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a research article

A model for geographical variation
in health and total life expectancy

Peter Congdon'

Abstract

This paper develops a joint approach to life and health expectancy based on 2001 UK
Census data for limiting long term illness and general health status, and on registered
death occurrences in 2001. The model takes account of the interdependence of different
outcomes (e.g. ill health and mortality) as well as spatial correlation in their patterns. A
particular focus is on the proportionality assumption or 'multiplicative model’ whereby
separate age and area effects multiply to produce age-area mortality rates. Alternative
non-proportional models are developed and shown to be more parsimonious as well as
more appropriate to actual area-age interdependence. The application involves mortality
and health status in the 33 London Boroughs.

1Department of Geography, Queen Mary London University, Mile End Rd, London E1 4NS. E-mail:
p.congdon@gmul.ac.uk
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1. Introduction

Health expectancy is increasingly emphasised as an indicator for population health that
takes account of both mortality and morbidity or disability. While morbidity and dis-
ability data are often only obtainable from surveys, the recent UK 2001 Census includes
questions on both limiting long term illness and general health status. Thus, in England
and Wale$3% of adults (aged 6 and over) said they had good heal2i% reported they

had fairly good health antll % said their health was not good. A variety of measures of
health expectancy are available that may be based on limited function or self-perceived
health status; these include disability free life expectancy and healthy life expectancy
(Bebbington et al, 1993; Robine and Ritchie, 1991).

While both total life expectancy and health expectancy have improved in the UK,
there are wide variations between geographic areas and socio-economic groups. Anal-
yses of such contrasts, especially of spatial variations, have typically used standard life
table calculations. These do not take account of features such as interdependence of dif-
ferent outcomes (e.qg. ill health and mortality), or of spatial correlation in their patterns,
or of sampling variations in deaths or other outcomes. Where statistical modelling tech-
niques are adopted, simplifying assumptions about the impacts of demographic variables
and area are often made; for example, the proportionality assumption or ‘multiplicative
model’ (Hoem, 1987) whereby separate age and area effects multiply to produce age-area
mortality rates.

The present paper considers how evidence from mortality, limiting illness and self-
rated health for sets of areas may be integrated in life tables for sets of contiguous areas.
It includes consideration of the validity of the multiplicative model, and considers how
interactions between age and area effects may be parsimoniously modelled. The appli-
cation involves the33 London Boroughs (Figure 1) and combines information from the
two 2001 Census questions on disabling illness and self assessed health with recorded
deaths in 2001 for the same areas. The result is a joint life table model for life and health
expectancies by area.

2. Theproportionality assumption (multiplicative model)
Let populations in area(a = 1,..., A), and age band(z = 1, ..., X) be denoted’,,..
Then deathd,,. by area and age band will be binomial

Daa;|ua;c ~ Bln(Pa.L7/’LaL>

In line with many spatial epidemiology studies (e.g. Wakefield et al, 2000), the propor-
tionality assumption is that

Max = PaTx (1)
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Figure1l: ThelLondon boroughs
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wherep, are unknown relative risks for areaandr, are death rates at age For rare
outcomes, the binomial distribution may be approximated by a Poisson distribution for
the D,.. (e.g. Sun et al, 2000, p. 2108)

Daac ~ POi(Pax.uax)

where p,,, is often taken as proportional as in (1). A relevant model (e.g. with log
link) for .. would then takdog(p,) andlog(r,) as independent effects. Alternatively
under the proportionality assumption one may collapse over the age groups to obtain a
model where the area death totdls = ) D,, are Poisson with means,p, where

E, =", P.,r, are expected deaths. If an internal demographic standardisation is used
then) D, = >, E, and so thep, will have averagd, and posterior densities far,
concentrated on values ove(e.g. with95% credible interval all above) then indicate
excess relative risk in area

In models with more classifiers (e.g. time as well as age and area) a common assump-
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tion is that age effects are independent of area (e.g. McNab and Dean, 2001), though
changes over time in the age profile of mortality may be included (Sun et al, 2000).

