of
mortality change.
Diagram A: New conditions appear at timeT:

Note: The quantities in the Lexis areas refer to deaths in cohort life tables with a constant radix at age zero.

The arrows indicate the proportions of cohort deathsλ(T ) that “migrate” to the following year as a results of

the new conditions appearing in yearT . These proportions apply to the stationary deathsDx of yearT − 1.

D′
x = Dx · [1 − λ(T )] + Dx−1 · λ(T )

According to this scenario of mortality change, theTMR during yearT is equal to
(1 − λ(T )). However, if cohorts experience no additional delays in the timing of their
future deaths, i.e., if mortality conditions stop changing according to BF’s definition of
mortality change, constant numbers of cohort deaths,D′

x, reemerge as early as the year
T + 1. This implies that, starting in yearT + 1, a TMR of 1.00 is reestablished,CAL
becomes constant, ande0(t) = ec

0(t) = CAL(t). The life expectancy at birth during
yearT will be higher than the new constant level starting atT + 1, because unlike year
T + 1, less than100% of cohort deaths (i.e.,1 − λ(T )) are occurring during yearT .
The discrepancy is due to the fact that starting with yearT + 1, the number of additional
deaths resulting from the previous year’s delays equals the number of deaths postponed
to the following year, while during yearT , there are only “missed” deaths, postponed to
the following year.

14 http://www.demographic-research.org
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Figure 7 (continued): Diagram B: New conditions appear at timeT + 1

Note: The quantities in the Lexis areas refer to deaths in cohort life tables with a constant radix at age zero.

The arrows indicate the proportions of cohort deathsλ(T + 1) that “migrate” to the following year as a results

of the new conditions appearing in yearT + 1. These proportions apply to the stationary deathsD′
x that would

have been observed during the yearT + 1 and subsequently if no further mortality change had occurred after

timeT (as shown in Diagram A).D′′
x = D′

x · [1 − λ(T + 1)] + D′
x−1 · λ(T + 1)

Mortality conditions, however, may not remain constant but be replaced by new mor-
tality conditions appearing during yearT + 1 (Diagram B). These new conditions, ac-
cording to BF, generate additional delays in cohort deaths, illustrated by a second set of
arrows indicating the proportions of cohort deathsλ(T + 1) that are postponed to the fol-
lowing year as a result of the new mortality conditions of yearT + 1. These proportions
apply to the deathsD′

x that would have been observed during yearT +1 and subsequently
if no further mortality change had occurred after timeT (a counter-factual scenario that
corresponds to the situation described in Diagram A).

In Diagram B, theTMR during yearT + 1 is equal to(1 − λ(T + 1)). Here also,
if no new mortality conditions appear after yearT + 1, starting at yearT + 2, a TMR
of 1.00 is reestablished,CAL becomes constant ande0(t) = ec

0(t) = CAL(t). The life
expectancy at birth during yearT + 1 will be higher than the new constant level starting
atT + 2, because fewer cohort deaths are occurring during yearT + 1. This mechanism
of mortality change could continue during following years, with new mortality conditions
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appearing every year and creating delays in cohort deaths which would come in addition
to the delays already accumulated as a result of previous mortality change.

This example illustrates the implications of BF’s conception of mortality change. The
first implication is that changes in mortality conditions are entirely indicated by deviations
from 1.00 in theTMR. When new period mortality conditions appear, theTMR deviates
from 1.00, and the quantity(1−TMR) indicates the proportion of cohort deaths that are
postponed to the following year as a result of these new conditions, or equivalently, the
amount of the delay. As period mortality conditions stop changing, aTMR of 1.00 is im-
mediately reestablished. Similarly, changes in mortality conditions are entirely indicated
by changes inCAL, because there is a direct connection between changes inCAL and
levels of the periodTMR (Guillot, 2003, p.53):

TMR(t) = 1 − dCAL(t)
dt

(8)

(Note that unlike BF’s similar equation (Bongaarts and Feeney, 2003, p.13129, Equation
[8a]), Equation (8) does not require any assumption.)

