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research article

Trajectories and models of individual growth

Arseniy S. Karkach 1

Abstract

It has long been recognized that the patterns of growth play an important role in the evo-
lution of age trajectories of fertility and mortality (Williams, 1957). Life history studies
would benefit from a better understanding of strategies and mechanisms of growth, but
still no comparative research on individual growth strategies has been conducted.

Growth patterns and methods have been shaped by evolution and a great variety of
them are observed. Two distinct patterns – determinate and indeterminate growth – are
of a special interest for these studies since they present qualitatively different outcomes
of evolution. We attempt to draw together studies covering growth in plant and animal
species across a wide range of phyla focusing primarily on the noted qualitative features.
We also review mathematical descriptions of growth, namely empirical growth curves and
growth models, and discuss the directions of future research.

1Email: karkach@demogr.mpg.de
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1 Introduction

The ontogenetic growth of an individual is intuitively understood to be an increase in the
size of the whole organism or parts of it with age. But the very “natural” notion of growth
is, in fact, very difficult to define. Living organisms are complex systems, consisting of
parts that often grow at different rates and displaying different patterns. Some parts of the
body may grow faster than others, some may stop growing at a certain stage while others
continue to grow, and organs may grow “on demand” during regeneration. The cells of an
organ may divide continuously throughout an organism’s life, replacing aging cells and
producing cell turn-over in the tissues; still the body size may remain constant.

Growth is coordinated by a program of ontogenetic development that allows for vari-
ability in the development rates and sizes in order to adapt to environmental conditions.
Size and growth rates are subject to evolutionary optimization and constraints. On the
one hand, larger size usually leads to greater mating success, greater fertility, lower vul-
nerability to environmental hazards, and thus lower mortality. On the other, growth needs
resources, and trades-off with other traits.

Studies on growth and maintenance shed light on the problem of senescence. Most
organisms experience cell turn-over in most tissues. Some organisms (e.g. hydra) appar-
ently escape senescence due to a quick turn-over of cells (Martínez, 1998).

Growth and body size are strongly related to other traits and fitness. Research on ex-
tant species showed a strong statistical relationship between body mass and a remarkable
variety of biological features (Smith, 1996).

Measures of growth
Growth as an increment in size can be measured in many different ways, each having ad-
vantages and drawbacks. An increase in mass or volume often can be measured easily, but
may be only indirectly related to growth as increase in biomass. Organisms may change
in content of water or fat, in mass and volume, but this is not considered as growth.
To account for such changes, measurements of dry and fat-free mass have been devel-
oped. However, these measurements are often destructive. Non-destructive methods of
body composition measurement include X-ray absorptiometry, electrical impedance, and
imaging techniques (see (Heymsfield et al., 2005) for a comprehensive review).

In some cases, it may be hard or impossible to measure mass, e.g. in rooted plants,
embryos or tiny organisms, but linear measurements (such as of the wing span of birds,
of the nose-tail of rodents, and of the length of small organisms such as flies) are easier to
take; thus they are used as proxies to estimate mass. This method is complicated, however,
because volume and mass estimation by linear size requires knowledge of body density
and of the so-called “shape coefficient”. Measuring growth as a dynamics of some linear
body measure is widely used. These issues are discussed in detail in (Kooijman, 2000).
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The growth of small multicellular organisms can be measured as an increase in the
number of cells. In certain cases, the volume and mass of cells may change without a
corresponding change in cell numbers (e.g. during muscle training).

It seems impossible to propose a single definition and measure of growth suitable to
all applications. Different studies employ different measures of size and growth, such as
mass and volume, and different linear measurements, such as dry, fat-free mass, bone-
free mass, and cell counts. But the different measures are often incompatible with each
other, and conversion between them often includes unknown factors, such as shape, body
density, fat, bone or water contents. This is why caution should be taken when comparing
growth measured in different ways (an example of such difference is illustrated in Fig-
ure 8).

Length, volume, and shape
The volume of an organism is related to its linear measures in different ways, depending
on the construction of the organism. Several main types of constructions can be distin-
guished. In isomorphically growing organism, all linear dimensions change proportion-
ally, and volume V is related to any of its linear measures, L as V = αL3, where α is
a shape parameter. If the shape does not change, α=const. Typically, organisms change
shape as they increase in size, so the value of shape parameter α changes. Some organ-
isms, having the shape of sheets, films, and flat bodies with a constant, but small height
(such as leaves), grow in two dimensions. In such organisms, V = αL2. Some organisms
have the shape of sticks or rods and grow only in one dimension. The relation between the
linear measure and volume in them is V = αL. The volume is proportional to the surface
area in the latter two types. A detailed description of the relations between volume and
linear size be found in (Kooijman, 2000, chapter 2.2.2).

Methods of growth
Animals and plants are constituted of parts that, during ontogeny, may grow at different
rates and according to different patterns. For example, tree branches and tree roots can
grow indefinitely, whereas leaves and flowers show a clear determinate pattern. Several
“ways” or methods of growth can be distinguished (after Raup and Stanley (1978)):

Accretion – adding new material to an existing skeleton. This kind of growth is
typical for mollusks, trees (growth rings), fish scales, and the teeth of some vertebrates.

Adding new parts – in this way, trilobites add additional segments, echinoderms add
new plates and cephalopods. Segmented organisms (such as bamboos) add new segments.

Molting – the periodic shedding of skin or of the external skeleton (exoskeleton) and
the formation of new one after a burst of rapid growth. This is typical for arthropods.
Trilobite molt and grow rapidly between instars (molts). The growth of snakes is also
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accompanied by moulting. In such organisms, the skin or exoskeleton protects the organ-
ism, but also limits expansion; thus it is periodically replaced with a new, larger skin or
exoskeleton.

Modification – the re-formation and re-shaping of the original material as size in-
creases. Vertebrate bones grow in this fashion.

Often, a mixture of growth patterns is observed. Trilobites add segments while molt-
ing. Echinoderm plates accrete and new ones are also added; cephalopods both accrete
and add walls between chambers.

Growth can be continuous or discontinuous. Examples of discontinuous growth are
clams in the gulf of California. Their growth starts in late March, speeds up in spring
and early summer, slows or stops, speeds up again, and then stops in late November.
Discontinuous, pulsed growth can be observed in perennial organisms – they grow rapidly
in the beginning of the season and decrease or shut down growth and other metabolic
activities between the seasons to survive.

The so-called “catch-up” growth is observed in organisms with a genetically deter-
mined target size. When early life conditions (usually the lack of food) disfavor the
growth of an individual in comparison to others, the latter may catch-up with their more
“lucky” competitors later in life. Such growth pattern can be found in birds.

“Growth on demand” — the regeneration observed both in determinate and indeter-
minate growing organisms (e.g. wound closing; liver regeneration in humans; tail regen-
eration in reptiles; leg, eye, and tail regeneration in axolotl (Tanaka, 2003)) can also be
observed.

Qualitative types of growth
Growth patterns are traditionally classed in two groups: determinate and indeterminate
ones. They have two principally different features, presumably demonstrating different
optima of life history evolution.

Determinate growth is usually defined as growth that stops when an organism reaches
a certain size. Usually growth stops during the reproductive stage. Indeterminate growth
is defined as growth that continues past maturation and may continue to the end of life
(Heino and Kaitala, 1999).

Determinate growth is observed in bacteria and other unicellular organisms, all birds,
some plants, fish, insects, and most mammals. They rapidly grow to a pre-defined adult
size, at which physical growth stops, and then mature at a characteristic adult size. Some
organisms (such as the Nematode worm, the fruit fly D. melanogaster, C. capitata) have
a posmitotic adult stage (imago), at this stage cells do not divide and there is no growth.

Indeterminate growth is characteristic of a large number of invertebrate taxa – some
kinds of algae, clams, cladocerans and crayfish, mollusks, many insects, echinoderms,
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many modular animals such as corals and sponges, and “lower” vertebrate taxa, such as
most fish, amphibians, and reptiles (lizards and snakes). It is also found in perennial plants
and most trees (Lika and Kooijman, 2003; Vaupel et al., 2004). The best studied animals
that exhibit indeterminate growth are sea urchins (Strongylocentrotus) and salmon. The
adult size of these organisms depends largely on the environmental conditions they live
in. In theory, they can get as large as their environment and diet allow.

The literature commonly notes that all mammals and even “all higher vertebrates”
grow determinately. But male eastern and western grey kangaroos, wallabies, pademelons
and swamp wallabies, American bisons, giraffes, African and Indian elephants, mule deer,
and white-tailed deer seem to grow after maturity and throughout their life and hence to
have have indeterminate growth. The females of these species can grow determinately.
Thus indeterminate growth can also be enjoyed by higher organisms.

Both growth strategies can occur even among closely related taxa: cladocerans show
indeterminate growth (Daphnia magna can grow by a factor of two in length, i.e. a fac-
tor eight in volume, during the reproductive period), while copepods show determinate
growth (Kooijman, 2000, p. 293), both being members of the phylum Arthropoda, class
Crustacea. Some plant species (such as tomatoes, lablab bean) show both types of growth,
depending on environmental conditions or genetic variations.

This review is largely biased towards reviewing these qualitative growth types in dif-
ferent organisms. Some comments can be made on the definitions of growth patterns.

Is indeterminate growth never ending?
The definition of indeterminate growth may be confusing and may mislead to think that
indeterminate growers never cease to grow. Certainly, nothing in nature can grow with-
out limit. The maintenance of a larger body requires more energy, so the production of
food and the capacities of organismal systems (e.g. respiratory, digestive) should increase
accordingly. Sooner or later, various limitations will stop growth. Organisms in natural
populations die early because they are subject to predation and environmental hazards.
In favorable laboratory conditions, they usually live longer. Indeterminate growth, i.e.
growth to which no end is observed during the natural lifespan, may stop if the organism
had a chance to live longer. The main difference between the definitions is that indeter-
minate growth does not stop at, or soon after, reaching maturity, so organisms are able to
increase their size-related reproduction capacity with time.

Determinate growth after sexual maturity
It is frequently mentioned in the literature that determinate growth stops at sexual matu-
rity. The moment of sexual maturity is indeed a very important period in the life of every
organism and a “turning point” in theoretical models of life history evolution. It can-
not be regarded as a single age, because maturity is the result of complex developmental
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processes that may take considerable time. In determinately growing organisms (such as
humans), growth may not stop at the age of sexual maturity but continue for some time.
For example, growth in humans does not cease entirely after sexual maturity is reached,
but it does slow down significantly. By the time of sexual maturity, humans attain most of
their adult height. Girls may add some height, as much as 5 cm, over the next two years.
For boys, there is no such a clear end point, though there are also indications of full sexual
maturity. Again, there may be some small additional growth in height after they reach this
stage of development (see Figure 8).

Different parts of the organism can grow with different patterns
Consider a perennial long-living plant, a tree. The tree trunk constitutes the main, critical
part of the tree; a serious damage to it will lead to death. The trunk grows indeterminately,
gaining height and width, and acquiring rings. The roots also grow indeterminately to
support the nourishment needs of the trunk and to provide stable support. Leaves, by con-
trast, grow at the beginning of each season, their growth is determinate and their size well
defined. They provide the tree with photosynthesis and gas exchange. The leaves tear and
wear and have no chance of surviving the cold season. So, at the end of the season, the
tree removes water and nutrients from the leaves and sheds them. The cycle is repeated in
the next season. Flowers and fruits of trees also grow determinately.

Growth, maintenance, and turnover
Living tissues age. In many cases, the lifespan of single cells is much shorter than that of
tissues or the whole organism. To provide greater longevity, tissues undergo a constant
process of turn-over, including the breaking-down of old and damaged components and
the synthesis of new ones. Growth from the energetic, metabolic point of view may be
considered as an excess of build-up over the break-down of tissues. This view was first
proposed by Pütter (1920) and developed by Bertalanffy (1941, 1957) in his model of
growth (see 3.3.1).

Many tissues in an adult human are renewed approximately every seven years; this
corresponds to a synthesis of 13% of biomass yearly; the rate is comparable only to fast
growth in childhood. So, it is not unrealistic to assume that turnover expenses, usually
included in maintenance, are comparable to or greater than the expenses on growth itself.