The present analysis uses age and area classifiers only and considers either total deaths
(males and females combined) or deaths for one sex only. Extensions to include more
classifiers (e.g. time) or to bivariate life table analysis (male and female life tables in
one overall model) are, however, possible. Life and health expectancy may be jointly
modelled for a set of areas using data on health status and long term illness as well as
mortality data. An initial analysis using the proportionality assumption for these outcomes
is contrasted in terms of fit and substantive implications with an analysis allowing for age-
area interactions. The age-area interaction model draws on the principles in the Carter and
Lee (1992) model for age-time interactions in mortality, and the related log-linear model
of Goodman (1979). More heavily parameterised models that use random effects for each
age-area interaction are also considered.

3. A model based on proportionality

The relevant data are deaths,,. for the year 2001, numbers of long term ill in area
at agezr, G, and the number#l,,,; in areaa and ager inthej = 1,..., 3 categories
of the general health (good, fairly good, not good). Thereaate 1,...,33 areas and
xz=1,...,19 age bands (namely— 4,5 —9,...,85 — 89, over90).

Let s, denote spatially correlated area effeetsbe random errors without any spatial
structure, and, denote age effects. To reflect correlated outcomes one may include a
common spatial effect across the responses, since it is plausible that a common structure
between excess mortality and morbidity exists and that it follows a spatial structure. Then
coefficientsd; may be introduced to express the differential impact,adn each outcome
j.- Hence thes, can be seen as a spatially correlated factor scoreq] an¥, 6, ..) as
factor loadings, that account for correlations between the outcomear($,) is taken
as a free parameter then for identifiability oheoefficient is assigned a set value (e.g.

0, = 1), while if var(s,) is set, e.gvar(s,) = 1, all  coefficients may be free.

Several models are possible for age effects. Sun et al (2000) treat them as fixed ef-
fects; McNab and Dean (2001) and Nandram et al (1999) use spline models; Ibrahim et
al (2001) suggest random walks, while demographic applications (Anson, 1991) may use
polynomials in age. Here the first two models use a random effects approach combin-
ing a structured random walk prior with unstructured age effects. Thusjwdtmoting
mortality/morbidity responselg = 1, ..K)

5jm = VUjg + Wiz

where thev;, are structured (follow a state-space form) and #he are unstructured
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effects withw;, ~ N(0,¢;). To reflect the correlation among the outcomet is
assumed that rather than separate state space models for eactikogdhmies of effects
vjz, the processes are interlinked according to

Vjx = ¢]Vm
where thep; are loadings on a shared structured age effect
Ve~ N(Vp_1,8).

One possible model (model 1) for deaths and long term illness totals based on age-area
proportionality is then

an ~ Pdpam.uam)

log(ftaz) = a1 4 $1 Ve 4+ wip + 0184 + Uia (1a)
Gaz ~ Bin(Pmm Aa:)(:)
logit(A\ez) = g + P2V + way + 0254 + usg (1b)

whereq; are intercepts. For numbefs, ., in the health status groups, a cumulative logit
model involving

Vazj = Mazl +° + Tazj = Pr(Huer <j),j=1,J -1

(J = 3 here) is often assumed. Other links allowing for asymmetric departures from the
cumulative logit might also be considered such as the cumulative log-log link or links
involving a transformation parameter (Zayeri et al, 2005; Agresti, 2002). A proportional
cumulative logit model would require common age gradients and area effects gacross

In the current application considerable gains in fit were made if age gradients and area
effects were allowed to differ between levels of health status, leading to a non-proportional
model (Peterson and Harrell, 1990). While- 1 non-parallel regression lines may cross
when explanatory variables are continuous, this problem does not occur for explanatory
variables that are categorical, as here (Gibbons and Hedeker, 2000). The cumulative logit
model is then

logit(vaz1) = k1 — (@3Ve + w3z + 058, + usa) (1c)
l0git(vaz2) = ko — (P4Ve + Wiy + 0484 + Uag) (1d)

where the prior on the cutpoinks has an order constraint. The form of the regression in
(1c) and (1d) means thag,, 05s,, andus, will rise in line with increases in sub-optimal
health (fair or not good) whiléy,, 04s,, anduy, will be positive measures of poor health.
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The probabilitiesr,,; of the health status distributio(,,1, Hqz2, Haz3) in areaa and
agex are obtained as