The second implication of BF’s conception of mortality change pertains to the inter-
pretation ofCAL as a stationary-equivalent life expectancy. BF’s assumption about the
effect of new mortality conditions on the timing of future cohort deaths produces a situa-
tion in whichCAL better reflects current mortality conditions, becauseCAL corresponds
to the life expectancy at birth that would eventually be observed in the population if mor-
tality conditions stopped changing (i.e., if cohorts experienced no additional delays in the
timing of their future deaths). In Diagram B of Figure 7, the period life expectancy at birth
observed during yearT + 1 does not reflect well the new mortality conditions emerging
during that year, because it is different from the constant level of life expectancy at birth
that would be observed starting in yearT + 2 if mortality conditions remained constant.
In reality, new mortality conditions may appear in yearT +2 and subsequently. Nonethe-
less, no matter what happens during yearT + 2, the level ofCAL observed on January 1
of yearT + 2 indicates this stationary-equivalent level of mortality.

BF’s tempo-adjusted life expectancy is thus a stationary-equivalent period life ex-
pectancy that is consistent withtheir definition of mortality change, based on the behav-
ior of pc(x, t − x). In general terms, ifpc(x, t − x) becomes constant at timet, then
p(x, t) = pc(x, t − x). Therefore, ifpc(x, t − x) becomes constant,e0 immediately
adjusts to the correspondingCAL level and remains constant thereafter.

One can note here that this scenario of constant mortality conditions is possible only if
the functionpc(x, t − x) is monotonically decreasing. This assumption is less restrictive
than BF’s proportionality assumption, and allows for the proportion of postponed deaths,
λ(T ), to vary with age. (Age-varying delays are also examined by Feeney in this volume
(Feeney, 2006)). One assumption that must remain, however, in order to useCAL as
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a stationary-equivalent life expectancy, is that these age-specific delays in future cohort
deaths generated by the new conditions of yearT – which we can denoteλ(x, T ) – must
be identical for all cohorts. For example, new mortality conditions of yearT must gener-
ate delays in deaths of age80 for the cohort age40 at timeT that are equal to the delays
in deaths of age80 for the cohort aged70 at timeT . In other words, age-specific delays
need to remain constant with time in the constant-condition scenario. In Figure 7A, the
proportions of deaths transferred to the following year as a result of new mortality con-
ditions of yearT , illustrated with the arrows, may vary vertically, but must be constant
horizontally. This insures thate0 adjusts toCAL in BF’s scenario of constant mortality
conditions.

6. Assessing indicators of period mortality conditions:e0 vs. CAL

The assessment of BF’s tempo-adjusted life expectancy (apart from discussing the ade-
quacy of the proportionality assumption) comes down to determining whether new mor-
tality conditions generate a new set of period age-specific death rates, as traditionally
believed, or whether these new conditions generate delays in the timing of future cohort
deaths, as illustrated in Figure 7. In particular, it comes down to determining whether
cohorts would stop experiencing additional delays in the timing of their future deaths if
mortality conditions stopped changing. In general terms, it comes down to determining
whether levels and trends in period mortality conditions are better reflected by changes in
life expectancy or changes inCAL.

In order to contrast these two views, one first needs to recognize that life expectancy
andCAL are not independent of one another. In particular, it can be shown that variations
in CAL depend in part on differences between proportions of survivors in the synthetic
cohort at timet and proportions of survivors in real cohorts at timet (Guillot, 2003, p.53):

dCAL(t)
dt

=
∫ ω

0

µ(x, t)[p(x, t) − pc(x, t − x)]dx (9)

whereω is the age at whichp(x, t) = pc(x, t − x) = 0.
Under steady mortality decline,p(x, t) tends to be greater thanpc(x, t−x), andCAL

tends to increase. In fact, ifp(x, t) �= pc(x, t − x) for anyx in the interval(0, ω) (which
happens for most years in France and Sweden), the direction of the change inCAL will
be determined by the sign of the difference betweene0 andCAL:

