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Variance in age at death equals average squared remaining life
expectancy at death

Tomasz F. Wrycza

Abstract

BACKGROUND
Variance in life span o2 and life expectancy lost due to death ef are important demo-
graphic indicators of life disparity.

OBJECTIVE
I show that the variance in age at death equals the average squared remaining life ex-
pectancy at death. Based on this finding, I also show that the average squared difference

. o . 2
in remaining life expectancy at death equals the difference between o2 and ef”.

COMMENTS
Calculations of some of the quantities involved for the Gompertz-Makeham mortality
model with varying parameters produce complex patterns.
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1. Relationship

Let /OO

denote remaining life expectancy at age 2. If f(x) denotes the probability density function
of age at death,

eTz/O e(z)f(x)dx

denotes the average number of life-years lost due to death and
(D) o? = / (z —eo)*f(z)dx
0
denotes the variance in age at death, then it holds that:
oo
2) o? = / e?(z) f(x)dx,
0

i.e., the variance in age at death is the average squared remaining life expectancy at death,
and

@ % /Om /ooo(e<w> — ()2 f(x)f(y)da dy = o2 — et

i.e., the average squared difference in remaining life expectancy at death equals the dif-
ference between the variance and the square of life expectancy lost due to death.

2. Proof

(2): Applying integration by parts with u(z) = €?(z) and v’ (x) = f(z) gives

/0 () f(x)dr = 3 + 2/0 e(x)e (x)l(x)dx.

Since €' (z) = e(z)u(z) — 1, it follows that
/0 () f(x)dx = €3 + 2/0 e2(z) f(x)dx — 2/0 e(x)l(x)de =
:>/0 e“(x) f(z)dx = 2/0 e(z)l(x)dx — ef.
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According to Goldstein (2009), it holds that
/ e(z)l(z)dx = / zl(x)dx.
0 0

Hence - -
/ e (x) f(x)dr = 2/ wl(z)dr — €.
0 0

Integration by parts shows that

o [T aiwyie = [ 2 Fa)de.
/0 xl(z)dx /0 x® f(x)dx
Hence - -
/ e?(z) f(x)dx :/ 22 f(x)dx — e W2
0 0

Q.ED.
(3): This follows from (2) since

2

= e(w)f(m)dx-?(/Oooe@f(m’dm) )

@ o0? —et?).

/000 /Ooo(e(@ —e(y)*f(z)f(y)dz dy =

Q.E.D.

3. History and related results

Note that dividing (3) by €3 (which means considering e(x)/eq; i.e., remaining life ex-
pectancy in units of ep) results in a relationship between two other demographically mean-
ingful quantities, life table entropy H and the coefficient of variation c,:

1 [ [°° _ 2 ) g2 )
) 7/ / e(z) — e(y) F(2)f(y)de dy = % _ e
2.Jo 0 ) 2
Life table entropy
el

H=—
€o
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is the elasticity of life expectancy with respect to a proportional change in mortality.
This was first derived by Leser (1955), and was restated by Keyfitz (1977a,1977b) in a
continuous formulation. Mitra (1978), Goldman and Lord (1986) and Vaupel (1986) in-
dependently derived the mathematical expression for life disparity ef, and showed that
H = ¢f /eo. Vaupel and Canudas-Romo (2003) showed that the derivative of life ex-
pectancy over time is given by the product of ef and the rate of progress in reducing
age-specific death rates. Recent research papers involving e! include Zhang and Vaupel
(2009), Vaupel (2010) and Vaupel, Zhang, and van Raalte (2011).

As a basic measure in statistics, standard deviation ¢ has been used in demography
for research on levels and trends in the variance in adult life span in different countries
over time (Edwards and Tuljapurkar 2005,2011). In these papers, a standard deviation of
life span above age 10 is used in order to avoid the distorting effect of infant mortality.
The ratio

o
Cy = —
€o
denotes the coefficient of variation and is used as a (normalized) measure of inequality in
various fields (Allison 1978).

Research papers which have compared both ef (or H) and o (or ¢?) as measures
of uncertainty in age at death include Hakkert (1987), Hill (1993), and van Raalte and
Caswell (2013). However, the relationships discussed here are new in that they estab-
lish explicit analytical expressions that show how o2 relates to remaining life expectancy
e(x) (relationship (2)), and how the difference between o2 and ¢t? should be interpreted
(relationship (3)).

4. Applications

It is easy to show that

® 3| [ e-vrr@iwady =

i.e., that the average squared difference in life span is the variance in age at death. Re-
lationship (3) is the analogous result, if the focus is on remaining life span e(x), rather
than on life span z. It shows that in this case the average squared difference is not o2, but

2 . . . .
o2 — ef”. This result can also be seen to give a new interpretation to e':

o =5 [ty - [ - )@ s dy
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ie., et? is the difference of the average squared difference in life span minus the average
squared difference in remaining life expectancy.

A trivial consequence of (3) is that o is never smaller than e (and, accordingly, c, is
never smaller than H), since the left-hand side of the equation is by definition nonnega-
tive. Another consequence is that the only distribution for which f(z) # 0 Vz and ¢ = ef
(or ¢, = H) is the exponential distribution; i.e., the distribution with constant mortality
at all ages (since these assumptions, together with (3), imply that e(x) = e(y) for all ages
x, ). Thus the values of ¢, and H can only be equal when ¢, = H = 1 (under the
assumption f(z) # 0 Vz).

Relationship (3) (and the standardized version (4)) permits analysis of the dynamics
of the average difference in remaining life expectancy (a double integral) by relating it
to well-known measures of life span inequality (two simple integrals), and thus could be
useful for future research on this topic.

For illustration of (3) and (4), assume Gompertz-Makeham mortality p(z) = aeb® +c.

Figure 1 shows contour plots of Vo2 — et? and \/c2 — H2 for a € [0.000001,0.00005],
b € [0.05,0.15] and ¢ = 0.001 fixed.

Figure 1: Contour plots of \/o2 — ef* and V2 — H?
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We can see that within the given range in parameters, the average difference in re-
maining life expectancy, as measured by

\/; /OOO /OOO (e(z) — e(y)? f(z) f(y)dz dy = m

is decreasing when a and/or b are increasing; the average therefore seems to track the
value of eg, which is also decreasing when a and/or b are increasing. However, when we
look at the average difference in standardized remaining life expectancy, as measured by

\/; /ooo /OOO (e(x)e_oe(y)f F@) flg)drdy = \Je2 — 72,

the behavior is somewhat different. For fixed a, the value still decreases when b is in-
creasing, but for fixed b, the pattern is hump-shaped: decreasing up to some value of a,
then increasing.
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