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A model for geographical variation
in health and total life expectancy

Peter Congdon1

Abstract

This paper develops a joint approach to life and health expectancy based on 2001 UK
Census data for limiting long term illness and general health status, and on registered
death occurrences in 2001. The model takes account of the interdependence of different
outcomes (e.g. ill health and mortality) as well as spatial correlation in their patterns. A
particular focus is on the proportionality assumption or ’multiplicative model’ whereby
separate age and area effects multiply to produce age-area mortality rates. Alternative
non-proportional models are developed and shown to be more parsimonious as well as
more appropriate to actual area-age interdependence. The application involves mortality
and health status in the 33 London Boroughs.

1Department of Geography, Queen Mary London University, Mile End Rd, London E1 4NS. E-mail:
p.congdon@qmul.ac.uk
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1. Introduction

Health expectancy is increasingly emphasised as an indicator for population health that
takes account of both mortality and morbidity or disability. While morbidity and dis-
ability data are often only obtainable from surveys, the recent UK 2001 Census includes
questions on both limiting long term illness and general health status. Thus, in England
and Wales63% of adults (aged16 and over) said they had good health,26% reported they
had fairly good health and11% said their health was not good. A variety of measures of
health expectancy are available that may be based on limited function or self-perceived
health status; these include disability free life expectancy and healthy life expectancy
(Bebbington et al, 1993; Robine and Ritchie, 1991).

While both total life expectancy and health expectancy have improved in the UK,
there are wide variations between geographic areas and socio-economic groups. Anal-
yses of such contrasts, especially of spatial variations, have typically used standard life
table calculations. These do not take account of features such as interdependence of dif-
ferent outcomes (e.g. ill health and mortality), or of spatial correlation in their patterns,
or of sampling variations in deaths or other outcomes. Where statistical modelling tech-
niques are adopted, simplifying assumptions about the impacts of demographic variables
and area are often made; for example, the proportionality assumption or ‘multiplicative
model’ (Hoem, 1987) whereby separate age and area effects multiply to produce age-area
mortality rates.

The present paper considers how evidence from mortality, limiting illness and self-
rated health for sets of areas may be integrated in life tables for sets of contiguous areas.
It includes consideration of the validity of the multiplicative model, and considers how
interactions between age and area effects may be parsimoniously modelled. The appli-
cation involves the33 London Boroughs (Figure 1) and combines information from the
two 2001 Census questions on disabling illness and self assessed health with recorded
deaths in 2001 for the same areas. The result is a joint life table model for life and health
expectancies by area.

2. The proportionality assumption (multiplicative model)

Let populations in areaa(a = 1, . . . , A), and age bandx(x = 1, . . . , X) be denotedPax.
Then deathsDax by area and age band will be binomial

Dax|µax ∼ Bin(Pax, µax)

In line with many spatial epidemiology studies (e.g. Wakefield et al, 2000), the propor-
tionality assumption is that

µax = ρarx (1)
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Figure 1: The London boroughs

whereρa are unknown relative risks for areaa andrx are death rates at agex. For rare
outcomes, the binomial distribution may be approximated by a Poisson distribution for
theDax (e.g. Sun et al, 2000, p. 2108)

Dax ∼ Poi(Paxµax)

whereµax is often taken as proportional as in (1). A relevant model (e.g. with log
link) for µax would then takelog(ρa) andlog(rx) as independent effects. Alternatively
under the proportionality assumption one may collapse over the age groups to obtain a
model where the area death totalsDa =

∑
x Dax are Poisson with meansEaρa where

Ea =
∑

x Paxrx are expected deaths. If an internal demographic standardisation is used
then

∑
a Da =

∑
a Ea and so theρa will have average1, and posterior densities forρa

concentrated on values over1 (e.g. with95% credible interval all above1) then indicate
excess relative risk in areaa.

In models with more classifiers (e.g. time as well as age and area) a common assump-
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tion is that age effects are independent of area (e.g. McNab and Dean, 2001), though
changes over time in the age profile of mortality may be included (Sun et al, 2000).