2 Growth patterns in different phyla

We give examples of growth patterns for different phyla ranging organisms from more
primitive to more complex. Specific features of growth are described in notes.
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Table 1: Growth patterns in different phyla

Phyla Determinate Indeterminate
Kingdom Protista Rhizopods (e.g. Amoeba (Amoeba

proteus) (Prescott, 1957))
Kingdom Fungi Yeast (Saccharomyces cerevisiae,

Saccharomyces carlsbergensis)
(Berg and Ljunggren, 1982), most
mushrooms

Hornwort

Kingdom Plantae1 Trees (leaves), lablab bean (Lablab
purpureus), tomato (certain species,
mostly early ripening), white lupin
(Lupinus albus L.) (autumn-sown
type) (Huyghe, 1997), soybeans
(Robinson and Wilcox, 1998)

Trees (branches, trunks), peren-
nial plants (primary bodies), roots,
lablab bean (Lablab purpureus),
tomato (certain species), white
lupin (Lupinus albus L.) (spring-
sown type) (Huyghe, 1997), soy-
beans (Robinson and Wilcox, 1998)

Kingdom Animalia
Phylum Cnidaria Hydra (Martínez, 1998) Many benthic marine inverte-

brates (Sebens, 1977)
Phylum Nematoda Nematode worm (Caenorhabditis el-

egans) (Lee, 2002)
Subkingdom Meta-
zoa Phylum Annel-
ida

Segmented worm Pristina leidyi
(Bely and Wray, 2001), (Dorresteijn
and Westheide, 1999)

Phylum Mollusca Snails (class Gastropoda), strom-
bids (gastropods of the family Strom-
bidae)

Long-lived freshwater bivalves,
clams, freshwater mussels (Heino
and Kaitala, 1999; Hanson et al.,
1989; Jokela, 1997)

Phylum Echinoder-
mata

Sea urchins (Strongylocentro-
tus) (Stephens, 1972; Gage and
Tyler, 1985)

Phylum Arthro-
poda2 Class In-
secta

Insects with terminal moult, fixed
number of instars (growth stages) –
usually those with wings (most in-
sects)

Insects with no terminal moult and
no fixed number of instars (aptery-
gote insects)3

Class Crustacea Copepods (Kooijman, 2000), fe-
males of Chionoecetes crabs
(Stone, 1999)

Cladocerans (e.g. Daphnia magna),
males of Chionoecetes crabs
(Stone, 1999)4, lobsters5 (Factor,
1995), crayfish, shrimp (Heino and
Kaitala, 1999; Wenner, 1985)
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Phyla Determinate Indeterminate
Phylum Chordata,
Subphylum Verte-
brata, fish6

Some fish species Many species of teleost fish (Weath-
erley and Gill, 1987b), zebrafish
(Danio rerio) (Kishi et al., 2003),
Brachyrhaphis rhabdophora (Poecili-
idae family)7 and other poeciliid fish,
salmonids (Salmonidae) – salmon,
trout, Atlantic salmon (Grant et al.,
1998; Purdom, 1993), Yellow perch
(Huh, 1975; Malison et al., 1985)

Class Reptilia8 Blanding’s Turtles (Emydoidea
blandingii) (Congdon et al., 2001,
2003)

Painted Turtles (Chrysemys
picta) (Congdon et al., 2001,
2003)9, other tutrtles, snakes,
lizards

Class Aves (birds) All birds (Starck and Ricklefs, 1998;
O’Conner, 1984)

Class Mammalia10

Subclass Metathe-
ria (marsupials)

Female cangaroos Males of Red, Eastern, and West-
ern grey kangaroos (Macropus gi-
ganteus)11, pademelons and parma
wallabies (Macropus parma)12

Subclass Eutheria
(placentals)

Rodents, Humans, (Kuczmarski
et al., 2000; Tanner et al., 1998)

Males of American bison, giraffes,
African and Indian elephants13,
mule deer, white-tailed deer
(Odocoileus virginianus), black-
tailed mule deer (Odocoileus
hemionus)14

1Plants have some features not observed in animals, such as a modular body structure. Most plants have
several phases of growth, complex patterns of seasonal growth, and different growth of different parts may be
observed. Some plants show both types of growth, depending on environmental conditions or genetic vari-
ants. Determinate and indeterminate growth can be observed simultaneously in different parts of the plant, e.g.
branches and leaves.
Plants exhibit two primary forms of flowering architecture (types of inflorescences): indeterminate and determi-
nate. Species with indeterminate inflorescences have apical meristems that grow indefinitely, generating floral
meristems from their periphery. In contrast, each apical meristem of determinate species is eventually trans-
formed into a floral meristem that terminates apical growth, with subsequent growth occurring only from lower
axillary meristems.
Determinate growth means that vegetation cedes development when flowering begins. The shoot meristems
terminate by converting to a flower (e.g. tobacco and tomato) (Amaya et al., 1999). Indeterminate growth con-
tinues, adding leaf and stem tissue after blooming begins. Shoots grow indefinitely and only generate flowers
from their periphery (such are Antirrhinum and Arabidopsis).
Plants, (perennials, at least) add to their primary bodies for as long as they live. While the ultimate basis for the
indeterminate growth of plants is the iterative production of determinate units (morphological phytomers, cel-
lular merophytes), there is no direct homology or equivalence between the determinate units and indeterminate
units (shoot, root).

354 http://www.demographic-research.org



Demographic Research: Volume 15, Article 12

2The shell of insects and many crustaceans is hard and inelastic, for them growth is associated with molting –
the cyclical process of shedding or ecdysis, a critical stage of development. Growth stages in insects are called
instars.

3Although they also do not increase in size after a certain point.
4Growth patterns subject to debate.
5Molting is a continual process for them.
6Fish exhibit both types of growth and even gender change, and thus have the potential for a wide variety of

reproductive behaviors and strategies (Gross, 1984). Most fish are indeterminate growers; they grow throughout
their whole life with highly variable rates. Environmental factors and chance have a large impact on growth.
The age of maturity is very plastic (Kooijman, 2000; Summerfelt and Hall, 1987; Weatherley and Gill, 1987a;
Smith, 1992; Mommsen, 2001).

7In many species male growth slows dramatically at sexual maturation (Basolo, 2004). The growth curve
nearly plateaus at advanced ages as maintenance costs and the allocation to reproduction increase.

8Undergo molting and grow in bursts.
9Turtles are often thought to exhibit indeterminate growth, but it appears that growth slows appreciably

sometime after the onset of reproduction. Females are still growing rapidly during the first few years of repro-
duction.

10It is generally said that all mammals experience determinate growth, but they seem to experience both
patterns. Male competition generally favors a bigger size, and in certain mammal species (cangaroos, elephants,
deer) where such competition and the advantage of larger size are greater, evolution obviously resulted in the
development of an indeterminate growth pattern in males. Size increase in older males is seen to act as a sexual
attractant, signalling to females that males are long-lived and, therefore, desirable mates.

11The skeletons of kangaroos and the larger wallabies continue to grow slowly throughout life. Male kanga-
roos grow steadily larger and stronger throughout life, although at a decelerating rate as they age (Figure 1). The
rate of growth in females begins to slow down at about two years of age and most are fully grown when they
have reached the age of 5 years. The growth of kangaroos stops at some age, but far beyond the age of maturity
(which is at about 2 years of age).The rate of weight increase in females is slower than that of males, but it is
maintained until full size is reached at about ten years of age and there is, again, a tendency for a slight decrease
in weight as the animals reach old age (Frith and Calaby, 1969; Dawson, 1994).

12In parma wallabies both females and males continue to grow after sexual maturity (age 1 year in females).
At this age, they reach 70% of the maximum size (taken to be the size of animals aged 3 years and older).
Growth measured by the length and weight ceases by age 3 years in females, but the arms and legs of males
continue to grow until they reach about 4.5 years Maynes (1976).

13Elephants continue to grow for the entire duration of their life (Carey and Guenfelder, 1997; Elephant
Encyclopedia, 2004; Lee and Moss, 1995; Haynes, 1991). Bulls (males) are sexually mature at about 11 to
12 years of age, but they typically are not allowed to mate until around age 30 years. Elephant cows (females)
begin breeding at about 9 years of age. Elephants attain most of their height between the ages of 20 and
25 years, but continue to grow in height at a slow rate throughout life. Asian female elephants continue to
gain weight long after puberty. The reproduction success related to mating competition is probably a factor that
has influenced indeterminate growth at least in bulls. Lee and Moss (1995) argue that growth is indeterminate
in male elephants and determinate in female elephants in the wild. Laws (1966) presents data on height and
weight growth in elephants. Although the maximum (observed) size and weight for female and male elephants
is defined, growth apparently continues throughout life and well after maturity. Growth in height continues
at a diminishing rate and obviously has a limit, but it is usually beyond the common lifespan of the animal.
Moreover, the tusks of male elephants continue to grow after puberty.

14The males of black-tailed mule deer grow after reaching sexual maturity, probably throughout all of their
life. Typically, deer live between 8 and 11 years (the maximum recorded lifespan in captivity is 19 years). They
reach sexual maturity between the age of 1.5 and 2.5 years and have a non-monotonic pattern of weight change
(Figure 2) with prepubertal growth during the first half year of life and following seasonal oscillations with
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an increasing year-average weight (Wood et al., 1962). The mean yearly mass increased in males after sexual
maturity throughout the period of observation (1600 days) performed on several species of deer (Wood et al.,
1962). The indeterminate type of growth in male deer can be attributed to competition, here, larger mass is
advantageous. This is proven by the fact that males are not allowed to actively participate in the rut until they
are three or four years old. Measuring growth in deer is complicated because the typical linear measures are
difficult to undertake on living animals and weight may not be a good proxy to growth. The seasonal weight
changes are largely due to the accumulation and disappearance of adipose tissue and annual increment in lean
body mass (assumed to be represented by the lower weight limiting curve) is relatively small after puberty is
reached (Wood et al., 1962). The predicted “terminal mature weight” (the maximum asymptotic weight) is
delayed or never achieved.

Figure 1: The change in size, measured by the total length along the contours of
the body, and the total weight, male (solid line) and female (broken
line) Red Kangaroos throughout life (mean measurements of 239 males
and 964 females) (Reproduced from (Frith and Calaby, 1969)).

356 http://www.demographic-research.org



Demographic Research: Volume 15, Article 12

Figure 2: Growth (life weight) for a representative male of black-tailed deer
Odocoileus hemionus. Oscillating values of mass may be limited by
curves of maximum and minimum year weights (Reproduced from
(Wood et al., 1962) with permission from the Canadian Journal of
Zoology).

3 Mathematical description of growth

A convenient mathematical description of growth dynamics can be used to reduce the
amount of measured data, explain observed patterns, compare growth rates and patterns
within and between species, and to predict the future growth of these species. Two ap-
proaches have been used, namely descriptive growth curves and models based on theories
of growth. Often terminologically not differentiated – both are called “growth models”,
the two approaches are quite different nevertheless. France and Thornley (1984) refer to
these two types of description as empirical models set out principally to describe, and
mechanistic models attempting to provide a description with understanding.

Growth curves as empirical models are parametric functions, with usually a few
parameters relating to some measure of an organism’s size and age. The mathematical
functions of most growth curves do not reflect the nature and dynamics of the underlying
biological processes. The growth curves are fitted to the data, and estimates of their
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parameters are obtained. A wide range of questions on the growth of the organism can
then be asked.

The main challenges stimulating the development of growth curves have been the de-
tection of abnormal growth or disease at the early life stages in humans and the prediction
and comparison of the growth of economically important animals, such as cattle, birds,
and fish in order to find regimes of handling and harvesting that maximize product yield.
The last problem has stimulated the development of models describing population growth,
predator–prey interactions, and the coexistence of species.

A common application of growth curves in determinate growers is to establish an
asymptotic size.

The great diversity of growth strategies observed in living organisms poses challenges
in describing them in terms of a few simple curves. The goals of the structural approach
to growth modeling are to find a suitable family of growth functions easily representing a
set of longitudinal measurements, to estimate the growth parameters by fitting a function,
to evaluate a goodness of fit, and to predict future growth.

Mechanistic models and theories of growth present a second, different approach –
not just to fit the data but to develop a description of processes underlying growth that
takes place in an organismal system. The models of growth can be simple and abstract,
involving a simplistic description of build up and break-down of organism compounds and
tissues, with each of these processes being related to size (model of Bertalanffy (1957)),
or they may involve a detailed description of the balance of energy and compounds, the
processes of consumption, an the storage and utilization of energy by different systems.
Detailed models can take into account subtle processes such as changes in shape, dilution,
the ratios of body reserves to somatic tissue, and the specifics of organism design and
physiology, as in the Dynamic Energy Budgets theory (Kooijman, 2000).

A mechanistic model is usually derived from a differential equation relating growth
rate (dy/dt) to size (y). This mathematical relationship represents the mechanism gov-
erning the growth process. This approach has been extensively used for somatic growth
and a large number of growth functions have been derived, such as the monomolecular,
logistic, and Gompertz ones (Turner et al., 1976; France and Thornley, 1984).

The purpose of mechanistic models and theories is to understand the similarities and
differences in growth in different species and to explain these differences within one
mechanistic framework. Equations of growth can be derived from these models.

Probably a more general approach to growth and generally, changes in size, would be
to regard the organism’s size as a result of a dynamic balance between the accumulation
and break-down of biomass. Such concepts of dynamic turnover form the basis of the von
Bertalanffy model and of the Dynamical Energy Budget theory.
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3.1 Typically observed patterns of growth

Several patterns are frequently observed in the growth rates of freely fed organisms. The
so called exponential pattern (Figure 3, unlimited dash-dot curve) is typical for growth in
certain time periods usually soon after birth.

The asymptotic growth pattern which is also called exponential (Figure 3, leveling-
off dash-dot curve) applies to the length of some organisms, the size of the skull and the
brain. It is characterized by a positive and steadily decreasing growth rate, therefore there
is no point of inflection.

The weight and volume of the body and of most organs show a sigmoid or S-shape
growth pattern (Figure 3, line). Initially, the rate of growth in mass is low but increasing.
The growth rate reaches a maximum, it corresponds to the point of inflection in the curve,
and then slowly declines to zero when the animals achieve their mature weight. The
sigmoid curve is prevalent among determinately growing animals, and this has led to
the emergence of a specific class of “sigmoid functions” describing growth. A special
case of this growth mode is multiphasic growth, where several sigmoid periods follow
one another throughout the development and, therefore, several growth rate maxima are
present (see the human growth curve in Figure 8).

