Volume 14 - Article 7 | Pages 111-138

The relative tail of longevity and the mean remaining lifetime

By Maxim Finkelstein, James W. Vaupel

Print this page  

 

References

Aalen, O.O. and Gjessing, H.K. (2001). Understanding the shape of the hazard rate: a process point of view. Statistical Science 16(1): 1-22.

Weblink doi:10.1214/ss/998929472
Download reference in RIS | BibTeX

Aven, T. and Jensen, U. (1999). Stochastic Models in Reliability. Springer.

Weblink doi:10.1007/b97596
Download reference in RIS | BibTeX

Barlow, R. and Proschan, F. (1975). Statistical Theory of Reliability and Life Testing. Probability Models. New York: Holt, Rinehart and Winston.

Download reference in RIS | BibTeX

Beard, R.E. (1959). Note on some mathematical mortality models. In: Woolstenholme, G.E.W. and O’Connor, M. (eds.). The Lifespan of Animals. Boston: Little, Brown and Company: 302-311.

Download reference in RIS | BibTeX

Beard, R.E. (1971). Some aspects of theories of mortality, cause of death analysis, forecasting and stochastic processes. In: Brass, W. (ed.). Biological aspects of demography. London: Taylor & Francis: 57-68.

Download reference in RIS | BibTeX

Finkelstein, M.S. (2000). Modeling a process of non-ideal repair. In: Limnios, N. and Nikulin, M. (eds.). Recent Advances in Reliability Theory. Birkhauser: 41-53.

Download reference in RIS | BibTeX

Finkelstein, M.S. (2003). A model of biological aging and the shape of the observed hazard rate. Lifetime Data Analysis 9(1): 93-109.

Weblink doi:10.1023/A:1021886207236
Download reference in RIS | BibTeX

Finkelstein, M.S. (2002). On the shape of the mean residual life function. Applied Stochastic Models in Business and Industry 18(2): 135-146.

Weblink doi:10.1002/asmb.461
Download reference in RIS | BibTeX

Finkelstein, M.S. and Esaulova, V. (2001). Modeling a failure rate for a mixture of distribution functions. Probability in the Engineering and Informational Sciences 15(3): 383-400.

Weblink doi:10.1017/S0269964801153076
Download reference in RIS | BibTeX

Gavrilov, N.A. and Gavrilova, N.S. (1991). The Biology of Life Span: A Quantitative Approach. Harwood Academic Publishers.

Download reference in RIS | BibTeX

Gavrilov, N.A. and Gavrilova, N.S. (2001). The reliability theory of aging and longevity. Journal of Theoretical Biology 213(4): 527-545.

Weblink doi:10.1006/jtbi.2001.2430
Download reference in RIS | BibTeX

Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality and on a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal Society 115: 513-585.

Weblink doi:10.1098/rstl.1825.0026
Download reference in RIS | BibTeX

Gupta, R.C. and Akman, H.O. (1995). Mean residual life function for certain types of non-monotonic aging. Stochastic models 11(1): 219-225.

Weblink doi:10.1080/15326349508807340
Download reference in RIS | BibTeX

Horiuchi, S. (2003). Interspecies differences in the life span distribution: humans versus invertebrates. In: Carey, J.K. and Tuljapurka, S. (eds.). : 127-151 (A Supplement to vol.29: Population and Development Review).

Download reference in RIS | BibTeX

Kirkwood, T.B. (1997). The origins of human aging. Philosophical Transactions of the Royal Society of London-Series B: Biological Sciences 352(1363): 1765-1772.

Weblink doi:10.1098/rstb.1997.0160
Download reference in RIS | BibTeX

Lynn, N.J. and Singpurwalla, N.D. (1997). Comment: “Burn-in” makes us feel good. Statistical Science 12: 13-19.

Download reference in RIS | BibTeX

Makeham, W.M. (1867). On the law of mortality. Journal of the Institute of Actuaries 13: 325-358.

Download reference in RIS | BibTeX

Shaked, M. and Shantikhumar, J. (1993). Stochastic Orders and Their Applications. Boston: Academic Press.

Download reference in RIS | BibTeX

Shaked, M. and Spizzichino, F. (2001). Mixtures and monotonicity of failure rate functions. In: Balakrishnan, N. and Rao, C.R. (eds.). Handbook of Statistics. London: Elsevier: 185-198.

Download reference in RIS | BibTeX

Steinsaltz, D. and Evans, S. (2004). Markov mortality models: Implications of quasistationarity and varying initial distributions. Theoretical Population Biology 65(4): 319-337.

Weblink doi:10.1016/j.tpb.2003.10.007
Download reference in RIS | BibTeX

Thatcher, A.R. (1999). The long-term pattern of adult mortality and the highest attained age. Journal of the Royal Statistical Society: Series A 162(1): 5-43.

Weblink doi:10.1111/1467-985X.00119
Download reference in RIS | BibTeX

Vaupel, J.W. (2003). Post-Darwinian longevity. In: Carey, J.K. and Tuljapurkar, S. (eds.). Life Span. Evolutionary, Ecological and Demographic Perspectives. : 127-151 (A Supplement to vol.29: Population and Development Review).

Download reference in RIS | BibTeX

Vaupel, J.W. (1998). Demographic analysis of aging and longevity. American Economic Review 88(2): 242-247.

Download reference in RIS | BibTeX

Vaupel, J.W., Manton, K.G., and Stallard, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography 16(3): 439-454.

Weblink doi:10.2307/2061224
Download reference in RIS | BibTeX

Wachter, K.W. (2003). Hazard curves and life span prospects. In: Carey, J.K. and Tuljapurkar, S. (eds.). Life Span. Evolutionary, Ecological and Demographic Perspectives. : 270-291 (A Supplement to vol.29: Population and Development Review).

Download reference in RIS | BibTeX

Weitz, J. and Frazer, H. (2001). Explaining mortality rates plateaus. Proceedings of the National Academy of Sciences (USA, 98: 15383-15386).

Weblink doi:10.1073/pnas.261228098
Download reference in RIS | BibTeX

Yashin, A.I., Iachine, I.A., and Begun, A.S. (2000). Mortality modeling: a review. Mathematical Population Studies 8(4): 305-332.

Weblink doi:10.1080/08898480009525489
Download reference in RIS | BibTeX

Yashin, A.I. and Manton, K.G. (1997). Effects of unobserved and partially observed covariate processes on system failure: a review of models and estimation strategies. Statistical Science 12(1): 20-34.

Weblink doi:10.1214/ss/1029963259
Download reference in RIS | BibTeX

Yashin, A.I., Vaupel, J.W., and Iachine, I.A. (1994). A duality of aging: the equivalence of mortality models based on radically different concepts. Mechanisms of Aging and Development 74(1-2): 1-14.

Weblink doi:10.1016/0047-6374(94)90094-9
Download reference in RIS | BibTeX