Tazl = Vaxl
Taz2 = Vaz2 — Vaxl

Taz3 = 1 — Vgzo

The ICAR prior of Besag et al (1991) is used for the shared spatial effgcBefine
the A x A contiguity matrixC' with elements:,;, = ¢, = 1 if areasa andb are adjacent
and zero otherwise, ldt, be the neighbourhood of areas adjacent to a (excluding area a
itself) and letV, be the number of areas in the neighbourhood. Then the Normal version
of the ICAR prior (with variance’) assumes

Na \** Na )
Foalsia) = (32 ) expl-05%2(s, - 5,)%)

wheres|_,) denotes alls1, so,..54 } excepts,, ands,, is the average o, for the areas
b in the locality L, of areaa. Equivalently

SalS[—a)] ~ N(Z CabSb, T/Na)
b

To ensure identification the, are recentred at each iteration to have mean zerouJhe
are taken to be unstructured Normal random effects with mean zero.

Note that a close fit to the data may be attained by effectively modelling each ob-
servation, namely adding random age-area efféets., €24z, €34z, €44z } IN (12)-(1d).
However, this approach is heavily parameterised, and leads to complex interpretation is-
sues of model results in substantive terms. Instead the goal is relatively parsimonious
and interpretable models that clearly improve fit as an alternative to introducing age-area
interaction effects. This objective is pursued in subsequent model elaboration.

4. Estimation

The estimation of the above model, namely model 1 as set out in (1a)-(1d), for the Lon-
don borough data for males was based on two parallel chaihg, 600 iterations with
dispersed starting values based on a pilot run. Convergence5frof0 iterations was
obtained under Gelman-Rubin criteria (Gelman et al, 1995). In this and subsequent mod-
els N (0, 1000) priors are used for fixed effects and Gamma priors with indard scale

0.001 are used for precisions.
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To assess model fit, one criterion used is the DIC of Spiegelhalter et al (2002), un-
der which the number of effective parametgrds derived as the difference between the
averaged sampled devianbev and the deviance &t, the posterior mean of the full pa-
rameter setb. The DIC is then the average deviance plus the effective parameter total
(see Table 1 for fit statistics for model 1 and subsequent models). Another is the pseudo
marginal likelihood based on the Monte Carlo estimate of the conditional predictive ordi-
nate, as proposed by Gelfand and Dey (1994).

Tablel: Model Criteria

Deaths Long Term I Health Status Total

Model 1 Effective Parameters 48 45 72 165
DIC 1084 5150 7950 14184

BIC 1297 5350 8319 14916

Pseudo Marginal Likelihood -2031 -5249 -9178 -16458

Model 2 Effective Parameters 63 76 154 293
DIC 902 2651 4611 8164

BIC 1181 2990 5404 9467

Pseudo Marginal Likelihood -1939 -3964 -7464 -13367

Model 3 Effective Parameters 61 100 194 355
DIC 904 2278 3987 7169

BIC 1175 2722 4983 8746

Pseudo Marginal Likelihood -1928 -3744 -7114 -12786

Model 4 Effective Parameters 159 467 905 1531
DIC 868 1154 2291 4313

BIC 1574 3228 6937 11112

Pseudo Marginal Likelihood -1920 -3126 -6181 -11227

The estimated age parameters from model 1 show a typical mortality ‘bathtub’ profile
for males (Figure 2), with an accident hump in the late 20s and a virtually linear ascent
after age35 in the log death rate. Figure 3 contrasts the parameétgrsds, anddy,,
namely the age effects for long term limiting illness/disability, for fair or poor health
combined, and for poor health only. The variationsin(Figure 4) closely reproduces
dimensions of mortality and ill health based on socio-economic structure and inner vs.
outer city contrasts. The highest values are in inner east London in deprived boroughs
such as Hackney and Tower Hamlets whereas the lowest are in affluent suburban boroughs
in south west London (Kingston, Richmond). The posterior meaggla@ve a correlation
of 0.92 with area deprivation scores developed by Noble et al (2000).
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Figure2: Mortality Effectsby Age