Bell-shaped growth (Figure 3, dotted curve) is observed in organs that show degener-
ation and involution (thymus, bursa of Fabricius, bones in elderly humans, tree leaves at
the end of the season). Organ size first increases and, after having reached a maximum,
starts to decrease.

Growth can experience complex patterns, such as non-monotonic, oscillating changes
in mass (e.g. in animals with strong seasonal differences in the quality of feed), and
in perennial plants. Often, it is difficult to separate growth from the accumulation of
resources when change in mass is the summary measure of these effects. As an example,
the cyclic changes of mass due to the accumulation and utilization of fat in deer are
overlayed on the monotonic growth of fat-free mass (see Figure 2). The growth pattern
observed depends on the measure of growth selected – even in isomorphs the curves of
growth in linear size and mass or volume will have different shapes.

For these patterns of growth, a multitude of growth curves has been proposed. None of
them, however, meet the demands of a biophysical model in its narrow sense. Therefore,
growth curve analysis is more or less a phenomenological analysis of growth courses.

3.2 Growth curves as empirical models

Growth curves can be classified according to the type of growth they describe: determi-
nate or indeterminate. Most of the curves developed describe determinate growth, since
this is what is most often observed in animals, most notably in mammals such as humans
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Figure 3: Frequently observed growth patterns: “exponential” (both dash-dot
lines), sigmoid (line), and bell-shaped (dotted line).
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and cattle, which have been of primary interest. Since determinate growth is character-
ized by a maximum size that is approached with a diminishing growth rate, such curves
are also called asymptotic. Examples are the exponential (with the declining growth rate),
logistic, Richards, Gompertz, von Bertalanffy curves. All these curves except for the ex-
ponential have sigmoidal shape. In all following equations, t will denote the age of the
individual, and y = y(t) – its size.

3.2.1 Curves for determinate growth

The exponential growth curve
Assume that the rate of growth is proportional to the size: dy/dt = by. The solution of
this differential equation defines the exponential growth curve

y = y0e
bt. (1)

Parameter y0 is the initial size (at age zero). For b > 0, this function will usually only
be applicable to temporarily limited periods of growth (e.g. at the early growth stage)
(see also the logistic growth curve (Figure 4)). For b < 0, this may be a good model of
exponential decline, e.g. of some decaying activity.

Using a linear transformation of the form τ = −t, ỹ = y∞(1 − y/y0), “inverting”
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time and size scales, we obtain a variant of the exponential growth curve which allows for
an asymptotic approach to the maximum size y∞:

ỹ = y∞(1 − e−bτ ), (2)

This form of curve is often referred to as the von Bertalanffy curve, but note that the actual
solution (20) for the von Bertalanffy model (19) has the form of an exponential function
(1) raised to the power 1/(1−m). For animals, typically 2/3 < m < 1 so 1/(1−m) > 3.
Equation (2) can also be written in the form of y = y∞(1 − e−k(t−t0)), where t0 is
the theoretical age at which the organism would have zero size. k is often called the
Brody growth coefficient, or the rate at which y∞ is achieved or a measure of the rate at
which the growth rate declines. Brody himself used this type of “inverted” exponential
growth function in the second part of his sigmoidal functions (6, 7). Generally, a high k is
associated with fast early growth, low age and size at maturity, high reproductive output,
a short life span, and a short max length. The exponential curve of this form is a particular
case of monomolecular growth, in which the rapid initial growth is followed by a leveling
off.

The exponential curve can be applied to mass as well as to length. It fits length better
than mass and works better for older ages. During larval and early juveniles stages, a
sigmoid curve is more applicable.

Monomolecular growth
One of the simplest assumptions leading to a growth curve approaching a limiting value
y∞ is that the growth rate is proportional to the difference between the level and the actual
size, i.e. dy/dt = b(y∞ − y), where b > 0. The solution to this differential equation is
the monomolecular growth function:

y = y∞ − (y∞ − y0)e−bt = y∞ − δe−bt, (3)

Here, y0 is the initial size and if y0 = 0, the solution reduces to y = y∞(1 − e−bt), a
special case (2) of exponential growth curve. The monomolecular curve has rapid initial
growth followed by a leveling off.

Logistic growth
Qualitatively, the growth of an animal can be divided into four stages: early exponential
growth, where the rate of growth is proportional to weight; linear growth, where more and
more energy is devoted to maintenance; diminishing growth as a maintenance balance is
approached; and antithesis through senescence. The last part is often disregarded since
few or no observations are made at this stage or since it is irrelevant to consider this stage.
The growth rate at the first stage is proportional to the weight of the animal: dy/dt = by.
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The solution of this differential equation is exponential growth (1). Growth at the second
stage is linear in time, i.e. y = y0 + bt. The third stage is a limiting stage, where the
growth rate approaches zero and the weight approaches a limiting level y∞. The fourth
stage will not be considered here. By considering the first three stages only, the growth
can be described by a differential equation: dy/dt = by(y∞ − y)/y∞. The solution to
this is known as the logistic curve

y =
y∞

1 + eη−bt
. (4)

The size, y, approaches the upper limit y∞ as time tends to infinity. The parameter η
has no direct interpretation but may be seen as a measure of the difference in weight
from birth to maturity since isolating η at time t = 0 and letting α = y0 we find that
η = ln(η/α − 1). Inserting this result into the equation of the logistic curve (4), we can
write the following re-parameterized version:

y =
αy∞

α + (y∞ − α)e−bt
. (5)

This way of expressing the logistic curve has the advantage that the initial weight is a
parameter in the model. The logistic curve (Figure 4) is sigmoid, has a lower limit at 0,
and an upper limit at y∞. The curve is symmetric around the point of inflexion y = y∞/2
where the absolute growth rate is maximal. The last property is one of the drawbacks of
the logistic growth curve. The Gompertz growth curve is more flexible.

The Sigmoid (Brody) curves
As mentioned, sigmoid patterns of growth are frequently observed in animals that are
determinate-growers. Brody (1945) suggested growth be expressed by a continuous curve
with a discontinuous slope at the inflection point – the sigmoidal curve, often referenced
to as Brody’s curve. He described growth as “self accelerating” before and “self inhibiting
or decelerating” after age t′, and suggested the following mathematical description:

y = y0e
bt, 0 ≤ t ≤ t′, (6)

y = y∞
[
1 − e−k(t−t∗)

]
, t ≤ t (7)

Here, y0 is the initial live weight of the animal (i.e. the weight at birth), b is the exponential
growth constant in the growth acceleration phase, y∞ denotes the mature live weight, k
represents the exponential growth rate decay constant in the deceleration phase, and t′ is
the point of inflection (the age at which acceleration of growth turns into deceleration),
and t∗ denotes the time-shifting parameter. The curve defined by Equations (6, 7) fits the
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Figure 4: Logistic growth curve y = a
1+ce−bt .

0 20 40 60
0

0.5

1

Age

Si
ze

a=1, b=0.25, c=100
a=1, b=0.2, c=100
a=1, b=0.1, c=10

growth data for many animals very well. This motivated Brody to call the parameters y∞,
k, and t∗ genetic “constants”, and to create an extensive table listing the values (Brody,
1945; Parks, 1982).

Brody suggested to express growth in coordinates of the degree of maturity (µ =
y/y∞) versus normalized age T , using transformations T = k(t− t∗) and u = 1 − e−T ,
0 < T , and demonstrated that the growth data for a wide range of animals lie on the same
graph (Figure 5). The coincidence of the growth data from such widely differing species
for T > 0 is remarkable. A plot in these coordinates shows where the determinate growth
of different animals has the same features and where it differs (Parks, 1982).

The Richards curve
Richards (1959) was the first to apply to the plant sciences a growth equation developed
by von Bertalanffy to describe the growth of animals (France and Thornley, 1984). The
Richards curve is very general and has the monomolecular (ν = −1), the logistic (ν = 1),
and the Gompertz (ν = 0) curves as special cases, where ν is a parameter in Richard’s
equation. As with the other growth curves, there are various ways of writing the curve
equation. One of them (Labouriau et al., 2000) is:

y = α{1 + sign(ν)eβ−κt}−1/ν . (8)

Here, α, β > 0 and ν ≥ −1 but ν �= 0 (for ν = 0 the Gompertz equation is used), and
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Figure 5: Growth in rats, cows and man expressed in Brody’s normalized age T
and fraction of maturity µ (Reproduced from Parks (1982)).

sign is a signum function (sign(x) = −1, x < 0, 0, x = 0 and 1, x > 0). The curve
has an inflection point at the time point t = (β − ln(|ν|)/κ. The expected response at the
inflection point is given by µ = α(ν + 1)−1/ν .

The point of inflection now is able to occur at any fraction of the final weight, as ν
varies over range −1 ≤ ν < ∞. Parameter κ controls the position of the inflection point.
The intercept (the value at t=0) of the Richards curve is

y0 = α
{
1 + sign(ν)eβ

}−1/ν
. (9)

Parameter α is the limiting size (the asymptote of the curve). Parameter ν determines
the relative value (compared to the limiting size) of the Richards function at the inflection
point:

y

α
= (ν + 1)−1/ν . (10)

Parameter β controls the initial size. Other forms of equations defining the Richards
curve are y = d + a/{1 + ce−b(t−m)}(1/c), where a is the maximum asymptotic size,
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Figure 6: Richard’s growth curve y = d + a
{
1 + ce−b(t−m)

}−1/c
.
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d the lower asymptotic size, b denotes the average growth rate, m the age of maxi-
mum growth, c determines whether max growth occurs early or late, and y = α{1 −
β1e

−β2t}β3 . In practice, the Richards curve is rather difficult to fit due to numerical prob-
lems. The model has too many parameters for practical situations and is an example of
over-parametrization.

The Gompertz growth curve
The Gompertz equation arises from models of self-limited growth where the rate de-
creases exponentially with time. The model was first introduced to describe growth in the
number of tumor cells which usually follows a sigmoidal growth pattern. The equation is
a solution of the differential equation:

dN

dt
= λN ln(θ/N); N(0) = N0, (11)

where N is the number of tumor cells at time t.
Let the growth rate be expressed by the differential equation dy/dt = kye−bt, where

b and k are constants. The solution is

y = y∞e−(k/b)e−bt

, (12)
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where y∞ is the asymptotic size. Alternatively, the growth rate may be defined by a
differential equation of the form dy/dt = y(β − α ln y), where α and β are constants.
The solution of this equation is:

y = eC1(e
−α(t+C2)+β)/α (13)

Figure 7: The Gompertz growth curve y = ae−ce−bt
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Solutions of these models are know as the Gompertz growth curve, which is usually
expressed in the form

y = y∞e−ce−bt

, (14)

where y∞ > 0 is the final (asymptotic) size, parameter b > 0 describes the decay in
the specific growth rate, and parameter c > 0 controls the difference between the initial
and final weight. The point of inflection is the time point where y = y∞/e, this gives
t = (ln c)/b. The Gompertz curve allows for asymmetry around the inflection point, and
reaches the point of inflexion before 50% of the maximum size is reached. It is frequently
used in biology to describe individual growth in length, the growth of populations, and
the growth of tumors (Savageau, 1980). Compared to logistic growth, the Gompertz curve
shows faster early growth, but a slower approach to the asymptote, with a longer linear
period around the inflection point. The initial values can be found via a transformation
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known as the log-log link function: ln(− ln(y/y∞)) = ln c − bt. Asymmetry can be in-
verted by applying an exponent to both parts: y = y∞(1 − e−ce−bt

), this is known as the
complementary Gompertz curve. Again, the initial values can be found by a transforma-
tion known as the C-log-log link function: ln(− ln(1 − y/y∞)) = ln c− bt.

The Gompertz growth model should not be confused with the Gompertz model of
mortality, µ(t) = aebt, introduced by Gompertz (1825) to describe increase of mortality,
µ, in adult humans with age. It is well known in mathematical demography.

The von Bertalanffy curve
Bertalanffy (1941) proposed the first model of animal growth based on metabolic pro-
cesses (20). It will be discussed in section 3.3.1. The solution of this model, and more
generally, asymptotic growth curves of the form

y = y∞ − (y∞ − y0)e−ct (15)

are referred to as the “von Bertalnaffy” growth curves and widely used to describe growth
in animals and humans. This is a case of asymptotic growth from initial size y0 to asymp-
totic size y∞ with a decreasing rate. The curve has no inflection point.

3.2.2 A curve for indeterminate growth

Curves with upper limits cannot be used to describe indeterminate growth. The exponen-
tial growth curve increasing monotonously is too rough to use. Tanaka (1982) introduced
a four-parameter curve for indeterminate growth that has an initial period of exponential
growth followed by an indefinite period of slow growth. It was the first model that rea-
sonably described indeterminate growth. The function, which he named ALOG, has the
form:

y =
1√
f

ln
(
2f(t− c) + 2

√
f2(t− c)2 + fa

)
+ d, (16)

where a > 0, c, d > 0, and f > 0 are parameters. The curve monotonously approaches
infinity as t increases. The growth rate is dy/dt = 1/

√
f(t− c)2 + a. It is positive over

all range and reaches a maximum at t = c (the inflection point), therefore the growth
curve has a sigmoid shape near c. The growth curve was first applied to data on spoon
shell Laternula anatina and Theora lubrica (Tanaka and Kikuchi, 1979, 1980).