The present analysis uses age and area classifiers only and considers either total deaths
(males and females combined) or deaths for one sex only. Extensions to include more
classifiers (e.g. time) or to bivariate life table analysis (male and female life tables in
one overall model) are, however, possible. Life and health expectancy may be jointly
modelled for a set of areas using data on health status and long term illness as well as
mortality data. An initial analysis using the proportionality assumption for these outcomes
is contrasted in terms of fit and substantive implications with an analysis allowing for age-
area interactions. The age-area interaction model draws on the principles in the Carter and
Lee (1992) model for age-time interactions in mortality, and the related log-linear model
of Goodman (1979). More heavily parameterised models that use random effects for each
age-area interaction are also considered.

3. A model based on proportionality

The relevant data are deathsDax for the year 2001, numbers of long term ill in areaa
at agex, Gax, and the numbersHaxj in areaa and agex in thej = 1, . . . , 3 categories
of the general health (good, fairly good, not good). There area = 1, . . . , 33 areas and
x = 1, . . . , 19 age bands (namely0 − 4, 5 − 9, . . . , 85 − 89, over90).

Let sa denote spatially correlated area effects,ua be random errors without any spatial
structure, andδx denote age effects. To reflect correlated outcomes one may include a
common spatial effect across the responses, since it is plausible that a common structure
between excess mortality and morbidity exists and that it follows a spatial structure. Then
coefficientsθj may be introduced to express the differential impact ofsa on each outcome
j. Hence thesa can be seen as a spatially correlated factor scores, andθ = (θ1, θ2, ..) as
factor loadings, that account for correlations between the outcomes. Ifvar(sa) is taken
as a free parameter then for identifiability oneθ coefficient is assigned a set value (e.g.
θ1 = 1), while if var(sa) is set, e.g.var(sa) = 1, all θ coefficients may be free.

Several models are possible for age effects. Sun et al (2000) treat them as fixed ef-
fects; McNab and Dean (2001) and Nandram et al (1999) use spline models; Ibrahim et
al (2001) suggest random walks, while demographic applications (Anson, 1991) may use
polynomials in age. Here the first two models use a random effects approach combin-
ing a structured random walk prior with unstructured age effects. Thus withj denoting
mortality/morbidity responses(j = 1, ..K)

δjx = vjx + wjx

where thevjx are structured (follow a state-space form) and thewjx are unstructured
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effects withwjx ∼ N(0, ϕj). To reflect the correlation among the outcomesj it is
assumed that rather than separate state space models for each of theK series of effects
vjx, the processes are interlinked according to

vjx = φjVx

where theφj are loadings on a shared structured age effect

Vx ∼ N(Vx−1, ξ).

One possible model (model 1) for deaths and long term illness totals based on age-area
proportionality is then

Dax ∼ Po(Paxµax)
log(µax) = α1 + φ1Vx + w1x + θ1sa + u1a (1a)

Gax ∼ Bin(Pax, λax)
logit(λax) = α2 + φ2Vx + w2x + θ2sa + u2a (1b)

whereαj are intercepts. For numbersHaxk in the health status groups, a cumulative logit
model involving

υaxj = πax1 + · · · + πaxj = Pr(Haxk ≤ j), j = 1, J − 1

(J = 3 here) is often assumed. Other links allowing for asymmetric departures from the
cumulative logit might also be considered such as the cumulative log-log link or links
involving a transformation parameter (Zayeri et al, 2005; Agresti, 2002). A proportional
cumulative logit model would require common age gradients and area effects acrossj.
In the current application considerable gains in fit were made if age gradients and area
effects were allowed to differ between levels of health status, leading to a non-proportional
model (Peterson and Harrell, 1990). WhileJ − 1 non-parallel regression lines may cross
when explanatory variables are continuous, this problem does not occur for explanatory
variables that are categorical, as here (Gibbons and Hedeker, 2000). The cumulative logit
model is then

logit(υax1) = κ1 − (φ3Vx + w3x + θ3sa + u3a) (1c)

logit(υax2) = κ2 − (φ4Vx + w4x + θ4sa + u4a) (1d)

where the prior on the cutpointsκj has an order constraint. The form of the regression in
(1c) and (1d) means thatδ3x, θ3sa, andu3a will rise in line with increases in sub-optimal
health (fair or not good) whileδ4x, θ4sa, andu4a will be positive measures of poor health.
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The probabilitiesπaxj of the health status distribution (Hax1,Hax2,Hax3) in areaa and
agex are obtained as