100
—4— hiean
2.5%
————— o975
Figure3: AgeEffectsfor Health and Limiting IlIness
2
11 Jﬁ/‘\" —4— Health fair
a i i i oF poar
I 20 40 =] ad 100 | —@— Poor
-1 Health
-2 Limitirg
Ih

3 ESE
-4
-5

Age

164 http://www.demographic-research.org



Demographic Researciolume 14, Article 9

Figure4: Spatial Effect by Borough (Model 1)
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5. Modéeling non-proportional age and area effects

To allow for non-proportional impacts means age effects and area effects will interact.
As noted above, the most heavily parameterised models allowing this are random ef-
fects models with terms;,, specific to area, age and outcome. These would usually be
assumed spatially unstructured, though for a small number of age gfoaps might
assume;,1, ejq2, - - - , €tC to have distinct spatially correlated densities.

Alternatively for a relatively parsimonious model with substantive interpretability one
may adapt the Carter-Lee model for forecasting mortality (Carter and Lee, 1992) to the
present spatial application. The Carter-Lee model for mortality rates in age angdtime
(without an area dimension) takes the form

log(,um) =a1 + 51 + ﬂaﬁ"ﬁt

with constraints on the multiplicative functigh,x; to ensure identifiability. Lee (2000)
assumes thg, to be positive and sum tb over all z, and constrains the; to sum to
zero. Theg, parameters express variations between ages in the adherence to the overall
mortality trend represented by the parameters. If the; were declining as mortality
fell then largers,, indicate for which age groups the rates are declining more rapidly.

In the present spatial mortality application one may incorporate this form of non-
proportionality (leading to model 2). This involves first re-defining the mortality model
as

Daa: ~ Panm/iam)
log(ﬂam) =0 + 01z + BraVa + Uia (2a)
where thes;, are assumed positive and sumitand they, are centred to sum to zero.

The mixed random effects model for the age effégisused in model (1) is retained in
model 2. The remaining components of the model are redefined as

Iog|t<)\aa:) = Q2 + 629: + ﬁ2:ﬂ7a + U2q (Zb)
l0git(Vaz1) = K1 — (932 + B32Ya + U3a) (2¢)
l0git(Yaz2) = K2 — (642 + BazYa + Uda) (2d)

The 3;,. in (2a) represent differences between age groups in adherence to the spatial
mortality regime defined by the,. For example, if they, are higher in deprived areas,
then 3y, would peak at ages where deprivation has most impact on mortality. Mortality
in childhood and at middle ages is most enhanced in deprived areas, while area contrasts
are less pronounced at older ages (Eames et al, 1993), s8) theould be highest at
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childhood and middle age bands, but low at old ages. Disability or poor health in middle
age also tends to be elevated in deprived areas.
Extensions of the basic non-proportional model with generic form

log(ﬂam) =a+ 0z + Uq + B2V

may be envisaged. For example, it may be that there are discordant spatial effects or that
the interaction between age and spatial effects is less clearly defined in some areas than
others. The generic model reduces to the proportional model

log(,u/ar) =a+ 61 + ug + Ya

when all the3,, are equal, so one might propose a two group discrete mixture whereby in
one group thes, vary less than in another group. Thus

log(ua;v) =a+ (Sa: + uq + ﬁIGa'Ya

whereG,, € (1,2). One possible prior for thg, involves a multiple logit link, namely

X-1
. = exp(ag)/ 1+Zexp(az)] z=1,...,X -1
X-1 -
ﬁX = 1/ 1+ Z eXP(am)‘|
x=1

wherea, are random effects, e.g,. ~ N(0,7,). So the discrete mixture would involve
constrainingr,, to be lower in one group than the other. Another possible model allowing
for spatial outliers would mix over a normal ICAR spatial effegf and a heavy tailed
(e.g. Laplace) spatial effeet,. This can be done using continuous mixing using beta
weightsh, ~ Bet& g1, g2) Wwhereg; andgs are known (Lawson and Clark, 2002). So

log(,u/ax) =a+ 51 + uq + ﬁx [haryla + (1 - ha)’YZa] .