3.2.3 Multiphasic growth curves

Growth trajectories of animals demonstrate several periods of rapid growth (growth bursts)
– human growth is an example of such a pattern (Figure 8). Such growth can be described
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best by a combination of separate growth curves for each period. Koops (1986) pro-
posed to use a multiphasic growth curve formed as a summation of several (n) logistic
growth functions. Human height growth curves of this type are known as “double lo-
gistic” (n = 2) and “triple logistic” (n = 3) growth curves (Bock and Thissen, 1976).
He noted that there is evidence for the existence of growth phases in the weight growth
curves of animals. The fit of the multiphasic growth curve, applied to pika, mice, and
rabbit weights, was shown to be superior to the monophasic model in terms of residual
variances and the absence of the autocorrelation of residuals.

3.2.4 Polynomial growth curves

The use of polynomials to represent growth curves has been accorded high importance by
many researchers (Goldstein, 1979; Wishart, 1938) since polynomials can approximate
any curve. In this sense, polynomial curves have certain advantages over other types of
curves. Polynomials are simpler to fit, and it is also easier to work out the statistical
distribution properties of the parameters when fitted to a sample of individuals than in
the case of curves such as the logistic one (Goldstein, 1979). Sandland and McGilchrist
(1979) described and fitted the third degree polynomial model using a stochastic approach
to the preadolescent human height data.

Yi and Li-feng (1998) introduced a model based on the Gompertz and polynomial
model:

y = ce
∑ n−1

i=0 αit
i

. (17)

Hasani et al. (2003) introduced a type of polynomial model of order n to fit growth
data during infancy:

y = α0 +
n∑

k=1

{(−1)k+1αk
tk

ck
}, (18)

They described how to select the order of the model and used the model of order 6 to fit
the data set on US children.

For a mathematical entrance to the subject of growth curves, refer to (France and
Thornley, 1984, ch. 5). Moreover, (Draper and Smith, 1981, ch. 10), (Mead et al., 1993,
ch. 12), and many other textbooks consider growth curves.

3.2.5 A description of human growth

Human growth (Figure 8) is determinate and characterized by two points of inflection –
around birth and around the point of sexual maturity. To fit growth data for certain age

368 http://www.demographic-research.org



Demographic Research: Volume 15, Article 12

intervals, usually early childhood, several curves have been proposed. The model of von
Bertalanffy (see 3.3.1) is widely used to describe growth in animals and humans. Jenss
and Bayley (1937) suggested one of the early curves of human growth in height during
childhood in the form of y = a + bt − ec−dt. The curve is a combination of the von
Bertalanffy’s growth curve and the linear growth curve. Count (1943) introduced a curve
for growth patterns in human height in the form of y = a + bt + c log(t). Jolicoeur
(1963) introduced a multivariate allometry model. Krüger (1965) proposed the so-called
Reziprok function. Tanaka (1976) suggested the double exponential curve. Bock and
Thissen (1976) introduced a triple logistic model to describe human growth in height to
adulthood. Thissen et al. (1976) proposed a two-component model for individual growth
and tested the model by comparing the patterns of growth in the stature of subjects from
the four major U.S. longitudinal growth studies. He described problems comparing data
from independent growth studies and offered solutions. Preece and Baines (1978) intro-
duced a new family of mathematical functions to fit longitudinal growth data. All mem-
bers derive from the differential equation dh/dt = s(t)(h1 − h), where h1 is the adult
size and s(t) is a function of time. The form of s(t) is given by one of many functions, all
solutions of differential equations, thus generating a family of different models. Shohoji
and Sasaki (1987) modified and extended Count’s model to y = a + bt + c log(1 + dt).
In 1989 Nelder introduced a modified logistic model and Jolicoeur and Pontier (1989)
introduced a generalization of the logistic model. An asymptotic lifetime growth model
of height was introduced by Kanefuji and Shohoji (1990) by modifying a fundamental
growth model considering a relative measure of maturity. This model, compared to the
previous model of Preece and Baines (1978) and the (Jolicoeur et al., 1991, 1992) (JPA1),
was the best considering the goodness of fit. Jolicoeur et al. (1992) proposed an improved
version of the JPA1 model which is a modified version of the JPA1 model and the triple
logistic model of Bock and Thissen (1976). The new model is called the JPA2 model.

The curves most commonly used today in studies on humans growth and develop-
ment are the Gompertz model, the triple logistic model of Bock and Thissen (1976), the
modified logistic model of McCullagh and Nelder (1989), a generalization of the logistic
model by Jolicoeur and Pontier (1989), the Preece and Baines (1978) model, the modified
version of the Shohoji and Sasaki (1987), the model of Kanefuji and Shohoji (1990), JPA1
(Jolicoeur et al., 1991, 1992), the model of Jolicoeur et al. (1988) for human growth in
childhood, the latter which is widely used and referenced to as JPPS, and especially JPA2
models.

Jolicoeur et al. (1991) tested the performance of several widely used growth models
applied to human growth and found the JPPS to be the most satisfactory asymptotic model
for growth in human stature. The further development of growth curves has led to the
introduction of multiphasic curves which fit different phases of a complex growth patterns
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Figure 8: Human growth. a) body mass from conception to the age of 20; b)
length of foetus from conception to birth / mean length of a baby (0 –
2 years) / stature of boys (2 – 20 years); birth occurs at age t = 0. Data
on foetus development for USA children from (MedlinePlus Medical
Encyclopedia, 2006; Moore and Persaud, 1998), post-birth data for
USA boys from (Kuczmarski et al., 2000). The curves are not
continuous due to merging of data from the sources and the use of
different methods of length measurement for different ages.
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by separate curves with different parameters (see 3.2.3), and finally to polynomial curves
(see 3.2.4).

Recent studies have found a positive relationship between stature and reproductive
success of men in contemporary populations (Pawlowski et al., 2000; Mueller and Mazur,
2001; Nettle, 2002a). This appears to be due to their greater ability to attract mates. The
study of Nettle (2002b) examine the life histories of a British women and found height
to be weakly but significantly related to reproductive success. The relationship was U-
shaped. This pattern was largely due to poor health among extremely tall and extremely
short women.

Humans demonstrate evident sexual dimorphism – in length measurements the differ-
ence amounts to about 10%. Hypotheses proposed to account for sexual dimorphism in
body size include sexual selection due to competition for mates in polygynous species;
different “habits of life” of sexes and incidental selection of genes for larger body size.
The extent of dimorphism varies between populations. This was attributed to greater
susceptibility of male growth to nutritional deficiencies; different ecological niches (for-
aging strategies) of sexes; correlation between production of a certain sex in a certain
society and parental investment in children of that sex; sexual selection, leading to bigger
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men in populations with polygynous marriage because of intra-male competition for fe-
males, and interaction between female size and probability of birth-related complications
(Rogers and Mukherjee, 1992; Guégan et al., 2000). Male and female weights are tightly
correlated and dimorphism is not a simple allometric function of size. Lindenfors and
Tullberg (1998) studied the relationship between primate mating system, size and size
dimorphism.

3.2.6 A description of cattle growth

The description of growth in cattle has a purpose similar to that in humans – detecting
early deviations in development, future growth, and the projection of the final size of
the animal. Several classical equations have often been used to describe growth patterns
and predict growth in cattle, and several new ones have been specifically developed: the
Gompertz equation (mass) and the logistic (mass), the Brody, the von Bertalanfy (length),
Feller, Weiss and Kavanau, Fitzhugh, Richards (variable), Laird, and Parks equations, and
the Tanaka equation (though it was created for indeterminate growth). Summarized de-
scriptions can be found in (Arango and Van Vleck, 2002; Parks, 1982). See also (Brown
et al., 1976; Fitzhugh Jr., 1976; Johnson et al., 1990). Parks (1982) covered various as-
pects of describing cattle growth and proposed his own synthetic growth model. Recently,
another model of cattle growth was proposed by (Hoch and Agabriel, 2004a,b).

3.3 Theories and mechanistic models of growth

3.3.1 A model of von Bertalanffy

The relation of the metabolic rate to body mass in different species has been discussed for
several decades. Pütter (1920) indicated that animal growth be considered the result of
a balance between synthesis and destruction, and between anabolism and catabolism of
the building materials of the body. The organism grows as long as building prevails over
breaking down; the organism reaches a steady state if and when both processes are equal.

Von Bertalanffy devoted large efforts to the study of individual growth (Bertalanffy,
1951). He noted that the metabolic rate in different species scales in different relation to
mass, M , and divided the animal species into three groups. In the first, the metabolic rate
scaled as M2/3 in accordance to the “surface rule” (Brody, 1945; Kleiber, 1947; Krebs,
1950); in the second it was proportional to M ; and the third group had intermediate levels.
Interestingly, different metabolic types corresponded to different growth types (Table 2).
“It appears that it is possible to establish a strict connection between growth types and
metabolic types with respect to dependence of the metabolic rate on the body size”, as
Bertalanffy (1951) noted.
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Table 2: Metabolic types and growth types. Growth is measured as increase in
linear size. Modified from (Bertalanffy, 1951).

Metabolic type Growth type Examples
I. Respiration surface-
proportional

(a) Linear growth curve: attaining
without inflexion a steady state.
(b) Weight growth curve: sigmoid,
attaining, with inflexion at c. 1/3
of final weight, a steady state

Lamellibranchs, fish, mammals
(disputed; true at least in rats),
certain invertebrates (isopod
crustaceans, mussels, Ascaris)

II. Respiration weight-
proportional

Linear and weight growth curves
exponential, no steady state at-
tained, but growth intercepted by
metamorphosis or seasonal cy-
cles

Insect larvae, Orthoptera, Heli-
cidae land snails, hemimetabolic
insects, Annelids (e.g. earth
worms)

III. Respiration inter-
mediate between sur-
face and weight pro-
portionality

(a) Linear growth curve: attaining
with inflexion a steady state.
(b) Weight growth curve: sigmoid,
similar to I(b)

Planorbidae (pond snails), Lim-
naea, Planarians

Bertalanffy (1941, 1942) proposed the first model of animal growth based on metabolic
processes and Pütter’s idea of balance between the processes of catabolism and anabolism
in the form

dM/dt = ηMm − κMn, (19)

where changes in body mass, M are given as difference between the processes of building
up and breaking down; η and κ are constants of anabolism and catabolism respectively,
and the exponents m and n indicate that the latter is proportional to some power of the
body mass. The solution of the differential equation (19) (for n = 1) is

W = {η/κ− [η/κ−W
(1−m)
0 ]e−(1−m)κt} 1

1−m , (20)

where W0 is the weight at time t = 0 (Bertalanffy, 1957). This growth curve is frequently
used to describe animal growth and referred to as the “von Bertalanffy” of “Brody–
Bertalanffy” growth curve because it resembles the inverted exponential growth function
used by Brody in his sigmoidal function. It is the first growth curve specially designed to
describe an individual. The curve has been proposed for animals, but is widely used for
humans, too.

Bertalanffy (1951) classified the growth patterns observed in animals according to
their metabolic features. He questioned the relation between metabolism and size (Berta-
lanffy and Pirozynski, 1951), and studied the intra- and interspecies allometry (Berta-
lanffy and Pirozynski, 1952) and the quantitative aspects of growth in relation to the
metabolism (Bertalanffy, 1957).
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3.3.2 The theory of growth of Turner et al.

There have been many contributors to kinetic theories of growth, such as Verhulst (1838),
Pearl and Reead (1920), Medawar (1940), Bertalanffy (1941), Lotka (1956), Bertalanffy
(1957), Richards (1959), Nelder (1961), Quetelet (1968) and Turner et al. (1969). The
early history of the subject was reviewed by Glass (1967).

Turner et al. (1976) presented a generalized theory of growth based on three postu-
lates. The first asserts that the rate of growth is jointly proportional to the monotonic
function of the generalized distance from the initial size to the present size (“reproductive
capability”), and to a monotonic function of the generalized distance from the present size
to the ultimate size (“the limiting factor”). The second postulate restricts the monotonic
function to power (or “mass action”) functions. The third postulate constrains the model
to a mathematically tractable set that nevertheless is sufficiently general to include the
Malthusian, Gompertz, logistic, and con Bertalanffy-Richards growth models.

On the basis of these postulates they obtained a generic growth function that has as
special limiting cases several well-known growth curves such as the Verhulst logistic
curve, the Gompertz curve, and the generalized growth curve of von Bertalanffy and
Richards. In addition, they obtained several new forms. The relation between their growth
curve and other well-known growth curves is shown in Figure 9. The most general case
is termed by Turner et al. (1976) the “generic growth model”. Other special cases are
termed “hyperGompertzian” and “hyperlogistic growth”.

3.3.3 Park’s theory of animal feeding and growth

Parks (1982) analyzed a large number of sets of experimental growth and feeding data
for cattle and domestic animals on various diets and under various feeding regimes, and
looked for deterministic elements in animal feeding and growth patterns that could form
the basis of a testable theory. He integrated these studies into a mathematical theory of
feeding and growth, allowing to predict animal growth under different feeding regimes.
The theory is related to the laws of energy balance. Parks’ theory is sufficiently robust
to be used in studies on the diet and nutrition of other growing animals. He illustrated
the applicability of his theory in a long-term experiment on two genotypes of chicken
and discussed the implications of the theory in genetic experimental work on bending
the growth curves of mice and chicken by selection techniques and in the economics of
intensive animal productions.