πax1 = υax1

πax2 = υax2 − υax1

πax3 = 1 − υax2

The ICAR prior of Besag et al (1991) is used for the shared spatial effectssa. Define
theA×A contiguity matrixC with elementscab = cba = 1 if areasa andb are adjacent
and zero otherwise, letLa be the neighbourhood of areas adjacent to a (excluding area a
itself) and letNa be the number of areas in the neighbourhood. Then the Normal version
of the ICAR prior (with varianceτ ) assumes

f(sa|s[−a]) =
(
Na

2πτ

)0.5

exp{−0.5
Na

τ
(sa − Sa)2}

wheres[−a] denotes all{s1, s2, ..sA} exceptsa, andSa is the average ofsb for the areas
b in the localityLa of areaa. Equivalently

sa|s[−a] ∼ N(
∑

b

cabsb, τ/Na)

To ensure identification thesa are recentred at each iteration to have mean zero. Theuja

are taken to be unstructured Normal random effects with mean zero.
Note that a close fit to the data may be attained by effectively modelling each ob-

servation, namely adding random age-area effects{e1ax, e2ax, e3ax, e4ax} in (1a)-(1d).
However, this approach is heavily parameterised, and leads to complex interpretation is-
sues of model results in substantive terms. Instead the goal is relatively parsimonious
and interpretable models that clearly improve fit as an alternative to introducing age-area
interaction effects. This objective is pursued in subsequent model elaboration.

4. Estimation

The estimation of the above model, namely model 1 as set out in (1a)-(1d), for the Lon-
don borough data for males was based on two parallel chains of10, 000 iterations with
dispersed starting values based on a pilot run. Convergence from5, 000 iterations was
obtained under Gelman-Rubin criteria (Gelman et al, 1995). In this and subsequent mod-
elsN(0, 1000) priors are used for fixed effects and Gamma priors with index1 and scale
0.001 are used for precisions.
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To assess model fit, one criterion used is the DIC of Spiegelhalter et al (2002), un-
der which the number of effective parameterspe is derived as the difference between the
averaged sampled devianceDev and the deviance atΦ, the posterior mean of the full pa-
rameter setΦ. The DIC is then the average deviance plus the effective parameter total
(see Table 1 for fit statistics for model 1 and subsequent models). Another is the pseudo
marginal likelihood based on the Monte Carlo estimate of the conditional predictive ordi-
nate, as proposed by Gelfand and Dey (1994).

Table 1: Model Criteria

Deaths Long Term Ill Health Status Total
Model 1 Effective Parameters 48 45 72 165

DIC 1084 5150 7950 14184
BIC 1297 5350 8319 14916
Pseudo Marginal Likelihood -2031 -5249 -9178 -16458

Model 2 Effective Parameters 63 76 154 293
DIC 902 2651 4611 8164
BIC 1181 2990 5404 9467
Pseudo Marginal Likelihood -1939 -3964 -7464 -13367

Model 3 Effective Parameters 61 100 194 355
DIC 904 2278 3987 7169
BIC 1175 2722 4983 8746
Pseudo Marginal Likelihood -1928 -3744 -7114 -12786

Model 4 Effective Parameters 159 467 905 1531
DIC 868 1154 2291 4313
BIC 1574 3228 6937 11112
Pseudo Marginal Likelihood -1920 -3126 -6181 -11227

The estimated age parameters from model 1 show a typical mortality ‘bathtub’ profile
for males (Figure 2), with an accident hump in the late 20s and a virtually linear ascent
after age35 in the log death rate. Figure 3 contrasts the parametersδ2x, δ3x andδ4x,
namely the age effects for long term limiting illness/disability, for fair or poor health
combined, and for poor health only. The variation insa (Figure 4) closely reproduces
dimensions of mortality and ill health based on socio-economic structure and inner vs.
outer city contrasts. The highest values are in inner east London in deprived boroughs
such as Hackney and Tower Hamlets whereas the lowest are in affluent suburban boroughs
in south west London (Kingston, Richmond). The posterior means ofsa have a correlation
of 0.92 with area deprivation scores developed by Noble et al (2000).
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Figure 2: Mortality Effects by Age