dCAL(t)
dt

= µ̄(t)[e0(t) − CAL(t)] (10)

whereµ̄(t) is a value, always positive, of the force of mortalityµ(x, t) at an age in the
interval(0, ω).
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Figure 8 and 9 show trends in life expectancy andCAL among French males and
Swedish females. In order to examine these trends in the context of BF’s discussion
of tempo effects, these figures use mortality information above age30 only, but similar
correspondences betweenCAL and life expectancy would be observed if all ages were
taken into account. As expected, the direction of the change inCAL is related to whether
life expectancy is above or below the corresponding value ofCAL. These figures also
illustrate the relationship betweenCAL change and theTMR levels (Equation (8)).

Figure 8: Period life expectancy,e30(t); cross-sectional average length of life,
CAL30(t); and period total mortality rate, TMR30(t).
France, males, 1880-1998.

Equations (9) and (10), illustrated in Figures 8 and 9, allow us to contrast two dif-
ferent views of mortality change above age30. The classic view implies that changes in
mortality conditions at these ages is indicated by changes ine30, and thatCAL30 simply
“reacts” to these variations, depending on whethere30 is above or belowCAL30 during
a given year. According to this view, if current conditions stopped changing,e30 would
remain constant whileCAL30 would gradually increase towardse30, as expected from
Equation (9). This view implies thatCAL30 is a biased indicator of stationary-equivalent
life expectancy, because if mortality conditions stopped changing,e30 would remain con-
stant whileCAL30 would continue changing.

On the contrary, BF consider that changes in mortality conditions are indicated by
changes inCAL30, and perceive variations ine30 as less meaningful, created by what-
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Figure 9: Period life expectancy,e30(t); cross-sectional average length of life,
CAL30(t); and period total mortality rate, TMR30(t).
Sweden, females, 1832-1998.

ever trajectoryCAL30 is taking. According to this view,e30 is a biased indicator of
stationary-equivalent life expectancy, becauseCAL30 would remain constant whilee30

would change if mortality conditions stopped changing.
Another way to contrast these two views is to examine the equation for theTMR.

Equation (11) is a modified version of Equation (2) in which cohort deaths at time t are
expressed in terms of cohort survivors exposed to the force of mortality at timet and in
which only ages30 and above are taken into account (i.e.,pc(30, t − 30) = 1):

TMR30(t) =
∫ ∞

30

pc(x, t − x) · µ(x, t)dx (11)

As we saw earlier, theTMR will deviate from1.00 whenever the timing of deaths is
changing from cohort to cohort. No matter how we define mortality conditions, if period
mortality conditions stopped changing, one would expectTMR30 to eventually reach the
stationary value of1.00. The stationary-equivalent periodTMR30, or TMR30(∞), can
thus be expressed for a given year asTMR30(t) divided by itself. This produces the
following equation:

TMR30(∞) =
1

TMR30(t)

∫ ∞

30

pc(x, t − x) · µ(x, t)dx (12)
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The conventional approach would attribute deviations inTMR30(t) to the fact that
the proportions of cohort survivors, representing individuals exposed to past mortality
levels, tend to be smaller than proportions of survivors in the synthetic cohort for year
t, while µ(x, t) adequately represents current mortality conditions. If current mortal-
ity conditions stopped changing, the stationary-equivalentTMR30(∞) of 1.00 would be
reached through a progressive increase inpc(x, t− x), while µ(x, t) would stay constant
at current levels. In contrast, BF assume that, if mortality conditions stopped changing,
the stationary-equivalentTMR30(∞) of 1.00 would be reached through a change in the
force of mortality by a factor1/TMR30(t), while pc(x, t − x) would stay constant at
current levels. They are able to entirely attribute the correction factor of1/TMR(t) in
Equation (12) toµ(x, t) because of their assumption of cohort-invariant delays of future
cohort deaths in the constant-condition scenario. (This adjustment ofµ(x, t) appears in
Equation (5) forM4.) In sum, both views agree thatTMR30(t) is biased an indicator
of the stationary-equivalentTMR30 by a factor1/TMR30(t), but this correction factor
is allocated to different components of Equation (12), yielding different estimates of the
stationary-equivalent level of life expectancy.