Here we consider only the basic non-proportional form as in model 2 above (equa-
tions 2a to 2d). Estimation again involves a two chain rum00 iterations. Figure 5
shows the spatial pattern of thg effects common to all outcomes. They are, like the
highest in deprived boroughs in inner London; the correlation between the meaps of
and the deprivation scores of Noble et al (2000).&88. The ‘adherence’ parametess,
(Figure 6) show that the spatial effect particularly impacts on mortality and poor health
in childhood and at middle age. Table 1 shows the considerable improvement in fit by
adopting model 2 as compared to model 1.
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Figure5: Spatial Effect from Age-Area Interaction Model
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Figure6: Adherence Parametersby Age
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6. Other modelsfor age effects and spatially varying age effects

Instead of assuming a random walk prior for the structured component in the age mixture
modeld;, = v, + w;,, 0ne might represent;, by a basis function (e.g. a polyno-

mial spline or B spline), and then assume spatially varying coefficients applied to certain
components in each function. This may be combined with predictor selection on other
components of the function, leading to averaging over a number of different models. As
noted by Smith and Kohn (1996) this implies a honparametric regression model for age
effects in which several predictor variables may be redundant. Here a cubic spline in age

with terms{z, 2%, 23, (x — t1)%,..., (& — tar)3 } is assumed in a third model. Define
Bi(z) = z,Bs(z) = 2?,...,Buss(z) = (z — tar)3 then the smooth in age has the
form
M+3
Vjie = giknikBi(z)
k=1

whereg;;, are binary selection indicators with Bernoull) priors, andy;, are coeffi-
cients applied tdB, (z) only wheng;, = 1. The linear coefficient in age;, is taken as
necessary by default so that = 1 (e.g. see Figures 2 and 3). All other terms are subject
to predictor selection. Th&/ potential knots are taken as the mid-points of each five year
age band, excluding the first and last so there are seventeen potential knots (@bages
12.5, etc. t087.5). An unstructured random age teum,, is retained to model remaining
residual age impacts for outcomie

The third model allows for spatially varying linear impacts of age on the mortality
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and illness outcomes, so that linear coefficient in age for outcoimarea specificy; .

There is evidence at a higher geographical scale, for example, that high and low mortality
regimes in developed societies may differ in their age slopes (Gakidou et al, 2000). To
additionally reflect the correlation between outcomes (death, long term limiting illness,
etc) the area linear effect on age is modelled as

Njla = Wja + wjga

where¢, is a shared spatially correlated errot,, is an outcome specific unstructured
error with meam;; andy; are outcome specific loadings. The remainder of the model is
an in model 2.

Then model 3 for mortality is

log(ftaz) = o1 + w1z + (Wia + ¥1&0)T + [gr2m127° + Gramzz®+
grama(r —t1)3 + -+ g1 msm s (@ — tar)3 ]+
ﬁlz'Ya + U1q (3a)

The models for iliness and health status are accordingly

l0git(Aaz) = a2 + Woy + (woq + 1¥280)T + [g22m222” + gosnozz®+

Goata(w — t1)3_ + o g2, m3(T — tM)‘j.]Jr
ﬂ?w’}/a + U2q (3b)

109it(Vep1) = K1 — (Way + [w3q + VY3éa]T + {9327732$2 + g3amzzz’+
g3anza(z — ?51)1 + -+ g3, m4303,m+3(T — tM)i}'i‘
5337'7& + uSa) (3C)

l0git(Yaza) = K2 — (Wag + [Waa + Ya&alr + {ga2m422” + gaznazaz®+

Gaanaa(x — t1)% 4+ -+ + gamrana s (@ — tar)d
6450711 + Ugq (3d)

As compared to model 2 this representation produces a further gain in fit at the ex-
pense of a relatively small increase in the effective parameter total. The spatially varying
linear age effects);, tend to be higher in deprived boroughs, but the correlation with
deprivation is higher for health and iliness outcomes than for mortality.