3.3.4 The theory of Dynamic Energy Budgets of Kooijman et al.

Dynamic Energy Budget (DEB) theory goes far beyond the description of growth and
quantifies the energetics of individuals as it changes during life history. The key processes
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Figure 9: The interrelation between the growth curve of Turner et al. (1976) and
other well-known growth curves (Reprinted from Math. Biosci. 29,
Turner, M., E. Bradley, K. Kirk, and K. Pruitt A theory of growth pp.
367-373, Copyright 1976, with permission from Elsevier).

are feeding, digestion, storage, maintenance, growth, development, reproduction, product
formation, respiration, and aging. The theory amounts to a set of simple mechanistically
inspired rules for the uptake and use of substrates (food, nutrients, light) by individuals.
It has far-reaching implications for population dynamics and metabolic organization. The
theory explains the dynamics of only one variable, size (i.e. growth).

The theory was developed in (Kooijman, 1986b,a; Lika and Nisbet, 2000; Nisbet et al.,
2000; Kooijman, 2001) and published in complete form in (Kooijman, 1993, 2000). It
was tested against data (Zonneveld and Kooijman, 1989; Noonburg et al., 1998), applied
to structured populations (Kooijman et al., 1999), to the growth of tumors (van Leeuwen
et al., 2002, 2003), to problems of allocation to growth and reproduction (Lika and Kooi-
jman, 2003); many other examples of application are given in the book. DEB theory
predicts that an isomorph follows the von Bertalanffy growth curve at abundant food and
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that the von Bertalanffy growth rate is (approximately) inversely proportional to the maxi-
mum volumetric length. This is shown for data on 261 widely different species. The DEB
theory results in some well known empirical models for special cases and, therefore, has
considerable empirical support.

3.3.5 The general model of ontogenetic growth of West et al.

West et al. (2001) proposed a general quantitative model based on fundamental principles
for the allocation of metabolic energy between the maintenance of existing tissue and the
production of new biomass. They derive the values of the parameters governing growth
from basic cellular properties and construct a single parameterless universal curve that
describes the growth of many diverse species (Figure 10). The model provides the basis
for deriving allometric relationships for growth rates and the timing of life history events
(Charnov, 1993; Peters, 1983; Calder III, 1984).

3.4 Selecting the growth model

Many growth curves have been proposed to describe growth in humans and animals.
Some curves were proposed specifically to fit human data and cattle data. Most curves
and models of growth describe linear growth (in length or height), other better fit the
dynamics of mass.

Growth functions have certain mathematical limitations that need to be considered
when choosing an appropriate model. For example, if a function does not have a point of
inflection, the result of fitting will yield none even if the data show it.

Some functions were constructed to describe a specific stage of growth. For example,
many functions proposed for a specific interval of rapid growth (infancy) in humans are
unlimited and cannot be applied to the whole life period of the determinate grower.

A specific growth curve is sometimes chosen by simply looking at the plots of the
data. Sometimes it is preferable to select or construct a function that has a biological in-
terpretation and meaningful parameters. The functional relationship in the growth models
is often derived from knowledge on the rates of growth dy/dt typically as a solution of a
differential equation.

The choice of the most suitable model is a tradeoff between flexibility and complexity.
For example, the logistic model and the Gompertz curve are simple and perform well in
practice even on short series. The Richards model is complex, has many parameters and
can fit complex patterns but it is difficult to fit and needs long time-series of good data. In
some experiments it was reported to not converge or to produce biologically meaningless
parameter estimates.
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Figure 10: Universal growth curve. A plot of the dimensionless mass ratio,
r = 1 −R ≡ (m/M)1/4, versus the dimensionless time variable,
t = (at/4M1/4) − ln[1 − (m0/M)1/4], for a wide variety of
determinate and indeterminate species. When plotted in this way, the
model of West et al. (2001) predicts that growth curves for all
organisms fall on the same universal parameterless curve 1 − e−t

(shown as a solid line). The model identifies r as the proportion of
total lifetime metabolic power used for maintenance and other
activities (Reproduced by permission from Macmillan Publishers
Ltd: Nature West, G. B., J. H. Brown, and B. J. Enquist (2001). A
general model for ontogenetic growth [Letters to Nature]. Nature 413,
628-631, copyright 2001).
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The process of constructing growth curves is an ongoing process driven by the aim
to create a parametric function (producing a family of growth curves) with a minimum
number of parameters and the best fit to the growth data of a given organism and growth
period. When several models are being compared the quality of fit is considered in the
sense of some criteria, such as the Akaike Information Criteria (AIC) (Akaike, 1972)
which allows to account for a different number of fitted parameters.

Data for determinate growth in length (or mass1/3) often is well fitted by the von
Bertalanffy growth curve (Kooijman, 2000). The most frequently used growth curves
also include the Gompertz and sigmoidal logistic curves (Tanaka, 1982). The exponential
growth curve (Brody, 1945), the Reziprok function (Krüger, 1965), and the double ex-
ponential curve (Tanaka, 1976) also have been used sometimes as growth curve. Except
for the exponential curve, these curves increase monotonically with age and converge to
a finite value.

Zullinger et al. (1984) tested the fit of the von Bertalanffy, Gompertz, and logistic
sigmoidal growth curves to data on the maximum of 331 mammal species in 19 orders;
most data was obtained from longitudinal studies on captive animals. The best fit on a
sample of 49 species was provided by the von Bertalanffy and Gompertz equations. The
authors discuss the problems of fitting mammalian growth data and list the parameters of
the Gompertz growth function for data from 331 species. They also provide references to
the original data. Heppell et al. (2000) gives a list of available life tables for 50 mammal
populations. More information on growth in mammals can be obtained from (Vaughan
et al., 2000).

4 A comparison of growth between species

4.1 Allometry and scaling relationships

The relationship of body size to the anatomical, physiological, behavioral, and ecological
characteristics has since long been a focus of interest in zoology. As one considers animal
species of different size, regular and predictable changes are seen in the relative propor-
tions of the organs and the relative rates of physiological processes such as the metabolism
and growth (Damuth, 2001). These scaling relationships are called allometries and have
many ecological and adaptive implications (Kleiber, 1975; Schmidt-Nielsen, 1984; Pe-
ters, 1983). The following allometric expressing the scaling of some physiological or
morphological parameter, y in accordance with changes in body size, M is well known:

y = aM b. (21)

The constants a and b are the same for “metabolically similar animals”.
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The search for similarities in the metabolic organization and growth of animals re-
ceived much attention, one of the directions is looking for different invariants. Brown
and West (2000) discussed diverse questions and aspects of scaling in animals and plants.
Charnov et al. (2001) reported that a prominent feature of comparative life histories in fish
and other indeterminate growers is the approximate invariance across species of dimen-
sionless numbers made up from reproductive and timing variables. The two best known
are age at maturity divided by average adult lifespan, and the proportion of body mass
given to reproduction per year multiplied by the average adult lifespan.

Invariants have been empirically observed in animals also on the population level:
species differing in body mass, M , by many orders of magnitude tend to have almost
equal rates of energy use per unit area by the population, because of an inverse allometric
scaling relationship between energy use by the individual, or its metabolic rate, B, and the
maximal population density, Nmax. Because B ∝ M3/4 and Nmax ∝ M−3/4, energy
use is proportional to BNmax ∝ M3/4M−3/4 ∝ M0. This phenomenon was defined by
Damuth (1981) as “energy equivalence”. Enquist et al. (1998) showed that this also holds
for plants, namely that the allometric scaling of both B and Nmax appears to be the same
as in animals.

Growth rates, or rates of production of new biomass, are of fundamental importance
in linking physiological processes to adaptively important features, such as reproductive
rates and other life history variables. Among animal species, the rates of biomass produc-
tion and growth are proportional to the metabolic rate, which scales as the 3/4 power of
body mass (Kleiber, 1975; Peters, 1983).

The relationship between the mammalian basal metabolic rate, B, and body mass, M ,
has been the subject of regular investigation for over a century. Typically, the relationship
is expressed as an allometric equation of the form (21). The geometric considerations
relating volume to surface sizes predict b = 2/3. Some researchers show that in large-
scale interspecific comparison, the basal metabolic rate and body size are related by an
allometric equation with the value of exponent b approximating 3/4 (Hemmingsen, 1960;
Kleiber, 1975). The power 3/4 in the scaling relationship is unusual from the point of
view of geometrical considerations, though it proved to be valid for animals and plants in
a range of studies (Schmidt-Nielsen, 1984; McMahon and Bonner, 1983; Brown, 1995;
West et al., 1997; Damuth, 2001). West et al. (1997) argued that allometric scaling re-
lations, including the 3/4 power law for metabolic rates, are characteristic of all organ-
isms and derive them from a general model of transport of essential materials through
space-filling fractal networks of branching tubes. Banavar et al. (1999) proposed a simi-
lar explanation based on branching transportation networks within the organism. In their
subsequent work West et al. (1999) proposed to consider four-dimensional biology and
suggested that the quarter-power scaling laws originate from hierarchical branching nu-
trient supply networks that terminate in size-invariant units, such as capillaries, leaves,
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mitochondria, and oxidase molecules. They hypothesize that natural selection tends to
maximize both metabolic capacity, by maximizing the scaling of exchange surface ar-
eas, and internal efficiency, by minimizing the scaling of transport distances and times.
These design principles are independent of detailed dynamics and explicit models and
should apply to virtually all organisms. Other researchers doubt the applicability of the
“3/4 rule” of energy–size relationship. Dodds and Rothman (2001) considered value 2/3
obtained from simple dimensional relationships to be a null hypothesis testable by empir-
ical studies. They re-analyzed several data sets for mammals and birds and found little
evidence for rejecting b = 2/3 in favor of b = 3/4. The authors argued that present
theories for b = 3/4 require assumptions that render them unconvincing for rejecting the
null hypothesis that b = 2/3. The value of the scaling exponent, b, is a point of active
debate in the literature, with sound arguments for and against geometric (b = 2/3) and
quarter-power (b = 3/4) scaling.

4.2 Animal-plant unification

Plants exhibit degrees of modular construction, indeterminate growth, and form varieties
that are greater than those shown by animals. However, until recently, the scaling of
basic processes such as the metabolism and growth had remained undocumented for a
representative sample of plant species. A book by Niklas (1994) on plant allometry is an
early attempt to provide a unified treatment of plant form and function from an allomet-
ric perspective. Niklas (1994); Niklas and Enquist (2001) discussed allometry in plants
and presented empirical allometric scaling relationships for rates of annual plant biomass
production (“growth”), different measures of body size (dry weight and length) and pho-
tosynthetic biomass (or pigment concentration) per plant (or cell) in species ranging from
unicellular algae to large trees. Annualized rates of growth G scale as the 3/4 power of
body mass M over 20 orders of magnitude of M (i.e. G ∝ M3/4); plant body length
L scales, on average, as the 1/4 power of M over 22 orders of magnitude of M ; and
photosynthetic biomass Mp scales as the 3/4 power of nonphotosynthetic biomass Mn.
These scaling relationships are indifferent to phylogenetic affiliation and habitat and have
far-reaching ecological and evolutionary implications. Rates of resource use in individ-
ual plants scale as approximately the 3/4 power of body mass (Enquist et al., 1998).
This is similar to the scaling of the metabolic rates of animals (Schmidt-Nielsen, 1984;
McMahon and Bonner, 1983; Brown, 1995) and is predicted from a model of resource
use in fractal-like branching structures (West et al., 1997). The mechanistic model of
relationships between density and mass in resource-limited plants (Enquist et al., 1998)
predicts that average plant size scales as the −4/3 power of maximum population den-
sity, in agreement with empirical evidence and comparable relationships in animals, but
significantly less than the −3/2 power predicted by geometric models.
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These new analyses reveal that growth scales among plants in the same way as it
does among animals, and support the growing realization that the same scaling rules may
apply to both animals and plants for similar reasons (Damuth, 2001). Many attempts
have been made to consider scaling rules in plants and animals and to create a unifying
approach, explaining the similarities between the structural and metabolic organization.
Damuth (2001, 1998) reviewed advances in the comparative growth allometry of plants
and animals and research towards unifying common laws of scaling and discussed general
models that can be applied (with different assumptions) to both animals and plants noting
among them the work of Banavar et al. (1999) on transportation networks and the theory
of dynamic energy budgets (Kooijman, 2000). He reviewed the study of Niklas and En-
quist (2001) on plant allometry and compared the results obtained on plants (trees) with
those for “warm-blooded” (endothermic) and ”cold-blooded” (ectothermic) metabolic an-
imals. He compared the rates of growth of animals and plants over the size ranges that
they have in common (Figure 11). The realized somatic growth rates of both plants and
animals of comparable body mass are remarkably similar. This suggests that the cells of
both plants and animals are similarly limited in the rates by which they can effectuate
growth, just as the abilities of different-sized plants and animals to deliver energy to their
cells are similarly constrained by scaling relationships. Banavar et al. (2002) proposed a
set of scaling relations for age, mass, and other physiological traits that allow to display
ontogenetic changes in different organisms (showing determinate growth) on a universal
growth curve with dimensionless time and a mass ratio.

West et al. (2002) described the allometric scaling of the metabolic rate on a large
scale, from molecules and mitochondria to cells and mammals. They performed a new
analysis of the allometry of mammalian basal metabolic rate that accounts for variation
associated with body temperature, digestive state, and phylogeny using data encompass-
ing five orders of magnitude variation in M and featuring 619 species from 19 orders.
The authors found no support for a metabolic scaling exponent of 3/4. Their results
demonstrate that B ∝ M2/3 (White and Seymour, 2003).