Figure 3: Age Effects for Health and Limiting Illness
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Figure 4: Spatial Effect by Borough (Model 1)
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5. Modelling non-proportional age and area effects

To allow for non-proportional impacts means age effects and area effects will interact.
As noted above, the most heavily parameterised models allowing this are random ef-
fects models with termsejax specific to area, age and outcome. These would usually be
assumed spatially unstructured, though for a small number of age groupsx one might
assumeeja1, eja2, . . . , etc to have distinct spatially correlated densities.

Alternatively for a relatively parsimonious model with substantive interpretability one
may adapt the Carter-Lee model for forecasting mortality (Carter and Lee, 1992) to the
present spatial application. The Carter-Lee model for mortality rates in age and timeµtx

(without an area dimension) takes the form

log(µtx) = α1 + δx + βxκt

with constraints on the multiplicative functionβxκt to ensure identifiability. Lee (2000)
assumes theβx to be positive and sum to1 over allx, and constrains theκt to sum to
zero. Theβx parameters express variations between ages in the adherence to the overall
mortality trend represented by theκt parameters. If theκt were declining as mortality
fell then largerβx indicate for which age groups the rates are declining more rapidly.

In the present spatial mortality application one may incorporate this form of non-
proportionality (leading to model 2). This involves first re-defining the mortality model
as

Dax ∼ Po(Paxµax)
log(µax) = α1 + δ1x + β1xγa + u1a (2a)

where theβ1x are assumed positive and sum to1 and theγa are centred to sum to zero.
The mixed random effects model for the age effectsδjx used in model (1) is retained in
model 2. The remaining components of the model are redefined as

logit(λax) = α2 + δ2x + β2xγa + u2a (2b)

logit(γax1) = κ1 − (δ3x + β3xγa + u3a) (2c)

logit(γax2) = κ2 − (δ4x + β4xγa + u4a) (2d)

Theβ1x in (2a) represent differences between age groups in adherence to the spatial
mortality regime defined by theγa. For example, if theγa are higher in deprived areas,
thenβ1x would peak at ages where deprivation has most impact on mortality. Mortality
in childhood and at middle ages is most enhanced in deprived areas, while area contrasts
are less pronounced at older ages (Eames et al, 1993), so theβ1x would be highest at
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childhood and middle age bands, but low at old ages. Disability or poor health in middle
age also tends to be elevated in deprived areas.

Extensions of the basic non-proportional model with generic form

log(µax) = α + δx + ua + βxγa

may be envisaged. For example, it may be that there are discordant spatial effects or that
the interaction between age and spatial effects is less clearly defined in some areas than
others. The generic model reduces to the proportional model

log(µax) = α + δx + ua + γa

when all theβx are equal, so one might propose a two group discrete mixture whereby in
one group theβx vary less than in another group. Thus

log(µax) = α + δx + ua + βxGa
γa

whereGa ∈ (1, 2). One possible prior for theβx involves a multiple logit link, namely

βx = exp(ax)/

[
1 +

X−1∑
x=1

exp(ax)

]
x = 1, . . . , X − 1

βX = 1/

[
1 +

X−1∑
x=1

exp(ax)

]

whereax are random effects, e.g.ax ∼ N(0, τa). So the discrete mixture would involve
constrainingτa to be lower in one group than the other. Another possible model allowing
for spatial outliers would mix over a normal ICAR spatial effectγ1a and a heavy tailed
(e.g. Laplace) spatial effectγ2a. This can be done using continuous mixing using beta
weightsha ∼ Beta(g1, g2) whereg1 andg2 are known (Lawson and Clark, 2002). So

log(µax) = α + δx + ua + βx [haγ1a + (1 − ha)γ2a] .

