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Research Article

A note on computing average state occupation times

Jan Beyersmann 1

Hein Putter 2

Abstract

OBJECTIVE
This review discusses how biometricians would probably compute or estimate expected
waiting times, if they had the data.

METHODS
Our framework is a time-inhomogeneous Markov multistate model, where all transition
hazards are allowed to be time-varying. We assume that the cumulative transition haz-
ards are given. That is, they are either known, as in a simulation, determined by expert
guesses, or obtained via some method of statistical estimation. Our basic tool is product
integration, which transforms the transition hazards into the matrix of transition probabil-
ities. Product integration enjoys a rich mathematical theory, which has successfully been
used to study probabilistic and statistical aspects of multistate models. Our emphasis will
be on practical implementation of product integration, which allows us to numerically ap-
proximate the transition probabilities. Average state occupation times and other quantities
of interest may then be derived from the transition probabilities.
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1. Introduction
This review is motivated by an interdisciplinary workshop on ‘Multistate event history
analysis’ at the Netherlands Interdisciplinary Demographic Institute, The Hague, in April
2011. The workshop brought together demographers and biometricians, who both use
multistate models, but appear to follow somewhat different methodological traditions.

At the workshop, there were discussions on how to compute average state occupation
times. The organizer, Frans Willekens, informed us that the most common approaches in
demography use either piecewise linear approximations of the survival function or piece-
wise constant transition hazards (personal communication). See also Gill and Keilman
(1990) on these approaches, including a critique of the former method.

We review how biometricians might compute expected waiting times, if they had the
data. In biometry, the restriction is that right-censoring typically precludes evaluating
waiting time distributions on the whole of their support. In other words, the maximum
follow-up in most of the data sets analyzed by biometricians is considerably smaller
than the assumed maximum age in the population under study. As a consequence, it
is more common to consider median waiting times (e.g., Brookmeyer and Crowley 1982)
or expectations restricted to a maximum follow-up (e.g., Andersen et al. 1993, Example
IV.3.8). In the context of demography, expected (restricted) waiting times are arguably
more relevant, for instance for policy making.

The key idea is that a certain transformation, product integration, allows us to move
from the transition hazards of a time-inhomogeneous Markov process to the matrix of
transition probabilities. As also noted by Gill and Keilman (1990), combined with the
initial distribution of the process, this allows us to derive expected waiting times in a
given state and other quantities of interest.

In demography, product integration appears to be rarely used. Gill and Keilman (1990)
mention the relation, but then proceed to attack a different problem, namely estimation of
constant transition hazards with population registry data. In a recent tutorial on multistate
methods, Kuo, Suchindran, and Koo (2008) value product integration as a ‘basic tool’, but
argue that it ‘is difficult to implement.’ These authors therefore proceed to work under
special assumptions such as uniform right-censoring. Another reference is Schoen (2005)
who mentions product integration as a tool for numerical evaluation, but then concentrates
on special cases with an analytical solution.

2. The relation between transition hazards and transition
probabilities

Consider a time-inhomogeneous Markov process (Xt)t≥0 with state space {0, 1, 2, . . . , J}.
We assume that (Xt)t≥0 has right-continuous sample paths, which are constant between
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transition times. That is, if the process moves from state j to state k, j 6= k, at time t0,
Xt0 = k and Xt0− = j. Here Xt0− refers to the state occupied by the process just before
time t0. We also assume that on any finite interval there are only finitely many transi-
tions. No assumptions are made on irreversibility of the multistate model. The Markov
assumption is

P(Xt = k |Xs = j) = P(Xt = k |Xs = j,Past), s ≤ t, (1)

where we have written ‘Past’ for the history generated by the process. More formally, it
is a sigma-algebra and, at time s, reflects knowledge of the development of the process in
the interval [0, s]. The Markov assumption states that the past and future of the process
are independent, given the present. We will briefly discuss non-Markov processes in
Section 5.

The matrix of transition probabilities is

P(s, t) := (Pjk(s, t))j,k , j, k ∈ {0, 1, 2, . . . , J}, (2)

with transition probabilities

Pjk(s, t) := P(Xt = k |Xs = j), s ≤ t. (3)

Multiplying the initial distribution (P(X0 = 0),P(X0 = 1), . . . ,P(X0 = J)) of the mul-
tistate process with P(0, t) yields the state occupation probabilities (P(Xt = 0),P(Xt =
1), . . . ,P(Xt = J)) at time t. These can, e.g., be used to compute the expected time
spent in state k as

Ek =

∫ ∞
0

P(Xu = k) du, (4)

see, e.g., Equation (6) of Gill and Keilman (1990). The restricted expected time spent in
state k is

Eτk =

∫ τ

0

P(Xu = k) du, (5)

where τ is some fixed value, representing end of follow-up or some lower relevant time
limit. In the Markov case, one can also define the expected remaining time (residual life
expectancy) spent in state k, given that the subject is in state j at time s, as

Es,τjk =

∫ τ

s

P(Xu = k |Xs = j) du, (6)

for τ ≤ ∞. For τ < ∞, this is a restricted expected remaining time spent in state
k. Quantities (4) – (6) may easily be evaluated numerically. Sometimes the transition
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probabilities may be step functions which allow us to further simplify (4) and (5). We
return to this issue later.