4.3 Growth and conservation laws

A valid theory of ontogenetic growth obviously should be consistent with the basic laws
of conservation of mass and energy. Lika and Kooijman (2003) discussed the aspects of
energy allocation in indeterminate and determinate growth strategies. Makarieva et al.
(2004) analyzed the assumptions underlying ontogenetic growth models of West et al.
(2001) and Gillooly et al. (2002) and argued that the basic relations in which these mod-
els are grounded contradict the law of energy conservation. They demonstrated the failure
of these models to predict and explain several important lines of empirical evidence, in-
cluding (a) the organismal energy budget during embryonic development; (b) the human
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Figure 11: Comparison of growth rates of trees and vertebrates, plotted on a
common scale. Polygons represent the regions occupied by the data
points. The black unfilled polygon encloses tree data from (Niklas and
Enquist, 2001). The endothermic vertebrates – mammals (large
polygon) and birds (small polygon) – are in red, ectothermic
vertebrates in yellow. Ectotherms and endotherms overlap in a
narrow region. The regression line is that presented in (Niklas and
Enquist, 2001). Vertebrate data recalculated from (Ricklefs, 1968)
and (Case, 1978). (Reproduced from (Damuth, 2001)).

growth curve; (c) patterns of metabolic rate change during transition from embryonic to
post-embryonic stages; and (d) differences between the parameters of embryonic growth
in different taxa. They also show how a theoretical approach based on well-established
ecological regularities explains observations where the formal models fail. Within a
broader context, the authors discussed the major principles of ontogenetic growth mod-
eling studies in ecology, emphasizing the necessity of ecological theory to be based on
assumptions that are testable and formulated in terms of variables and parameters that are
measurable.

5 What shapes the trajectories of growth?

Size is an important life history variable closely relating reproduction to survival. Size
impacts survival via influencing physical strength, the ability to evade predation, to with-
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stand environmental hazards and to obtain food. Size influences reproduction via success
in mating, fertility, and the survival of the offspring due to size-specific differences in
feeding and care. Mate competition is an important reason to grow for fish, elephants,
deer, kangaroos, water mammals, and many other species often favoring indeterminate
growth. In many species (e.g. fish), size affects reproduction and survival and hence,
individual fitness more than age (e.g. see the discussion on the dependence of survival,
flowering, and fertility on size in perennial plants in (Metcalf et al., 2003))

A larger size usually means better survival and reproduction, but growth has its costs.
The maintenance of the body requires energy, which is increasing with the body mass,
growth requires additional energy and resources. Energy and resource requirements of
growth and maintenance compete with those of survival (mobility, immune defence) and
reproduction. For this reason, growth is tightly linked with strategies of resource alloca-
tion.

Growth strategies have been molded by resource allocation and other factors during
evolution, a process which is assumed to increase fitness. It is important to understand
what fitness is. Several theoretical measures of fitness have been developed and used in
literature, such as expected lifetime fertility, R0, the intrinsic rate of increase, r, invasion
fitness (a population dynamics version of Maynard Smith and Price (1973) evolutionary
stable strategy (ESS) concept (Metz et al., 1992; Rand et al., 1994; Ferrière and Gatto,
1995)). There is no generally agreed-on measure of fitness, and the application of differ-
ent measures often leads to controversial results. It has long been puzzling to ecologists
and geneticists which of these fitness measures, if any, should be regarded as the cor-
rect one (Heino and Kaitala, 1999; Kozłowski, 1993; Pásztor et al., 1996). Mylius and
Diekmann (1995) and Metz et al. (1996) clarified the subject and showed that the fitness
maximization approach may coincide with the invasion fitness concept only if population
size is stable and if environmental feedback is one-dimensional, i.e. there is only one
density-dependent factor influencing the population. Selecting a certain fitness measure
means assuming implicitly a certain way in which density dependence affects the indi-
viduals in the population under study – a fact that is often overlooked. Such implicit
assumptions may strongly constrain the result of the studies and render it incompatible
with the original problem.

Recent decades brought an exploding number of theoretical and experimental works in
which optimal allocation strategies and their outcomes have been studied (see (Kozłowski,
1992) for a review). Usually, organisms with determinate growth are considered, and
works such as these are abundant. Works on allocation considering indeterminate growth,
however, are few. Charnov et al. (2001) addresses the conditions under which the evolu-
tion of life histories can lead to the development of indeterminate growth patterns in fish
and lizards. Heino and Kaitala (1999) reviewed resource allocation between growth and
reproduction in animals with indeterminate growth.
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The first models of allocation between growth and reproduction focused on annual
plants. In these models, the determinate growth patterns always turned out to be evolu-
tionary optimal. Heino and Kaitala (1999) reviewed the problems of obtaining indetermi-
nate growth patterns as solutions of the models of optimum allocation and discussed the
effects of the environment on the development of resource allocation schemes. Among
the factors that could favor the development of indeterminate growth patterns, they noted:

1. Ecological factors (varying length of the growing season in annuals that may select
for graded change from the allocation to growth to allocations to reproduction (Cohen,
1971, 1976), seasonality as such in perennial species). In perennial plant species, an
optimal allocation pattern resulting in indeterminate growth may include a number of
seasons during which early season is devoted only to growth, and late season only to
reproduction (Kozłowski and Uchmañski, 1987). If reproduction occurs before growth,
this favors determinate growth. The loss of somatic tissues in plants between the seasons
may influence the possibility of indeterminate growth patterns (Pugliese and Kozłowski,
1990).

2. Physiological factors (trade-offs and constraints limiting reproductive effort), or

3. A combination of both of these factors (size-dependent mortality and production
rates both increasing or decreasing, diminishing marginal returns from reproductive in-
vestment). For instance, indeterminate growth was found to be optimal when both pro-
duction and mortality rates increased with body size in simulations of a Daphnia (Taylor
and Gabriel, 1992). Perrin et al. (1993) (see also (Perrin and Sibly, 1993)) proved the
result analytically; an adult growth rate can also occur if both production and mortality
decrease with size. Both of these situations may apply in nature.

Brown et al. (1993) developed a general model for the effect of body size on fitness
defining fitness as reproductive power, the rate of conversion of energy into offspring and
thus proposed an energetic definition of fitness that may help to unify models of ecology
and evolutionary biology providing a common “currency”. This energy definition of fit-
ness was discussed and criticized by (Kozłowski, 1996). Heino and Kaitala (1999) looked
at indeterminate growth as a special kind of bet-hedging strategy.

Physiological limitations
Growth is constrained by physiological limitations such as physical strength which is lim-
iting mass in large animals such as elephants (Laws, 1966), height in trees (Koch et al.,
2004), even the growth of small plants, such as tomatoes and beans, and by structural
constraints such as limiting growth of reproductive organs. The water supply is a factor
limiting leaf structure and density, photosynthesis capability and carbon dioxide concen-
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tration in very high trees, such as redwoods. Koch et al. (2004) showed that the tallest a
tree could grow would be about 130 m according to these limitations.

Growth can also be risky in itself. In certain animals (such as crabs), having a rigid
outer shell growth is related to moulting – the periodical shedding of an old shell and the
growing of a larger one. The process of shedding has several precisely timed steps, failure
leads to the death of the animal. Moreover, the possibility of predation increases during
the moulting process.

Ecological limitations
Annual organisms grow, mature, and reproduce in one season. They cannot survive the
seasons unfavorable to them as adults and reproduce again, and this favors determinate
growth as an optimal pattern. Perennial animals and plants may grow after reaching sex-
ual maturity, and have patterns synchronized to seasonal changes (e.g. have a period of
growth at the beginning of the season and reproduction at the end). Parts of plants may
have different growth patterns. The trunk (main body) grows indeterminately, but leaves
and reproductive parts, such as flowers and fruit, have a determinate final size. Leaves
grow in the beginning of the season, they provide photosynthesis and gas exchange. They
wear and tear quickly, and have no chance of surviving the unfavorable season. Keep-
ing them may be risky for the main body, so in the end of the season the nutrients are
removed from the leaves and they are shed. The cycle is repeated the next season. Opti-
mal strategies of growth and reproduction in variable environments were studied in plants
by Amir and Cohen (1990). de Lara (2003) presented a general mathematical model of
resource allocation and proved that determinate growth is the optimal strategy in a deter-
ministic environment, whereas a stochastic environment gives rise to optimal strategies
with indeterminate growth.

Models that define fitness in terms of the per capita rate of increase of phenotypes
are used to analyze patterns of individual growth. Sibly et al. (1985) showed that sig-
moid growth curves are an optimal strategy (i.e. maximize fitness) under the following
assumptions: mortality decreases with body size; mortality is a convex function of a spe-
cific growth rate, viewed from above; there is a constraint on the growth rate, which is
attained in the first phase of growth. If the constraint is not attained, then the size should
increase at a progressively reducing rate. These predictions are biologically plausible.
Catch-up growth, for retarded individuals, is generally not an optimal strategy though in
special cases (e.g. seasonal breeding) it might be.

Growth may be advantageous after first breeding if the birth rate is a convex function
of G (the fraction of production devoted to growth) viewed from above, or if the mortality
rate is a convex function of G, viewed from above. If these assumptions both are false,
growth should cease at the age of first reproduction. These predictions may be used to
evaluate the incidence of indeterminate versus determinate growth in the animal kingdom.
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Katsukawa et al. (2002) noted that many mammals and birds have determinate growth,
whereas the organisms in a number of other taxa have indeterminate growth. The authors
discuss the conditions under which each of the following strategies are optimal: semelpar-
ity, iteroparity with determinate growth, and iteroparity with indeterminate growth. They
propose a stage-structured model to describe optimal energy allocation among growth,
reproduction, and survival. The model demonstrates that iteroparity with indeterminate
growth is selected for when a nonlinear relationship exists between weight and energy
production; this strategy is also often selected for in stochastic environments, even with
a linear relationship between weight and energy production. The optimal strategy in the
stochastic environments is to maximize the long-term population growth rate, which does
not correspond with the maximization of total fertility. Optimal life history is determined
by a balance between spreading a risk and increasing the number of offspring. The model
suggests that the optimal life history strategy depends on the magnitude of environmental
fluctuations, the advantage of investing in growth, the cost of survival, and the nonlinear-
ity between weight and energy production.

Von Bertalanffy’s equation (see 3.3.1) is commonly used to model indeterminate
growth (Czarnołeśki and Kozłowski, 1998). Von Bertalanffy claimed that this growth
pattern results from growth potentially decreasing with age. An alternative approach pro-
vided by life history theory predicts that indeterminate growth is optimal for organisms
in a seasonal environment and results not from a decreasing growth potential but from
allocating increasingly less energy with age to growth and more to reproduction. Von
Bertalanffy’s curves are the result of evolutionary optimization. They should not be used
in optimization models as an assumption but rather as a tool to describe the indeterminate
growth pattern phenomenologically.

Heino and Kaitala (1999) reviewed theoretical developments explaining the evolu-
tion of age-schedules of reproduction in animals with indeterminate growth. They also
compare studies on animals and plants with indeterminate growth when they can be in-
terpreted in common terms. The authors discussed different measures used to determine
the fittest life histories, indeterminate growth as a problem of resource allocation, and the
effects of the environment on the development of resource allocation schemes.

Despite of these efforts, the theories on resource allocation between growth and re-
production remain almost completely untested (Heino and Kaitala, 1999). An anecdotal,
but provocative idea on the evolution of a specific growth strategy may be the following.
Animals generally grow determinately because they usually can move through environ-
ments. Plants frequently show indeterminate growth – they cannot move and hence they
grow through the environment; indeterminate growth allows plants to increase exposure
to air, sunlight, and soil throughout their life.

http://www.demographic-research.org 385



Karkach: Trajectories and models of individual growth

6 Problems and prospects

The commonly used definitions of determinate and indeterminate growth patterns (given
in the introduction) may lead to confusion. Differences between growth strategies may be
understood in terms of size – whether or not an animal has a predefined maximum size,
or in terms of age or stage – whether an age, or stage at which growth stops, such as the
age of maturity, exists or not.

Indeterminate growth does not mean that an organism can reach any large size if it
survives long enough. Nothing can grow without limit because of structural and resource
limitations and all organisms, if they survive long enough, will reach their maximum size
determined by physiological constraints. In the wild, they may die well before reaching
the asymptotic size and growth may seem unlimited. The main difference between deter-
minate and indeterminate growth is that the first stops at some point in life, usually at, or
soon after, reaching sexual maturity, and the second does not stop as long as the organism
survives.

The existing definition of determinate and indeterminate growth patterns is based on
age: growth is determinate if the organism reaches its maximum size at some age (usually
around sexual maturity) and indeterminate if the growth continues at any age. Life his-
tories have been shaped by an evolutionary process that increases the fitness of species.
Fitness is dependent on life-history variables, such as the age of sexual maturity, and
age-specific fertility and mortality; these variables are not less important than age. The
definition of indeterminate and determinate growth patterns should be revised, because of
problems with interpreting experimental data. The traditional definition of determinate
and indeterminate growth patterns may not be sufficient for studies on life-history evolu-
tion and alternative definitions should be considered. It may be useful to consider other
alternative definitions of growth patterns based on variables other than age, such as:

Definition based on survival: growth is determinate if an organism reaches maxi-
mum (asymptotic) size when many individuals of the population are still alive, and inde-
terminate, when very few individuals are alive. This kind of growth may continue long
past the age of sexual maturity.