Here we consider only the basic non-proportional form as in model 2 above (equa-
tions 2a to 2d). Estimation again involves a two chain run to10000 iterations. Figure 5
shows the spatial pattern of theγa effects common to all outcomes. They are, like thesa,
highest in deprived boroughs in inner London; the correlation between the means ofγa

and the deprivation scores of Noble et al (2000) is0.88. The ‘adherence’ parametersβjx

(Figure 6) show that the spatial effect particularly impacts on mortality and poor health
in childhood and at middle age. Table 1 shows the considerable improvement in fit by
adopting model 2 as compared to model 1.
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Figure 5: Spatial Effect from Age-Area Interaction Model
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Figure 6: Adherence Parameters by Age

6. Other models for age effects and spatially varying age effects

Instead of assuming a random walk prior for the structured component in the age mixture
modelδjx = vjx + wjx, one might representvjx by a basis function (e.g. a polyno-
mial spline or B spline), and then assume spatially varying coefficients applied to certain
components in each function. This may be combined with predictor selection on other
components of the function, leading to averaging over a number of different models. As
noted by Smith and Kohn (1996) this implies a nonparametric regression model for age
effects in which several predictor variables may be redundant. Here a cubic spline in age
with terms{x, x2, x3, (x − t1)3+, . . . , (x − tM )3+} is assumed in a third model. Define
B1(x) = x,B2(x) = x2, . . . , BM+3(x) = (x − tM )3+ then the smooth in age has the
form

vjx =
M+3∑
k=1

gjkηjkBk(x)

wheregjk are binary selection indicators with Bernoulli(0.5) priors, andηjk are coeffi-
cients applied toBk(x) only whengjk = 1. The linear coefficient in ageηj1 is taken as
necessary by default so thatgj1 = 1 (e.g. see Figures 2 and 3). All other terms are subject
to predictor selection. TheM potential knots are taken as the mid-points of each five year
age band, excluding the first and last so there are seventeen potential knots (at ages7.5,
12.5, etc. to87.5). An unstructured random age termwjx is retained to model remaining
residual age impacts for outcomej.

The third model allows for spatially varying linear impacts of age on the mortality
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and illness outcomes, so that linear coefficient in age for outcomej is area specific,ηj1a.
There is evidence at a higher geographical scale, for example, that high and low mortality
regimes in developed societies may differ in their age slopes (Gakidou et al, 2000). To
additionally reflect the correlation between outcomes (death, long term limiting illness,
etc) the area linear effect on age is modelled as

ηj1a = ωja + ψjξa

whereξa is a shared spatially correlated error,ωja is an outcome specific unstructured
error with meanηj1 andψj are outcome specific loadings. The remainder of the model is
an in model 2.

Then model 3 for mortality is

log(µax) = α1 + w1x + (ω1a + ψ1ξa)x+ [g12η12x
2 + g13η13x

3+

g14η14(x− t1)3+ + · · · + g1,M+3η1,M+3(x− tM )3+]+
β1xγa + u1a (3a)

The models for illness and health status are accordingly

logit(λax) = α2 + w2x + (ω2a + ψ2ξa)x+ [g22η22x
2 + g23η23x

3+

g24η24(x− t1)3+ + · · · + g2,M+3η2,M+3(x− tM )3+]+
β2xγa + u2a (3b)

logit(γax1) = κ1 − (w3x + [ω3a + ψ3ξa]x+ {g32η32x
2 + g33η33x

3+

g34η34(x− t1)3+ + · · · + g3,M+3η3,M+3(x− tM )3+}+
β3xγa + u3a) (3c)

logit(γax2) = κ2 − (w4x + [ω4a + ψ4ξa]x+ {g42η42x
2 + g43η43x

3+

g44η44(x− t1)3+ + · · · + g4,M+3η4,M+3(x− tM )3+}+
β4xγa + u4a (3d)

As compared to model 2 this representation produces a further gain in fit at the ex-
pense of a relatively small increase in the effective parameter total. The spatially varying
linear age effectsηj1a tend to be higher in deprived boroughs, but the correlation with
deprivation is higher for health and illness outcomes than for mortality.

There is some remaining overdispersion in relation to theNc = 627(= 19 × 33)
categories in the mortality and illness analysis and theNc = 1254 categories in the health
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status analysis. For the mortality analysis this is only slight with Dev(Φ) = 782 but for
illness the same quantity is2078, while for health status it is3599. As mentioned above
one generalisation of model 1 or subsequent models is to include unstructured age-area
random effects (Dean et al, 2001). So let effectsejax replace the unstructured are effects
uja in model 2.