There is some remaining overdispersion in relation toMhe= 627(= 19 x 33)
categories in the mortality and illness analysis and¥he- 1254 categories in the health
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status analysis. For the mortality analysis this is only slight with(@ev= 782 but for
illness the same quantity 278, while for health status it i8599. As mentioned above
one generalisation of model 1 or subsequent models is to include unstructured age-area
random effects (Dean et al, 2001). So let effegts, replace the unstructured are effects
Ujq iN Mmodel 2.
This leads to model 4

log(ttaz) = a1 + 012 + B154 + €1aa (4a)
logit(A\ae) = a2 + b2z + 284 + €240 (4b)
logit(Vaz1) = K1 — (032 + B354 + €3az) (4c)
logit(Vaz2) = K2 — (04z + BaSa + €4az) (4d)

where thez;,, are assumed to be unstructured with outcome specific variances
€jazx ™~ N(O, Tej)-

While producing a clear reduction in the average deviance, this approach also has a
cost in model complexity. The effective parameter total of arolsti) compares to the
number of categories being modelled, nam®ly= (19x33)+(19x33)+(2x19x33) =
2508.

Alternative measures of fit such as the BIC that penalise complexity more heavily than
the DIC (or its classical equivalent the AIC) are available. There is evidence that the AIC
tends to select complex models, i.e. is prone to overfitting (Geweke and Meese, 1981).
An informal definition of the BIC that uses the effective parameter estimate for each of
the three outcomes is contained in Table 1. This is based on the average deviance plus
the product of the effective parameters by the log of the number of categéribsing
modelled:

BIC = Dev(®) + p. log(N,).

Although model 4 has a relatively low DIC and the highest pseudo marginal likeli-

hood, its BIC exceeds those for the less complex models. Model 3 has the lowest BIC.

7. Implicationsfor lifetable parameters

One benefit of jointly modelling mortality and morbidity for areas is in providing mea-
sures of total and healthy life expectancy for areas and at particular ages and the resulting
‘disease burden’ measured by years lived in ill-health (Murray and Lopez, 1996). Esti-
mation via repeated simulation has the benefit of providing posterior profiles on structural
indices that combine data and parameters in their derivation. Of interest for mapping
health need are the following
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a) life expectancy by area at ageF,.;

b) disability free life expectanci’.., namely years to be lived beyond agdefore
the onset of limiting long term iliness;

c) healthy life expectancy¥’?2,, in terms of years to be lived in good health beyond
agex

d) G.,., average years lived with disability, namely the gap betwgnand W} ;

e) and average years lived in poor hedlth,, the gap betweef,,, and W2, .

Table 2 shows posterior means and standard deviations by borough for total life ex-
pectancy and the two forms of health expectancy (at birth andsajgander model 3.
Table 2 also contains a deprivation index devised by the UK Department of Environment,
Transport and Regions. For example, the disability free life expectancy atbjytharies
from 69 to 78.1 and correlates-0.85 with deprivation.

In terms of the disease burden at #geTable 2 shows that years lived in poor health
Gg,% after age6s is typically around three years, or half of the years lived in disability
G} 65- Hence the worst category of the health status question is apparently identifying
more severe morbidity than the long term illness (limiting disability) question. There is
a0.95 correlation between the disease burden measfirg and deprivation. Fo6}, o5
the correlation with deprivation is slightly lower, nameély2.

Of interest for health needs profiling is the disease burden at different ages and how
this varies between geographic areas. As noted above the area gradients for illness on
agen;1, are more highly correlated with area deprivation than those for mortality. This
implies that the age profile of the disease burden would be discrepant between affluent
and deprived boroughs, and Figure 7 contrasts the burden-age profile for the deprived
inner city borough of Tower Hamlets with that in the affluent suburban area of Bromley.
The clear excess in morbidity in the inner city borough, especially in middle ages, can be
seen.

8. Conclusion

This paper has sought to develop and investigate the fit of a set of models that depart from
the often used proportionality assumption for mortality and morbidity data which are
crossed by age and area. Instead relatively parsimonious models for age-area interactions
in data on deaths and health in London have shown that the proportionality assumption is
very much a simplification that does not match actuality for this city region.