Definition based on reproductive value: growth is determinate if an organism reaches
maximum (asymptotic) size when most reproduction is yet to occur, and indeterminate
when most reproduction has already occurred.

Detailed studies of growth strategies are desirable to assess the fundamental biology
of growth, resource allocation, aging, and longevity in higher organisms. This may help
to verify the “universality” of determinate growth in mammals or whether the determinate
growth stops at, or soon after, the age of maturity in all species.
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Czarnołeśki, M. and Kozłowski, J. (1998). Do bertalanffy’s growth curves result from
optimal resource allocation? Ecology Letters, 1 issue 1:5.

Damuth, J. (1981). Population density and body size in mammals. Nature, 290:699–700.

Damuth, J. (2001). Scaling of growth: Plants and animals are not so different. PNAS,
98(5):2113–2114.

Damuth, J. D. (1998). Common rules for animals and plants. Nature, 395:115–116.

Dawson, T. (1994). Kangaroos: The Biology of the Large Kangaroos. New South Wales
Univ Pr Ltd.

de Lara, M. (2003). Mummy evergreen, why do you keep on growing? Stochastic dy-
namic programming in theoretical ecology. In AICME II (2nd international confer-
ence on mathematical ecology). Control and optimization in ecological problems.
Abstracts.

Dodds, P. S. and Rothman, D.H.and Weitz, J. S. (2001). Re-examination of the “3/4-law”
of metabolism. J. theor. Biol., 209:9–27.

Dorresteijn, A. W. and Westheide, W., editors (November 1, 1999). Reproductive Strate-
gies and Developmental Patterns in Annelids, volume 142 of Developments in Hy-
drobiology. Springer, 1 edition.

Draper, N. and Smith, H. (1981). Applied Regression Analysis. John Wiley & Sons, New
York, 2nd edition. edition.

Elephant Encyclopedia (2004). Elephant Encyclopedia. http://www.upali.ch (last acessed
Jan 20, 2006).

Enquist, B., Brown, J., and West, G. (1998). Allometric scaling of plant energetics and
population density [Letter]. Nature, 395:163–165.

Factor, J., editor (1995). The Biology of the Lobster Homarus americanus. Academic
Press, NY.

Ferrière, R. and Gatto, M. (1995). Lyapunov exponents and the mathematics of invasion
in oscillatory and chaotic populations. Theor. Popul. Biol., 48:126–171.

390 http://www.demographic-research.org



Demographic Research: Volume 15, Article 12

Fitzhugh Jr., H. (1976). Analysis of growth curves and strategies for altering their shape.
J. Anim. Sci., 42:1036–1051.

France, J. and Thornley, J. (1984). Mathematical Models in Agriculture. Butterworths,
London.

Frith, H. and Calaby, J. (1969). Kangaroos. Cheshire Publishing, Canberra.

Gage, J. D. and Tyler, P. A. (1985). Growth and recruitment of the deep-sea urchin
Echinus affinis. Marine Biology (Berlin), 90:41–53.

Gillooly, J. F., Charnov, E. L., West, G. B., Savage, V. M., and Brown, J. H. (2002).
Effects of size and temperature on developmental time. Nature, 417:70–73.

Glass, D. V. (1967). The third Royal Society Nuffield lecture: Demographic prediction.
Proc. R. Soc., B168:119.

Goldstein, H. (1979). The design and analysis of longitudinal studies: Their role in the
measurements of change. Academic press, London.

Gompertz, B. (1825). On the nature of the function expressive of the law of human mortal-
ity, and on a new mode of determining the value of life contingencies. Philosophical
Transactions of the Royal Society of London, 115:513–583.

Grant, J., Steingrímsson, S., Keeley, E., and Cunjak, R. (1998). Implications of territory
size for the measurement and prediction of salmonid abundance in streams. Can. J.
Fish. Aquat. Sci., 55 (Suppl. 1):181–190.

Gross, M. (1984). Sunfish, salmon, and the evolution of alternative reproductive strategies
and tactics in fishes. In Potts, G. and Wootton, R., editors, Fish Reproduction:
Strategies and Tactics, pages 55–75. London: Academic Press.

Guégan, J.-F., Teriokhin, A., and Thomas, F. (2000). Human fertility variation, size-
related obstetrical performance and the evolution of sexual stature dimorphism.
Proc. R. Soc. Lond. B, 267:2529–2535.

Hanson, J. M., MacKay, W. C., and Prepas., E. E. (1989). Effect of size-selective preda-
tion by muskrats (ondatra zebithicus) on a population of unionid clams (Anodonta
grandis simpsonianus). Journal of Animal Ecology, 58:5–28.

Hasani, H., Zokaei, M., and Amidi, A. (2003). A new approach to
polynomial regression and its application to physical growth of human
height (Hawaii International Conference on Statistics and Related Fields).
http://www.hicstatistics.org/2003StatsProceedings/Hosein%20Hasani.pdf (last ac-
cessed Jan 20, 2006).

http://www.demographic-research.org 391



Karkach: Trajectories and models of individual growth

Haynes, G. (1991). Mammoths, mastodons, and elephants. Cambridge: Cambridge Uni-
versity Press.

Heino, M. and Kaitala, V. (1999). Evolution of resource allocation between growth and
reproduction in animals with indeterminate growth. Journal of Evolutionary Biol-
ogy, 12 Issue 3:423–429.

Hemmingsen, A. M. (1960). Energy metabolism as related to body size and respiratory
surfaces, and its evolution. Technical report, Reports of the Steno Memorial Hospi-
tal and the Nordisk Insulin laboratorium.

Heppell, S. S., Caswell, H., and Crowder, L. B. (2000). Life histories and elasticity
patterns: perturbation analysis for species with minimal demographic data. Ecology,
81:654–665.

Heymsfield, S. B., Lohman, T. G., Wang, Z., and Going, S. B., editors (2005). Human
Body Composition. Human Kinetics Publishers, 2nd edition.

Hoch, T. and Agabriel, J. (2004a). A mechanistic dynamic model to estimate beef cattle
growth and body composition: 1. Model description. Agricultural Systems, 81:1–
15.

Hoch, T. and Agabriel, J. (2004b). A mechanistic dynamic model to estimate beef cattle
growth and body composition: 2. Model evaluation. Agricultural Systems, 81:17–
35.

Huh, H. T. (1975). Bioenergetics of food conversion and growth of yellow perch (Perca
flavescens) and walleye (Stizostedion vitreum vitreum) using formulated diets. Doc-
toral dissertation. PhD thesis, University of Wisconsin, Madison.

Huyghe, C. (1997). White lupin (Lupinus albus L.). Field Crops Research, 53(Issues
1-3):147–160.

Jenss, R. and Bayley, B. (1937). A mathematical method for studying the growth of child.
Human Biology, 9:556–563.

Johnson, Z., Brown, C., and Brown Jr., A. (1990). Evaluation of growth patterns of beef
cows. Arkansas Agric. Exp. Sta. Bull., (923):41.

Jokela, J. (1997). Optimal allocation tactics and indeterminate growth: Life-history evo-
lution of long-lived bivalves. In B. Streit, T. S. and Lively, C., editors, Evolu-
tionary ecology of freshwater animals. Concepts and case studies, pages 179–196.
Birkhäuser.

Jolicoeur, P. (1963). The multivariate generalization of the allometry equation. Biomet-
rics, 19:497–499.

392 http://www.demographic-research.org



Demographic Research: Volume 15, Article 12

Jolicoeur, P., Abidi, H., and Pontier, J. (1991). Human stature: which growth model?
Growth Dev Aging., 55(2):129–132.

Jolicoeur, P. and Pontier, J. (1989). Population growth and decline: a four-parameter
generalization of the logistic curve. J Theor Biol, 141(4):563.

Jolicoeur, P., Pontier, J., and Abidi, H. (1992). Asymptomatic models for the longitudinal
growth of human stature. Am. J. Hum. Biol., 4:461–468.

Jolicoeur, P., Pontier, J., Pernin, M.-O., and Sempe, M. (1988). A lifetime asymptotic
growth curve for human height. Biometrics, 44(4):995–1003.

Kanefuji, K. and Shohoji, T. (1990). On a growth model of human height. Growth Dev
Aging, 54(4):155–165.

Katsukawa, Y., Katsukawa, T., and Matsuda, H. (2002). Indeterminate growth is selected
by a trade-off between high fecundity and risk avoidance in stochastic environments.
Population Ecology, 44, Number 3:265–272.

Kishi, S., Uchiyama, J., Baughman, A. M., Goto, T., Lin, M. C., and Tsai, S. B. (2003).
The zebrafish as a vertebrate model of functional aging and very gradual senescence.
Experimental Gerontology, 38(Issue 7):777–786.

Kleiber, M. (1947). Body size and metabolic rate. Physiol. Rev., 27:511.

Kleiber, M. (1975). The Fire of Life. Krieger, New York, 2nd edition.

Koch, G. W., Sillett, S. C., and Jennings, G. M. (2004). The limits to tree height. Nature,
428:851–854.

Kooijman, S. A. L. M. (1986a). Energy budgets can explain body size relations. Journal
of Theoretical Biology, 121:269–282.

Kooijman, S. A. L. M. (1986b). Population dynamics on the basis of budgets. In Metz,
J. A. J. and Diekmann, O., editors, The Dynamics of Physiologically Structured
Populations, pages 266–297. Springer Lecture notes on Biomathematics, Springer-
Verlag, Berlin-Heidelberg.

Kooijman, S. A. L. M. (1993). Dynamic energy budgets in biological systems. Theory
and applications in ecotoxicology. Cambridge University Press.

Kooijman, S. A. L. M. (2000). Dynamic Energy and Mass Budgets in Biological Systems.
Cambridge University Press.

Kooijman, S. A. L. M. (2001). Quantitative aspects of metabolic organization; a discus-
sion of concepts. Phil. Trans. R. Soc. B, 356:331–349.

http://www.demographic-research.org 393



Karkach: Trajectories and models of individual growth

Kooijman, S. A. L. M., Kooi, B. W., and Hallam, T. G. (1999). The application of mass
and energy conservation laws in physiologically structured population models of
heterotrophic organisms. J. theor. Biol., 197:371–392.

Koops, W. J. (1986). Multiphasic growth curve analysis. Growth, 50(2):169–177.

Kozłowski, J. (1993). Measuring fitness in life-history studies. Trends Ecol. Evol., 8:84–
85.

Kozłowski, J. (1996). Energetic definition of fitness? yes, but not that one. The American
Naturalist, 147(6):1087–1091.

Kozłowski, J. (January 1992). Optimal allocation of resources to growth and reproduc-
tion: Implications for age and size at maturity. Trends in Ecology & Evolution, 7,
Issue 1:15–19.

Kozłowski, J. and Uchmañski, J. (1987). Optimal individual growth and reproduction in
perennial species with indeterminate growth. Evol. Ecol., 1:214–230.

Krebs, H. (1950). Body size and tissue respiration. Biochem. et Biophys. Acta, 4:249.

Krüger, F. (1965). Zur Mathematik der tierischen Wachstums. I. Grundlagen einer neuen
Wachstumsfunktion. Helgoländen wiss. Meeresunters, 12:78–136.

Kuczmarski, R., Ogden, C., and Guo, S. e. a. (2000). 2000 CDC Growth Charts for
the United States: Methods and Development. Series Report. National Center for
Health Statistics, vital health stat 11 (246) edition.

Labouriau, R., Schulin-Zeuthen, M., and Danfær, A. (2000). Statistical analysis of pigs
development: An application of richards regression models. Technical report, Inter-
nal Report 14, Biometry Research Unit, Danish Institute of Agrucultural Sciences.

Laws, R. M. (1966). Age criteria for the African elephant Loxodonta A. Africana. East
African Wildlife Journal, 4:1–37.

Lee, D. L., editor (June 21, 2002). The Biology of Nematodes. CRC Press, 1st edition
edition.

Lee, P. C. and Moss, C. J. (1995). Statural growth in known-age African elephants (Lox-
odonta africana). J. Zool., Lond., 236:29–41.

Lika, K. and Kooijman, S. A. (2003). Life history implications of allocation to growth
versus reproduction in dynamic energy budgets. Bulletin of Mathematical Biology,
65(Issue 5):809–834.

Lika, K. and Nisbet, R. M. (2000). A dynamic energy budget model based on partitioning
of net production. J. Math. Biol., 41:361–386.

394 http://www.demographic-research.org



Demographic Research: Volume 15, Article 12

Lindenfors, P. and Tullberg, B. S. (1998). Phylogenetic analyses of primate size evolution:
the consequences of sexual selection. Biological Journal of the Linnean Society,
64:413–447.

Lotka, A. (1956). Elements of mathematical biology. Dover, New York.

Makarieva, A. M., Gorshkov, V. G., and Li, B.-L. (2004). Ontogenetic growth: models
and theory. Ecological Modelling, 176:15–26.

Malison, J. A., Best, C. D., Kayes, T. B., Amundson, C. H., and Wentworth, B. C. (1985).
Hormonal growth promotion and evidence for a size-related difference in response
to estradiol-17β in yellow perch (Perca flavescens). Canad. J. Fish. Aquat. Sci.,
42:1627–1633.

Martínez, D. E. (1998). Mortality patterns suggest lack of senescence in Hydra. Experi-
mental Gerontology, 33, No. 3:217–225.

Maynard Smith, J. and Price, G. R. (1973). The logic of animal conflict. Nature, 246:15–
18.