This leads to model 4

log(µax) = α1 + δ1x + β1sa + e1ax (4a)

logit(λax) = α2 + δ2x + β2sa + e2ax (4b)

logit(γax1) = κ1 − (δ3x + β3sa + e3ax) (4c)

logit(γax2) = κ2 − (δ4x + β4sa + e4ax) (4d)

where theejax are assumed to be unstructured with outcome specific variances

ejax ∼ N(0, τej).

While producing a clear reduction in the average deviance, this approach also has a
cost in model complexity. The effective parameter total of around1500 compares to the
number of categories being modelled, namelyNc = (19×33)+(19×33)+(2×19×33) =
2508.

Alternative measures of fit such as the BIC that penalise complexity more heavily than
the DIC (or its classical equivalent the AIC) are available. There is evidence that the AIC
tends to select complex models, i.e. is prone to overfitting (Geweke and Meese, 1981).
An informal definition of the BIC that uses the effective parameter estimate for each of
the three outcomes is contained in Table 1. This is based on the average deviance plus
the product of the effective parameters by the log of the number of categoriesNc being
modelled:

BIC = Dev(Φ) + pe log(Nc).

Although model 4 has a relatively low DIC and the highest pseudo marginal likeli-
hood, its BIC exceeds those for the less complex models. Model 3 has the lowest BIC.

7. Implications for life table parameters

One benefit of jointly modelling mortality and morbidity for areas is in providing mea-
sures of total and healthy life expectancy for areas and at particular ages and the resulting
‘disease burden’ measured by years lived in ill-health (Murray and Lopez, 1996). Esti-
mation via repeated simulation has the benefit of providing posterior profiles on structural
indices that combine data and parameters in their derivation. Of interest for mapping
health need are the following
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a) life expectancy by area at agex, Eax;
b) disability free life expectancyW 1

ax, namely years to be lived beyond agex before
the onset of limiting long term illness;

c) healthy life expectancyW 2
ax, in terms of years to be lived in good health beyond

agex
d) G1

ax, average years lived with disability, namely the gap betweenEax andW 1
ax;

e) and average years lived in poor healthG2
ax, the gap betweenEax andW 2

ax.
Table 2 shows posterior means and standard deviations by borough for total life ex-

pectancy and the two forms of health expectancy (at birth and age65) under model 3.
Table 2 also contains a deprivation index devised by the UK Department of Environment,
Transport and Regions. For example, the disability free life expectancy at birthW 1

a0 varies
from 69 to 78.1 and correlates−0.85 with deprivation.

In terms of the disease burden at age65, Table 2 shows that years lived in poor health
G2

a,65 after age65 is typically around three years, or half of the years lived in disability
G1

a,65. Hence the worst category of the health status question is apparently identifying
more severe morbidity than the long term illness (limiting disability) question. There is
a 0.95 correlation between the disease burden measureG2

a,65 and deprivation. ForG1
a,65

the correlation with deprivation is slightly lower, namely0.92.
Of interest for health needs profiling is the disease burden at different ages and how

this varies between geographic areas. As noted above the area gradients for illness on
ageηj1a are more highly correlated with area deprivation than those for mortality. This
implies that the age profile of the disease burden would be discrepant between affluent
and deprived boroughs, and Figure 7 contrasts the burden-age profile for the deprived
inner city borough of Tower Hamlets with that in the affluent suburban area of Bromley.
The clear excess in morbidity in the inner city borough, especially in middle ages, can be
seen.

8. Conclusion

This paper has sought to develop and investigate the fit of a set of models that depart from
the often used proportionality assumption for mortality and morbidity data which are
crossed by age and area. Instead relatively parsimonious models for age-area interactions
in data on deaths and health in London have shown that the proportionality assumption is
very much a simplification that does not match actuality for this city region.

