Volume 28 - Article 9 | Pages 259-270

Gamma-Gompertz life expectancy at birth

By Trifon I. Missov

Print this page  

 

References

Abramowitz, M. and Stegun, I. (1965). Handbook of Mathematical Functions. Washington, DC: US Government Printing Office.

Download reference in RIS | BibTeX

Bailey, W. N. (1935). Generalised Hypergeometric Series. Cambridge: University Press.

Download reference in RIS | BibTeX

Beard, R. E. (1959). Note on some mathematical mortality models. In: Woolstenholme, G. and O'Connor, M. (eds.). The Lifespan of Animals. Little, Brown and Company: 302-311.

Download reference in RIS | BibTeX

Finkelstein, M.S. and Esaulova, V. (2006). Asymptotic behavior of a general class of mixture failure rates. Advances in Applied Probability 38(1): 244-262.

Weblink doi:10.1239/aap/1143936149
Download reference in RIS | BibTeX

HMD (2012). The human mortality database [electronic resource].

Weblink http://www.mortality.org
Download reference in RIS | BibTeX

Keyfitz, N. and Caswell, H. (2005). Applied Mathematical Demography. New York: Springer.

Download reference in RIS | BibTeX

Lebedev, N. N. (1965). Special Functions and Their Applications. Englewood Cliffs, N.J.: Prentice-Hall.

Download reference in RIS | BibTeX

MathWorld (2012). Wolfram MathWorld [electronic resource].

Weblink http://mathworld.wolfram.org
Download reference in RIS | BibTeX

Vaupel, J. W. (2008). Supercentenarians and the theory of heterogeneity. [unpublished manuscript] Rostock: Max Planck Institute for Demographic Research. Johann Süssmilch Lecture Series in 2008/2009.

Download reference in RIS | BibTeX

Vaupel, J. W., Manton, K. G., and Stallard, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography 16(3): 439-454.

Weblink doi:10.2307/2061224
Download reference in RIS | BibTeX

Articles

»Volume 28

 

Jump to Article

Volume Page
Volume Article ID