It is difficult to tell with certainty whether mortality change above age30 is indicated
by e30 or byCAL30, or equivalently, whether life expectancy would stabilize ate30(t) or
CAL30(t) if mortality conditions stopped changing after timet. Bongaarts and Feeney
rely on the existence of proportionality above age30 as a key element in support of their
view of mortality change. Proportionality, however, does notper sedemonstrate the exis-
tence of cohort-invariant delays of future cohort deaths in the constant-condition scenario.
Proportionality means that up to now, as a result of mortality change, successive cohorts
have been delaying there deaths according to a specific pattern, but it does not allow to
predict what would happen to the timing offuture cohort deaths if mortality conditions
stopped changing. In particular, the proportionality assumption does not demonstrate
that cohorts will stop experiencing additional delays in the constant-condition scenario.
Also, the proportionality assumption does not disprove the classic view assuming that
if conditions stopped changing, mortality rates would remain constant at current levels.
A hypothetical test (although perhaps not impossible for animal populations) would in-
volve fixing the current epidemiological conditions (defined as all factors - technological,
behavioral and environmental - affecting survival) at current levels and observing the re-
sulting dynamics ofCAL and life expectancy.

There are, however, several reasons to believe that period mortality conditions above
age30 are better reflected bye30, and thatCAL30 would not remain constant if mortality
conditions stopped changing.

(1) In Sweden (Figure 9), periods during whichCAL30 remained constant (or equiva-
lently, whenTMR30 reached a value of1.00) seem to coincide with mortality crises
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(1870, 1892, 1900 and 1918, for example) rather than with periods during which
mortality conditions remained constant.

(2) In Figures 8 and 9,e30(t) appears to have a dynamics of its own, as one would
expect from an indicator reflecting changes in the epidemiological environment of
a population.CAL30, in comparison, appears as a “response” indicator, reacting
to changes ine30 rather than generating them. (CAL reacts to changes in life ex-
pectancy somewhat like the temperature of a glass of water reacts to changes in
ambient temperature.) For example, excess mortality during WWI in France ap-
pears as a short-term deviation from an underlying trend ine30. After the war,e30

quickly recovers this underlying trend, plausibly indicating that prewar epidemio-
logical conditions were quickly recovered after the war.CAL30, however, does not
recover prewar levels until 1938, implausibly suggesting that pre-WWI epidemi-
ological conditions were not reestablished until20 years after the end of the war.
Similarly, the relatively small decreases inCAL30 during WWII in France and dur-
ing the 1918 Influenza epidemic in Sweden seem to understate the worsening of
epidemiological conditions during these years. The independent nature of life ex-
pectancy is not as obvious today because of the absence of mortality crises, but this
doesn’t mean thatCAL is now driving mortality change. (The sudden increase in
e30 after WWII among French males, however, is somewhat puzzling. The level of
e30 in 1946 is3.9 years higher than in 1938, suggesting a sudden, substantial, and
somewhat implausible improvement in mortality conditions relative to the pre-war
period.)