Maynes, G. M. (1976). Growth of the Parma Wallaby, Macropus parma Waterhouse.
Aust. J. Zool., 24:217–236.

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. London: Chapman
& Hall, second edition.

McMahon, T. A. and Bonner, J. T. (1983). On Size and Life. Scientific American Library,
New York.

Mead, R., Curnow, R., and Hasted, A. (1993). Statistical Methods in Agriculture and
Experimental Biology. Chapman & Hall, London, 2nd edition.

Medawar, P. (1940). The growth, growth energy, and ageing of the chicken’s heart. Proc.
R. Soc., B129:332.

MedlinePlus Medical Encyclopedia (2006). Fetal development.
http://www.nlm.nih.gov/medlineplus/ency/article/002398.htm (last accessed
Jan 23, 2006).

Metcalf, J. C., Rose, K. E., and Rees, M. (2003). Evolutionary demography of monocarpic
perennials. TRENDS in Ecology and Evolution, 18 No.9:471–480.

Metz, J. A. J., Geritz, S. A. H., Meszéna, G., Jacobs, F. J. A., and van Heerwaarden, J. S.
(1996). Adaptive dynamics: a geometrical study of the consequences of nearly faith-
ful reproduction. In van Strien, S. J. and Verduyn Lunel, S. M., editors, Stochastic
and spatial structures of dynamical systems. Congress: Proceedings of the Collo-
quium (Amsterdam, The Netherlands), pages 183–231. Amsterdam : Royal Nether-

http://www.demographic-research.org 395



Karkach: Trajectories and models of individual growth

lands Academy of Arts and Sciences; KNAW Verhandelingen.

Metz, J. A. J., Nisbet, R. M., and Geritz, S. A. H. (1992). How should we define ‘fitness’
for general ecological scenarios? Trends in Ecology and Evolution, 7:198–202.

Mommsen, T. P. (2001). Paradigms of growth in fish. Comparative Biochemistry and
Physiology Part B: Biochemistry and Molecular Biology, 129(Issues 2-3):207–219.

Moore, K. L. and Persaud, T. (1998). The Developing Human: Clinically Oriented Em-
bryology. W.B. Saunders Company, Philadelphia PA, 6 edition.

Mueller, U. and Mazur, A. (2001). Evidence of unconstrained directional selection for
male tallness. Behav. Ecol. Sociobiol., 50:302–311.

Mylius, S. D. and Diekmann, O. (1995). On evolutionarily stable life histories, optimiza-
tion and the need to be specific about density dependence. Oikos, 74:218–224.

Nelder, J. (1961). The fitting of a generalization of the logistic curve. Biometrics, 17:89.

Nettle, D. (2002a). Height and reproductive success in a cohort of british men. Human
Nature, 13:473–491.

Nettle, D. (2002b). WomenŠs height, reproductive success and the evolution of sexual
dimorphism in modern humans. Proc. R. Soc. Lond. B, 269:1919–1923.

Niklas, K. J. (1994). Plant allometry: the scaling of form and process. Univ. of Chicago
Press, Chicago.

Niklas, K. J. and Enquist, B. J. (2001). Invariant scaling relationships for interspecific
plant biomass production rates and body size. PNAS, 98:2922–2927.

Nisbet, R. M., Muller, E. B., Lika, K., and Kooijman, S. A. L. M. (2000). From molecules
to ecosystems through dynamic energy budget models. J. Anim.Ecol., 69:913–926.

Noonburg, E. G., Nisbet, R. M., McCauley, E., Gurney, W. S. C., Murdoch, W. W., and
de Roos, A. M. (1998). Experimental testing of dynamic energy budget models.
Functional Ecology, 12:211–222.

O’Conner, R. J. (1984). The Growth and Development of Birds. John Wiley & Sons Inc.

Parks, J. R. (1982). A theory of feeding and growth of animals. Berlin; New York:
Springer-Verlag.

Pásztor, L., Meszéna, G., and Kisdi, É. (1996). R0 or r: a matter of taste? J. Evol. Biol.,
9:511–518.

Pawlowski, B., Dunbar, R. I., and Lipowicz, A. (2000). Tall men have more reproductive
success. Nature, 403:156.

396 http://www.demographic-research.org



Demographic Research: Volume 15, Article 12

Pearl, R. and Reead, L. J. (1920). On the rate of growth of the population of the United
States since 1790 and its mathematical representation. Proc. Nat. Acad. Sci. U.S.A.,
G:275.

Perrin, N. and Sibly, R. M. (1993). Dynamic models of energy allocation and investment.
Ann. Rev. Ecol. Syst., 24:379–410.

Perrin, N., Sibly, R. M., and Nichols, N. K. (1993). Optimal growth strategies when
mortality and production rates are size-dependent. Evol. Ecol., 7:576–592.

Peters, R. H. (1983). The ecological implications of body size. Cambridge Univ. Press,
Cambridge, U.K.

Preece, M. and Baines, M. (1978). A new family of mathematical models describing the
human growth curve. Ann Hum Biol, 5(1):24.

Prescott, D. M. (1957). Relations between cell growth and cell division. In Rudnick, D.,
editor, Rythmic and synthetic processes in growth, pages 59–74. Princeton Univer-
sity Press.

Pugliese, A. and Kozłowski, J. (1990). Optimal patterns of growth and reproduction for
perrenial plants with persisting or not persisiting vegetative parts. Evol. Ecol., 4:75–
89.

Purdom, C. E. (1993). Genetics and fish breeding. Chapman & Hall, London.

Pütter, A. (1920). Studien über physiologische ähnlichkeit. VI. Wachstumsähnlichkeiten.
Pflüg. Arch. ges. Physiol., 180:298–340.

Quetelet, M. A. (1968). A treatize on man and the development of his facilities. Burt
Franklin, New York.

Rand, D. A., Wilson, H. B., and McGlade, J. M. (1994). Dynamics and evolution: evo-
lutionarily stable attractors, invasion exponents and phenotypic dynamics. Phils.
Trans. R. Soc. Lond. B, 343:261–283.

Raup, D. M. and Stanley, S. M. (1978). Principles of Paleontology. W.H. Freeman and
Co., New York, 2nd edition.

Richards, F. J. (1959). A flexible growth function for empirical use. J. Exp. Botany,
10:290–300.

Ricklefs, R. E. (1968). Patterns of growth in birds. Ibis, 110:419–451.

Robinson, S. L. and Wilcox, J. R. (1998). Comparison of determinate and indeterminate
soybean near-isolines and their response to row spacing and planting date. Crop
Sci., 38:1554–1557.

http://www.demographic-research.org 397



Karkach: Trajectories and models of individual growth

Rogers, A. R. and Mukherjee, A. (1992). Quantitative genetics of sexual dimorphism in
human body size. Evolution, 46(1):226–234.

Sandland, R. L. and McGilchrist, C. A. (1979). Stochastic growth curve analysis. Bio-
metrics, 35:255–271.

Savageau, M. (1980). Growth equations: A general equation and a survey of special
cases. Math. Biosci, 48:267–278.

Schmidt-Nielsen, K. (1984). Scaling: Why Is Animal Size So Important? Cambridge
Univ. Press, Cambridge, U.K.

Sebens, K. (1977). Autotrophic and heterotrophic nutrition of coral reef zoanthids. In
Proc. 3rd Int. Coral Reef Symp., volume 2, pages 397–404.

Shohoji, T. and Sasaki, H. (1987). Individual growth of stature of Japanese. Growth,
51:432–450.

Sibly, R., Calow, P., and Nichols, N. (1985). Are patterns of growth adaptive? J. theor.
Biol., 112:553–574.

Smith, D. C. (1992). Age determination and growth in fish and other aquatic animals.
CSIRO Australia.

Smith, R. J. (1996). Biology and body size in human evolution. Current Anthropology,
37(3):451–481.

Starck, J. M. and Ricklefs, R. E. (1998). Avian growth and development: evolution within
the altricial-precocial spectrum. Oxford University Press.

Stephens, R. E. (1972). Studies on the development of the sea urchin Strongylocentrotus
droebachiensis. i. ecology and normal development. Biological Bulletin, 142:132–
144.

Stone, R. P. (1999). Mass molting of Tanner Crabs Chionoecetes bairdi in a southeast
Alaska Estuary. Alaska Fishery Research Bulletin, 6 (1):19–28.

Summerfelt, R. C. and Hall, G. E. (1987). Age and Growth of Fish. Iowa State Pr, 1st
edition.

Tanaka, E. M. (2003). If they can do it, why can’t we? Cell, 113 Issue 5:559–562.

Tanaka, M. (1976). On a few patterns of growth curve and their expressions. Physiol.
Ecol. Japan, 17:519–525.

Tanaka, M. (1982). A new growth curve which expresses infinitive increase. Publ.
Amakusa Mar. Biol. Lab., 6(2):167–177.

398 http://www.demographic-research.org



Demographic Research: Volume 15, Article 12

Tanaka, M. and Kikuchi, T. (1979). Ecological studies on benthic macrofauna in tomoe
cove, amakusa. III. life history and population fluctuation of major molluscs. Publ.
Amakusa Mar. Biol. Lab., 5:79–115.

Tanaka, M. and Kikuchi, T. (1980). Growth curves in Theora lubrica (Gould) (Bivalvia,
Seneridae). I. fitting of several growth curves. Publ. Amakusa Mar. Biol. Lab.,
5:201–214.

Tanner, J. F., Ulijaszek, S. J., Johnston, F. E., and Preece, M. A., editors (1998). The Cam-
bridge Encyclopedia of Human Growth and Development. Cambridge University
Press, 1st edition.

Taylor, B. E. and Gabriel, W. (1992). To grow or not to grow: optimal resource allocation
for Daphnia. Am. Nat., 139:248–266.

Thissen, D., Bock, D., Wainer, H., and Roche, A. (1976). Individual growth in stature: a
comparison of four growth studies in the U.S.A. Ann Hum Biol., 3(6):529–542.

Turner, M., Blimenstein, B., and Sebaugh, J. (1969). A generalization of the logistic law
of growth. Biometrics, 25:577.

Turner, M., Bradley, E., Kirk, K., and Pruitt, K. (1976). A theory of growth. Math. Biosci.,
29:367–373.

van Leeuwen, I., Kelpin, F., and Kooijman, S. (2002). A mathematical model that ac-
counts for the effects of caloric restriction on body weight and longevity. Biogeron-
tology, 3:373–381.

van Leeuwen, I. M. M., Zonneveld, C., and Kooijman, S. A. L. M. (2003). The embedded
tumour: host physiology is important for the evaluation of tumour growth. British
Journal of Cancer, 89:2254–2263.

Vaughan, T. A., Ryan, J. M., and Czaplewski, N. J. (2000). Mammalogy. Saunders
College Publishing, Philadelphia, 4 edition.

Vaupel, J. W., Baudisch, A., Dölling, M., Roach, D. A., and Gampe, J. (2004). The case
for negative senescence. Theor. Popul. Biol, 65, Issue 4:339–351.

Verhulst, P.-F. (1838). Notice sur la loi que la population suit dans son accroissement.
Corr. Math. Phys, 10:113.

Weatherley, A. and Gill, H. (1987a). The Biology of Fish Growth. Academic Pr.

Weatherley, A. H. and Gill, H. S. (1987b). The Biology of Fish Growth. London: Aca-
demic Press.

Wenner, A., editor (1985). Factors in Adult Growth. Crustacean Issues. Aa Balkema.

http://www.demographic-research.org 399



Karkach: Trajectories and models of individual growth

West, G. B., Brown, J. H., and Enquist, B. J. (1997). A general model for the origin of
allometric scaling laws in biology. Science, 276(4):122–126.

West, G. B., Brown, J. H., and Enquist, B. J. (1999). The fourth dimension of life: Fractal
geometry and allometric scaling of organisms. Science, 284:1677–1679.

West, G. B., Brown, J. H., and Enquist, B. J. (2001). A general model for ontogenetic
growth [Letters to Nature]. Nature, 413:628–631.

West, G. B., Woodruff, W. H., and Brown, J. H. (2002). Allometric scaling of metabolic
rate from molecules and mitochondria to cells and mammals. PNAS, 99 suppl.
1:2473–2478.

White, C. R. and Seymour, R. S. (2003). Mammalian basal metabolic rate is proportional
to body mass2/3. PNAS, 100(7):4046–4049.

Williams, G. C. (1957). Pleiotropy natural selection evolution of senescence. Evolution,
11(4):398–411.

Wishart, J. (1938). Growth-rate determinations in nutrition studies with the bacon pig,
and their analysis. Biometrika, 30(1/2):16–28.

Wood, A. J., Cowan, I. M., and Nordan, H. C. (1962). Periodicity of growth in ungulates
as shown by deer of the genus Odocoileus. Can. J. Zool., 40:593–603.

Yi, S. and Li-feng, H. (1998). A new literature growth model: Variable exponential
growth law of literature. Scientometrics, 42(2):259–265.

Zonneveld, C. and Kooijman, S. A. L. M. (1989). Application of a Dynamic Energy
Budget model to Lymnaea stagnalis (L.). Func. Ecol., 3 (3):269–278.

Zullinger, E. M., Ricklefs, R. E., Redford, K. H., and Mace, G. M. (1984). Fitting sig-
moidal equations to mammalian growth rates. J. Mamm., 65 (4):607–636.

400 http://www.demographic-research.org