The model variants developed have the intention of modelling area life tables that
incorporate health status and survival, and to base parameterisation on central features of
area contrasts in health. Thus an adaptation of the Lee-Carter model reflects how different
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Table 2: Life Table Parameters, Mortality and Health, London Boroughs
(Model 3)

Life Expectancy Disability Free Life Expectancy

Age 0 Age 65 Age 0 Age 65
Borough Mean St devn Mean St devn Mean St devn Mean St devn

City of London 80.4 2.3 19.8 1.9 78.1 2.3 13.6 1.3
Barking 73.9 0.4 14.9 0.2 70.3 0.4 8.1 0.1
Barnet 77.0 0.4 16.6 0.2 74.7 0.3 11.1 0.2
Bexley 76.5 0.3 16.2 0.2 74.3 0.3 10.5 0.2
Brent 75.6 0.4 16.2 0.3 73.1 0.4 9.7 0.2
Bromley 76.8 0.3 16.4 0.2 74.5 0.3 11.2 0.2
Camden 73.2 0.5 15.3 0.3 69.9 0.4 8.9 0.2
Croydon 76.8 0.3 16.6 0.2 74.3 0.3 10.8 0.2
Ealing 75.7 0.4 16.1 0.2 73.4 0.3 9.7 0.2
Enfield 76.5 0.3 16.2 0.2 73.8 0.3 10.1 0.2
Greenwich 73.8 0.4 15.2 0.3 70.7 0.4 8.8 0.2
Hackney 74.1 0.5 15.4 0.3 70.8 0.4 7.6 0.2
Hammersmith 75.5 0.5 16.3 0.3 73.1 0.5 9.6 0.2
Haringey 74.6 0.4 15.5 0.3 71.8 0.4 8.9 0.2
Harrow 78.1 0.4 17.5 0.3 75.8 0.4 11.6 0.2
Havering 76.3 0.4 15.9 0.2 73.9 0.4 10.1 0.2
Hillingdon 76.1 0.4 16.3 0.2 73.7 0.4 10.6 0.2
Hounslow 75 0.4 15.8 0.3 72.7 0.4 9.7 0.2
Islington 72.3 0.5 14.5 0.3 69 0.4 7.6 0.2
Kensington
& Chelsea 78.3 0.5 17.9 0.4 75.9 0.5 12.0 0.3
Kingston 76.5 0.5 16.2 0.3 74.5 0.5 11.2 0.2
Lambeth 72.5 0.4 14.9 0.3 70.1 0.4 8.7 0.2
Lewisham 73.5 0.4 14.6 0.2 70.8 0.4 8.6 0.1
Merton 76.2 0.4 16.2 0.3 74.1 0.4 10.6 0.2
Newham 72.4 0.4 14.3 0.3 69.5 0.4 6.9 0.1
Redbridge 76.1 0.4 16.2 0.2 73.7 0.4 10.0 0.2
Richmond 77.4 0.4 16.8 0.3 75.8 0.4 11.9 0.2
Southwark 73.3 0.4 15.3 0.3 70.6 0.4 8.7 0.2
Sutton 76.1 0.4 15.8 0.3 73.7 0.4 10.5 0.2
Tower Hamlets 72.1 0.4 14.2 0.3 69.1 0.4 6.8 0.2
Waltham Forest 73.6 0.4 14.7 0.2 70.9 0.4 8.5 0.2
Wandsworth 74 0.4 14.7 0.2 71.9 0.4 9.2 0.2
Westminster 75.7 0.5 16.5 0.3 73.1 0.4 10.6 0.2
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Table 2: (Continued)