(3) As stated earlier, the most important assumption of BF’s approach is that new mor-
tality conditions generate delays in future cohort deaths that may vary with age
but are identical for all cohorts (or equivalently, that are constant with time). BF’s
approach thus does not address the fact that cohorts may react differently to new
epidemiological conditions, with some cohorts benefitting more than others. In
particular, younger cohorts – exposed to the new conditions for a longer period of
time – may experience greater delays at older ages, as a result of these new con-
ditions, than cohorts already old at the time when the new conditions appeared. It
seems likely that many medical innovations, such as new drugs or new knowledge
regarding health behaviors, have benefits that accumulate with time. For example,
we expect delays in ages at death resulting from the 1964 US surgeon general’s
statement establishing smoking as a risk factor to be greater for smokers who were
young in 1964 than for smokers who were older. The amount of delay generated
by a medical innovation may thus depend to a large degree on how long before
the innovation appeared. In other words, delays may very well be cohort-specific,
implying that delays – andCAL – could continue changing even in the absence of
further changes in conditions. (In fact, a scenario of constante30 allows the oc-
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currence of such cohort-specific delays.) It is true that certain medical discoveries
apply only to individuals who are at the terminal stage of a disease, in which case
the resulting delays in deaths may not depend on how long before the new technol-
ogy appeared. However, mortality conditions encompass a broad range of factors,
including some that likely have cumulative effects on survival.

These various points support the notion that current period conditions – and changes
thereof – may be better described by life expectancy than byCAL. The above argumen-
tation is imperfect because based on historical rather than contemporary data, or on ex-
pectations regarding the cumulative effect of medical innovations on the timing of cohort
deaths. The nature of mortality dynamics may well have changed, along with the nature
of medical innovations, as Bongaarts and Feeney argue. Nonetheless, in the absence of
direct evidence regarding the long-term impact of new epidemiological conditions on the
timing of cohort deaths, it seems preferable to continue to believe in the classic view of
mortality conditions, based on period age-specific death rates.

7. Conclusion

This paper first makes the distinction between two different purposes for calculating
tempo-adjusted indicators in demography. The first purpose is the estimation of stationary-
equivalent demographic levels, i.e., the levels that would be eventually observed in the
population if all factors affecting demographic behavior remained constant in the future.
The second purpose is the estimation of changes in the behavior of real cohorts. Since
these two purposes have different solutions, the various methodologies for dealing with
tempo adjustments need to be distinguished according to their objectives.

This paper then shows that the performance of Bongaarts and Feeney’s adjusted life
expectancy as an indicator reflecting current mortality conditions depends primarily on
the assumption that new mortality conditions generate delays in future cohort deaths that
may be age-specific but need to be cohort-invariant (or, equivalently, time-invariant). At
present, there is no clear evidence about the existence of such effects, although this may
just reflect a gap in the existing knowledge regarding the dynamics of mortality in contem-
porary populations. Nonetheless, until the existence of such effects can be demonstrated,
I argue that it is preferable to continue using the conventional life expectancy as an indi-
cator of period mortality conditions.

The assumption of homogeneity, necessary for simulating the synthetic cohort in clas-
sic period life table construction, presents a challenge to the interpretation of the pe-
riod life expectancy as an indicator of current conditions that is better documented than
BF’s tempo effects. If mortality risks vary across individuals, and if the frailty compo-
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sition of the actual population differs from that of the stationary-equivalent population,
the conventionally-calculated period life expectancy will be biased (Vaupel et al., 1979;
Yashin et al. 1985; Pollard, 1993). There is a body of evidence suggesting that age-
specific mortality rates are affected by earlier life conditions (Wilmoth, 1990; Elo and
Preston, 1992), and that consequently period age-specific mortality rates do not com-
pletely reflect period mortality conditions. Unlike BF’s conclusion that conventionale0

provides too high an estimate of the stationary-equivalente0 level, recent research in this
area suggests that conventionale0 is too low, because the prevalence of disability in the
population is higher than in the stationary-equivalent population (Lièvre et al., 2004).
Similarly, Avdeev et al. (1998) have suggested that low levels of life expectancy in Rus-
sia in the early 1990s may provide too negative a picture of period mortality conditions
because of increases in the proportion of frail individuals resulting from the abrupt mor-
tality decreases of the late 1980s. While heterogeneity and tempo effects are two separate
issues, they both address discrepancies between life expectancy under current rates and
life expectancy under current conditions. Our current knowledge on both issues suggests
that there may be a more urgent need for developing period life expectancy estimates that
take heterogeneity into account.
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