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Abstract

The reproductive value (see Fisher 1930) arises as part of the shadow price of the popula-
tion in a large class of age-structured optimal control models.
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1. Relationship

The reproductive value at age a, introduced by Fisher (1930), is defined as

(1) v(a) =
∫ β

a

e−r(s−a) l(s)
l(a)

m(s) ds,

where l(s) denotes the probability of survival from birth until age s, m(s) the fertility
rate of age s, β the oldest age of childbearing and r the discount rate, which is equal to
Lotka’s r (see e.g. Keyfitz 1977).

Consider an optimal control model in which an intertemporal objective functional is
to be optimised over a finite time horizon, in which the objective itself depends on the
size and age-structure of a given population. Further assume that within such an age-
structured optimal control model, population aged a at time t is used as a state variable
N(a, t), described by the McKendrick equation (see Keyfitz 1977; Keyfitz and Keyfitz
1997). In that case the shadow price attached to population ξN (a, t) typically embraces a
generalization of the reproductive value. ξN (a, t) itself can be interpreted as the marginal
value of an additional a-year old individual at time t. The relationships become clearer
when considering the following decomposition5

(2) ξN (a, t) = ξd(a, t) +
∫ ω

a

e−ρ(s−a) l(s, ·)
l(a, ·)m(s, ·)ξN (0, t− a + s) ds,

for t−a+ω < T , where ω denotes the maximal length of life, t time, a age and ρ the time
discount rate. The direct effect ξd(a, t) accounts for the marginal value of the population
that is currently alive. The indirect effect, as given by the second term on the right hand
side, accounts for the marginal value of expected newborns, and is a generalized form of
the classical reproductive value (1). Put differently, the indirect effect could represent the
economic value of the lineage associated with an additional individual.

Note that the integral in the above result is a variant of Fisher’s formulation. The
integrand, the discounted expected number of newborns at time t − a + s, is weighted
by their value to the decision-maker, as given by the shadow price ξN (0, t − a + s). In
Fisher’s case this value equals one, since he regarded the birth of a child as the lending
to him of a life. Moreover, while the discount rate is equal to Lotka’s r in (1), in our
expression (2) the discount rate is equal to the time preference ρ and exogenously given.
Note that it makes no difference that the upper bound of the integral is the maximal length
of life, since the fertility rate is zero after the maximal age of childbearing.

The generality of the above expression has two important implications. First, in
Fisher’s original formulation (1) the population is stable. The above expression allows
5Equation (2) is derived in section 2 (see equations (4)-(5)).
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for changes in the demography over time.6 Secondly, the sign of the reproductive value is
always positive. Due to the weighting with ξN (0, t − a + s), the general expression can
also have a negative sign.

2. Proof

Consider the following age-structured optimal control model7,8

V (N(a, 0)) = maxu∈U

∫ T

0

∫ ω

0

e−ρtL(a, t, N, u) da dt

s.t.
( ∂

∂a
+

∂

∂t

)
N(a, t) = −µ(a, t, u)N(a, t)(3)

N(0, t) = B(t) =
∫ ω

0

m(a, t, u)N(a, t) da,

N(a, 0) = N0(a)

where population dynamics is modeled according to the McKendrick equation with an
endogenous number of newborns B(t). The decision maker chooses the control u(a, t)
from the set of admissible controls U such that the objective, equal to the discounted
instantaneous objective functionals9 L(·) aggregated over age and time, is maximized
over a finite time horizon T < ∞ with a zero salvage value. The control u(a, t) itself
influences the objective functionals as well as the mortality and the fertility rates.

For age-structured optimal control models with additional cohort states (45-degree
line in the Lexis diagram), period states (90-degree line in the Lexis diagramm) and a
non-zero salvage value we refer to Wrzaczek et al. (2010).

Note that by allowing age and time to vary, we consider a dynamic age structure, and
are able to study not only the stationary but also the transient behavior of the optimal
solutions.

According to the Maximum principle for age-structured optimal control models (see

6See also Ediev (2007b) on the dynamics of the reproductive value.
7For simplification a and t are omitted sometimes.
8V (N(a, 0)) denotes the optimal value of the objective functional, which depends on N(a, 0). In dynamic

optimisation V (N(a, t)) is referred to as value function.
9For instance, the aggregate objective could be intertemporal social welfare. In this case, the objective func-

tional L(·) would measure the instantaneous welfare of age-group N(a, t). In different settings, L(·) may
describe the (economic) value ascribed to an animal or plant population.
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Brokate 1985; Feichtinger, Tragler, and Veliov 2003)10 we formulate the current-value
Hamiltonian, which consists of the instantaneous objective functional (current contribu-
tion) and the dynamics (population as well as the integral constraint11) weighted by the
adjoint variable (future contribution), i.e.

(4) H = L(a, t,N, u)− ξN (a, t)µ(a, t, u)N(a, t) + ξN (0, t)m(a, t, u)N(a, t)

and maximize it with respect to the control u(a, t). The Hamiltonian may be seen as
a generalization of the Lagrangean method (for an excellent reference see Leonard and
Van Long 1992).

Note that in equation (4) the adjoint variable ξN (a, t) refers to the role of mortality
while the adjoint variable ξN (0, t) refers to the role of fertility in determining the dynam-
ics of the population over time.