The model variants developed have the intention of modelling area life tables that
incorporate health status and survival, and to base parameterisation on central features of
area contrasts in health. Thus an adaptation of the Lee-Carter model reflects how different
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Table2: Life Table Parameters, Mortality and Health, L ondon Boroughs
(Model 3)
Life Expectancy Disability Free Life Expectancy
Age 0 Age 65 Age 0 Age 65
Borough Mean Stdevn Mean Stdevn Mean Stdevn Mean  Stdevn
City of London 80.4 2.3 19.8 1.9 78.1 2.3 13.6 1.3
Barking 73.9 0.4 14.9 0.2 70.3 0.4 8.1 0.1
Barnet 77.0 0.4 16.6 0.2 74.7 0.3 11.1 0.2
Bexley 76.5 0.3 16.2 0.2 74.3 0.3 10.5 0.2
Brent 75.6 0.4 16.2 0.3 73.1 0.4 9.7 0.2
Bromley 76.8 0.3 16.4 0.2 74.5 0.3 11.2 0.2
Camden 73.2 0.5 15.3 0.3 69.9 0.4 8.9 0.2
Croydon 76.8 0.3 16.6 0.2 74.3 0.3 10.8 0.2
Ealing 75.7 0.4 16.1 0.2 73.4 0.3 9.7 0.2
Enfield 76.5 0.3 16.2 0.2 73.8 0.3 10.1 0.2
Greenwich 73.8 0.4 15.2 0.3 70.7 0.4 8.8 0.2
Hackney 74.1 0.5 154 0.3 70.8 0.4 7.6 0.2
Hammersmith 75.5 0.5 16.3 0.3 73.1 0.5 9.6 0.2
Haringey 74.6 0.4 155 0.3 71.8 0.4 8.9 0.2
Harrow 78.1 0.4 175 0.3 75.8 0.4 11.6 0.2
Havering 76.3 0.4 15.9 0.2 73.9 0.4 10.1 0.2
Hillingdon 76.1 0.4 16.3 0.2 73.7 0.4 10.6 0.2
Hounslow 75 0.4 15.8 0.3 72.7 0.4 9.7 0.2
Islington 72.3 0.5 14.5 0.3 69 0.4 7.6 0.2
Kensington
& Chelsea 78.3 0.5 17.9 0.4 75.9 0.5 12.0 0.3
Kingston 76.5 0.5 16.2 0.3 74.5 0.5 11.2 0.2
Lambeth 72.5 0.4 14.9 0.3 70.1 0.4 8.7 0.2
Lewisham 735 0.4 14.6 0.2 70.8 0.4 8.6 0.1
Merton 76.2 0.4 16.2 0.3 74.1 0.4 10.6 0.2
Newham 72.4 0.4 14.3 0.3 69.5 0.4 6.9 0.1
Redbridge 76.1 0.4 16.2 0.2 73.7 0.4 10.0 0.2
Richmond 77.4 0.4 16.8 0.3 75.8 0.4 11.9 0.2
Southwark 73.3 0.4 15.3 0.3 70.6 0.4 8.7 0.2
Sutton 76.1 0.4 15.8 0.3 73.7 0.4 105 0.2
Tower Hamlets 72.1 0.4 14.2 0.3 69.1 0.4 6.8 0.2
Waltham Forest 73.6 0.4 14.7 0.2 70.9 0.4 8.5 0.2
Wandsworth 74 0.4 14.7 0.2 71.9 0.4 9.2 0.2
Westminster 75.7 0.5 16.5 0.3 73.1 0.4 10.6 0.2
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Table2: (Continued)

Healthy Life Expectancy Disease Burden (age 65), DETR
(Years lived before Years lived in Deprivation
entering ‘poor health’) Disability or Poor Health Index
Health Status
Age 0 Age 65 Disability Based Based