Healthy Life Expectancy Disease Burden (age 65), DETR

(Years lived before Years lived in Deprivation

entering ‘poor health’) Disability or Poor Health Index

Health Status
Age 0 Age 65 Disability Based Based

Borough Mean St devn Mean St devn Mean St devn Mean St devn

City of London 79.0 2.3 16.8 1.6 6.2 0.62 3.1 0.34 -0.88
Barking 72.1 0.4 11.4 0.2 6.8 0.13 3.4 0.07 0.68
Barnet 75.9 0.3 14.1 0.2 5.5 0.08 2.4 0.05 -0.84
Bexley 75.5 0.3 13.7 0.2 5.7 0.10 2.5 0.05 -0.91
Brent 74.4 0.4 13.0 0.2 6.5 0.12 3.2 0.06 0.41
Bromley 75.7 0.3 14.3 0.2 5.3 0.08 2.1 0.05 -1.12
Camden 71.4 0.4 11.9 0.2 6.3 0.14 3.4 0.09 0.56
Croydon 75.5 0.3 14.0 0.2 5.8 0.09 2.6 0.05 -0.52
Ealing 74.6 0.4 13.0 0.2 6.3 0.10 3.1 0.06 -0.14
Enfield 75.1 0.3 13.4 0.2 6.1 0.10 2.8 0.05 -0.13
Greenwich 72.2 0.4 12.0 0.2 6.4 0.12 3.2 0.06 0.56
Hackney 72.5 0.5 11.0 0.2 7.8 0.17 4.4 0.11 2.02
Hammersmith 74.4 0.5 12.9 0.3 6.7 0.16 3.5 0.09 0.12
Haringey 73.1 0.4 12.0 0.2 6.6 0.14 3.4 0.08 0.92
Harrow 77.0 0.4 15.1 0.3 5.9 0.12 2.5 0.06 -0.89
Havering 75.2 0.4 13.4 0.2 5.8 0.10 2.5 0.05 -0.85
Hillingdon 74.9 0.4 13.8 0.2 5.7 0.10 2.5 0.05 -0.7
Hounslow 73.9 0.4 12.9 0.2 6.1 0.12 2.9 0.06 -0.22
Islington 70.5 0.4 10.7 0.2 6.9 0.16 3.8 0.10 1.21
Kensington
& Chelsea 77.0 0.5 14.9 0.3 5.9 0.14 2.9 0.08 -0.62
Kingston 75.5 0.4 14.1 0.3 5.1 0.11 2.1 0.06 -1.32
Lambeth 71.3 0.4 11.6 0.2 6.2 0.12 3.3 0.07 0.66
Lewisham 72.2 0.4 11.6 0.2 6.0 0.10 3.0 0.06 0.56
Merton 75.2 0.4 13.7 0.2 5.6 0.11 2.5 0.06 -0.74
Newham 70.9 0.4 10.2 0.2 7.4 0.15 4.0 0.09 2.02
Redbridge 75.0 0.4 13.4 0.2 6.3 0.11 2.9 0.06 -0.49
Richmond 76.6 0.4 14.8 0.3 4.9 0.11 2.0 0.05 -1.47
Southwark 72.0 0.4 11.8 0.2 6.6 0.13 3.5 0.08 1.21
Sutton 74.9 0.4 13.6 0.2 5.3 0.10 2.2 0.05 -1.01
Tower Hamlets 70.4 0.4 9.9 0.2 7.4 0.16 4.3 0.11 2.36
Waltham Forest 72.3 0.4 11.6 0.2 6.2 0.12 3.1 0.07 0.34
Wandsworth 73.1 0.4 12.0 0.2 5.6 0.11 2.7 0.06 -0.37
Westminster 74.3 0.5 13.4 0.3 5.9 0.13 3.0 0.07 -0.43
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Figure 7: Disease Burden by Age, Deprived and Affluent Boroughs Compared

age groups accord with a single spatial health indexγa. Similarly the basic linear age
effect on log death rates or logit illness/health rates may vary over areas.

In a joint life table pooling over outcomes it is important to model the correlation be-
tween outcomes. The correlation over outcomes in both age and area impacts is reflected
in

a) the pooled random walk effectVx in δjx in models 1 and 2
b) the shared spatial effectsθjsa in model 1
c) the adherence by ageβjxγa interacting with shared spatial effects in model 2, and
d) the common area effect multiplied by an outcome specific loading in the linear age

effects in model 3, namelyηj1a = ωja + ψjξa.
Further stratifiers may be introduced into such a framework, for example deaths, ill-

ness and health may be specific for gender or ethnicity as well as for age and area. A time
dimension could be added also.

A range of inferences is possible from this type of model in terms of contrasts in life
expectancy, health or disability free expectancies, and resulting disease burdens. Varia-
tions in the disease burden are closely related to health need and use of health care (Murray
and Lopez, 1996). Unlike deprivation proxies for need that are often used in health care
resourcing the outputs from spatial life tables form a direct rather than proxy measure of
morbidity (Newbold et al, 1988).
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