Applying the Maximum Principle we obtain12

ξN (a, t)=
∫ ω

a

e−ρ(s−a) l(s, t− a + s)
l(a, t)

∂L(·)
∂N

ds +

+
∫ ω

a

e−ρ(s−a) l(s, t− a + s)
l(a, t)

m(s, t− a + s, u(·))ξN (0, t− a + s) ds.(5)

The direct effect is represented by the first integral. It is equal to the marginal effect
of the population on the instantaneous objective functional ∂L(·)

∂N . Discounted by ρ and
weighted by the survival probability, this effect is aggregated over the remaining life of the
cohort born at t−a. The second integral is the more general form of Fisher’s reproductive
value as discussed in the previous section.

For a detailed discussion on a general model and mathematical details (assumptions
on the functions involved, conditions for the existence of solutions) we refer to Wrzaczek
et al. (2010) and Feichtinger, Tragler, and Veliov (2003). For a model with a male and
female population the analysis is analogous and the core result does not change.

10The Maximum Principle presented in Feichtinger, Tragler, and Veliov (2003) is a generalization of that in
Brokate (1985). First the formulation of the model allows for more general forms of the objective function
and the dynamics. Secondly, an additional type of state accounting for interactions between the cohorts (often
important in epidemiological models) is allowed. On the other hand, the Maximum Principle of Brokate (1985)
allows for an infinite life-time horizon, which is not contained in that of Feichtinger, Tragler, and Veliov (2003).
11The integrand of B(t) is weighted by a separate adjoint variable η(t). However, since B(t) only acts as
boundary constraint of the population η(t) = ξN (0, t) follows immediately.
12Note that the conditional survival probability l(s,t−a+s)

l(a,t)
is a transformation of the term e−

∫ s
a µ(·) ds′ .
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3. History and related results

While intertemporal optimization is ubiquitous in population economics,13 it is not a
standard tool in demography. One main purpose of the present note is to illustrate its
applicability in population dynamics. The core concept of dynamic optimization is the
shadow price of the state variable. It measures the marginal value (in terms of the objec-
tive function) of an increment of the state at time t when moving along the optimal path.
This imputed (marginal) value can be seen as a dynamic extension of the dual variable
in (static) mathematical (linear and non-linear) programming. Note that it is not a mar-
ket price (which must be always non-negative), but measures the marginal impact of an
additional (infitesimal) unit of the state on the objective. In optimal control theory, this
dynamic shadow price is referred to as adjoint variable. Clearly, shadow prices can take
negative values. Our indirect effect that shows up in the dynamics of the shadow price
(equation (2)) may therefore be seen as a further alternative of the valuation of the repro-
ductive value at age zero, by taking into account the marginal value of a newborn as given
by the shadow price at age zero.

Remarkably, there is an interesting analogy with a finding by Goodman (1982) who
considers an optimal control model to deal with life-history optimization (see e.g.
Charlesworth (1994) for life history research)14, where a decision-maker (evolution)
chooses optimal trajectories of fertility (rates) in order to maximise the total reproductive
contribute of a cohort at birth, subject to certain physiological constraint. He shows that
the reproductive value (at age a) is the current shadow price of survival of an age a in-
dividual in the cohort. Thus, for an optimal life-history model, any individual is valued
exactly at its reproductive value, whereas in our model, in which population may have a
more general value than reproduction alone, the weighted reproductive value constitutes
one part of an individual’s value.

Notably, the shadow price of population bears a close resemblance to the economic-
demographic potential (see Ediev (2001), Ediev (1996), Ediev (2007a) based on earlier
measures as e.g. by Hersch (1944) and Burgeois-Pichat (1951)). By deriving the shadow
price of population within an explicit optimal control problem, our approach lends a
foundation to the economic-demographic potential as measure of an optimal ’policy’.
Indeed, by its very nature the shadow price embraces a measure of the future economic-
demographic prospects.

In a similar vein, economists have thought long about the value of (human) life. Hof-
flander (1966) provides an excellent survey of such thought, including prominent contri-
butions by William Farr and Alfred Marshall. Schelling (1968) was first to (re-) introduce

13For an early example we refer to Arthur and McNicoll (1977).
14For an even earlier dynamic programming and optimal control approach to life history optimisation see Leon
(1976) or Taylor et al. (1974).
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the concept in a modern way, which was subsequently formalized by Shepard and Zeck-
hauser (1982). Recent work by Birchenall and Soares (2009) and by Kuhn, Wrzaczek,
and Oeppen (2010) accounts for the presence of altruism towards descendants, in the
spirit of Becker and Barro (1988). In this case the value of an individual’s life is amended
by the value the individual attaches to its progeny (depending inter alia on their future
prospects), corresponding to the indirect effect in (2).

4. Applications

In section 1, we mentioned that the generalized reproductive value can have a negative
sign. As an example, consider a model minimizing the impact of a population of a pest on
a valuable supply of a resource. If the pest population (destroying the resource) is modeled
in the above way, the corresponding shadow price will be negative. This implies that also
the generalized reproductive value (i.e. the impact of yet to be born pest individuals on
the future stock of the resource) is negative.

For another application, consider an age-specific predator/prey model, embracing cat-
tle and wolves, for example, as presented in Wrzaczek et al. (2010). Also in this example
the reproductive term can be negative depending on the type of objective function (e.g.
the reproductive value of the predator, if in contrast to the prey, it has no direct economic
value in and of itself). A further epidemiological application involving the interaction of
infected and susceptible individuals is presented in Wrzaczek et al. (2010). Finally, we
want to emphasize that the concept of the reproductive value is not only applicable to
humans and animals, but also to self-renewing machines or even capital (for examples see
e.g. Sethi and Thompson (2000), Feichtinger et al. (2006) and references therein).
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