Borough Mean Stdevn Mean Stdevn Mean Stdevn Mean Stdevn
City of London 79.0 23 168 1.6 6.2 0.62 31 0.34 -0.88
Barking 72.1 04 114 0.2 6.8 0.13 34 0.07 0.68
Barnet 75.9 03 141 0.2 5.5 0.08 24 0.05 -0.84
Bexley 75.5 0.3 137 0.2 5.7 0.10 25 0.05 -0.91
Brent 74.4 04 13.0 0.2 6.5 0.12 3.2 0.06 0.41
Bromley 75.7 0.3 143 0.2 53 0.08 21 0.05 -1.12
Camden 71.4 04 119 0.2 6.3 0.14 34 0.09 0.56
Croydon 75.5 0.3 14.0 0.2 5.8 0.09 2.6 0.05 -0.52
Ealing 74.6 04 13.0 0.2 6.3 0.10 31 0.06 -0.14
Enfield 75.1 0.3 134 0.2 6.1 0.10 2.8 0.05 -0.13
Greenwich 72.2 04 120 0.2 6.4 0.12 3.2 0.06 0.56
Hackney 725 05 11.0 0.2 7.8 0.17 4.4 0.11 2.02
Hammersmith 74.4 05 129 0.3 6.7 0.16 35 0.09 0.12
Haringey 73.1 04 120 0.2 6.6 0.14 34 0.08 0.92
Harrow 77.0 04 151 0.3 5.9 0.12 25 0.06 -0.89
Havering 75.2 04 134 0.2 5.8 0.10 25 0.05 -0.85
Hillingdon 74.9 04 138 0.2 5.7 0.10 25 0.05 -0.7
Hounslow 73.9 04 129 0.2 6.1 0.12 2.9 0.06 -0.22
Islington 70.5 04 107 0.2 6.9 0.16 3.8 0.10 121
Kensington
& Chelsea 77.0 05 149 0.3 5.9 0.14 2.9 0.08 -0.62
Kingston 75.5 04 141 0.3 5.1 0.11 21 0.06 -1.32
Lambeth 71.3 04 116 0.2 6.2 0.12 3.3 0.07 0.66
Lewisham 72.2 04 116 0.2 6.0 0.10 3.0 0.06 0.56
Merton 75.2 04 137 0.2 5.6 0.11 25 0.06 -0.74
Newham 70.9 04 10.2 0.2 7.4 0.15 4.0 0.09 2.02
Redbridge 75.0 04 134 0.2 6.3 0.11 2.9 0.06 -0.49
Richmond 76.6 04 1438 0.3 4.9 0.11 2.0 0.05 -1.47
Southwark 72.0 04 118 0.2 6.6 0.13 35 0.08 121
Sutton 74.9 04 136 0.2 5.3 0.10 2.2 0.05 -1.01
Tower Hamlets 70.4 0.4 9.9 0.2 7.4 0.16 4.3 0.11 2.36
Waltham Forest  72.3 04 116 0.2 6.2 0.12 31 0.07 0.34
Wandsworth 73.1 04 120 0.2 5.6 0.11 2.7 0.06 -0.37
Westminster 74.3 05 134 0.3 5.9 0.13 3.0 0.07 -0.43
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Figure7: Disease Burden by Age, Deprived and Affluent Boroughs Compared

5 —— Bromley

4 4 —a— Towver
Harnletz

Years
)
1

0 20 40 B0 a0 100
Age

age groups accord with a single spatial health inglex Similarly the basic linear age
effect on log death rates or logit illness/health rates may vary over areas.

In a joint life table pooling over outcomes it is important to model the correlation be-
tween outcomes. The correlation over outcomes in both age and area impacts is reflected
in

a) the pooled random walk effe®}, in ¢;, in models 1 and 2

b) the shared spatial effedlss, in model 1

c) the adherence by agk,~, interacting with shared spatial effects in model 2, and

d) the common area effect multiplied by an outcome specific loading in the linear age
effects in model 3, namely;1, = wjq + ¥;&,.

Further stratifiers may be introduced into such a framework, for example deaths, ill-
ness and health may be specific for gender or ethnicity as well as for age and area. A time
dimension could be added also.

A range of inferences is possible from this type of model in terms of contrasts in life
expectancy, health or disability free expectancies, and resulting disease burdens. Varia-
tions in the disease burden are closely related to health need and use of health care (Murray
and Lopez, 1996). Unlike deprivation proxies for need that are often used in health care
resourcing the outputs from spatial life tables form a direct rather than proxy measure of
morbidity (Newbold et al, 1988).
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