The aim is now to find the connection between P(s, t) and the cumulative transi-
tion hazards (or intensities) Ajk(s), j 6= k, which we assume to be given. That is, the
Ajk’s may have been pre-specified as in a simulation, determined by expert guesses or
statistically estimated. We write Ajj(t) = −

∑J
k=0,k 6=j Ajk(t) and we assume that

Ajj(t) − Ajj(t−) ≥ −1. For the discrete case, the latter assumption is implied by the
fact that the probability of leaving state j at time t, on the condition that one is in state j
at the last time point before t, does not exceed 1. In the purely continuous case, we have
Ajj(t)−Ajj(t−) = 0. Our presentation below is indebted to Aalen and Johansen (1978)
and Gill and Johansen (1990), see also the textbook accounts in Andersen et al. (1993)
and Aalen, Borgan, and Gjessing (2008).

Consider times s < v < t. Using the Markov property, we get for the (j, k)-th entry
of P(s, t) that

P(Xt = k |Xs = j) =

J∑
̃=0

P(Xv = ̃ |Xs = j) · P(Xt = k |Xv = ̃). (7)

If v is close to t, the usual interpretation of the transition hazards is that

P(Xt = k |Xv = ̃) ≈ ∆Ãk(t), ̃ 6= k,

and consequently
P(Xt = ̃ |Xv = ̃) ≈ 1 + ∆Ã̃(t),

where ∆Ãk(t) is Ãk(t)−Ãk(v). We summarize this by

P(Xt = k |Xs = j) ≈
J∑
̃=0

P(Xv = ̃ |Xs = j) · (1(̃ = k) + ∆Ãk(t)), (8)

where we have written 1(·) for the indicator function. The matrix version of (8) is

P(s, t) ≈ P(s, v) (I + ∆A(t)) , (9)

where we have written I for the (J + 1) × (J + 1) identity matrix and ∆A(t) is the
(J + 1)× (J + 1) matrix with (j, k) entry ∆Ajk(t).

Going through the approximation of (9) recursively and for a fine partition s = t0 <
t1 < t2 < . . . < tL−1 < tL = t of the time interval [s, t], we get the approximation

P(s, t) ≈
L∏
l=1

(I + ∆A(tl)) . (10)
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We note two important facts about (10): First, the approximation is precisely what we
need in order to numerically compute P(s, t). Secondly, the right hand side of (10) re-
turns a step function which simplifies evaluating (4). (Note that for constant or piecewise
constant transition intensities, explicit matrix exponential solutions of the product inte-
gral are available (e.g. Andersen and Pohar Perme 2008); this is a well known result for
homogeneous Markov processes (e.g. Kijima 1997). For practical implementation, these
explicit solutions will also rely on some approximation, typically based on a Taylor ex-
pansion.)

The mathematical task is now to show that the right hand side of (10) in fact ap-
proaches P(s, t) for ever finer partitions of [s, t]. A complete account of this has been
given by Gill and Johansen (1990). These authors suggest the following product integral
notation for the limit of the finite product in (10),

u∈(s,t]

(I + dA(u)) , (11)

and they prove that the product integral (11) equals P(s, t). In summary,

lim
max |tl−tl−1→0|

∏
(I + ∆A(tl)) =

u∈(s,t]

(I + dA(u)) = P(s, t). (12)

3. Estimating expected waiting times

Combining relations (4)–(6) and (11) gives a relation between the transition intensities
and the expected time spent in a given state. An estimate of Ek immediately presents
itself from these relations, namely

Êk =

∫ ∞
0

P̂(Xu = k) du, (13)

where P̂(Xu = k) would be obtained from estimates of the initial distribution (P̂(X0 =

0), P̂(X0 = 1), . . . , P̂(X0 = J)) and P̂(s, t) through estimates Âjk(s) of the cumulative
transition intensities. Estimates of Eτk and Es,τjk may be obtained in a similar way.

One advantage of the estimator in (13) is that it follows the same concatenation of
mappings which move from the hazards to expected waiting times as the theoretical quan-
tities. Provided that the initial estimation ‘works’, this concatenation can be used to derive
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asymptotic unbiasedness using the continuous mapping theorem and to show correctness
of the bootstrap for quantifying uncertainty using the functional delta method; we will dis-
cuss the latter at the end of Section 5. Similar ‘plug in’ estimates have been used by, e.g.,
Lièvre, Brouard, and Heathcote (2003) and Touraine, Helmer, and Joly (2013). Dropping
the statistical perspective, we note that researchers have also used the trapezoidal rule or
the related, but more complex Simpson’s rule (also known as Keplersche Fassregel) for
numerically approximating the integral in question. We do not consider these approaches
here, but refer to Gill and Keilman (1990) who prove that using the trapezoidal rule may
lead to implicit violations of the Markov assumption.

It is common for the cumulative transition intensities to be estimated as step-functions,
for instance, using non-parametric methods such as the Nelson-Aalen estimate or using
semi-parametric methods such as the Cox model or additive hazards. Then for a fixed
state k, P̂(Xu = k) will be constant with respect to u over time intervals. Suppose that
the values of P̂(Xu = k) are p̂l on intervals [al−1, al) for l = 1, . . . , L with a0 = 0 and
aL = ∞. Both L, the series a0, . . . , aL and p̂0, . . . , p̂L may depend on the state k of
interest. Then Êk can be written as

Êk =

L∑
l=1

(al − al−1)p̂l, (14)

which is both easy and quick to calculate. If p̂L = 0, this sum is finite and the last element
of the sum is zero (and hence could be removed). If p̂L > 0, then Êk will be infinite. In
that case it is appropriate to consider instead the restricted expected timeEτk spent in state
k from Equation (5). An estimate of Eτk would then also be given by the right-hand side
of (14), the only difference with the unrestricted Êk being that here aL = τ .

We also note that estimation of (13) using non- or semi-parametric methods requires
that the assumed maximum age in the population is part of the data. If this is not the case,
estimation of the restricted quantityEτk would be more appropriate, where τ is some fixed
value, representing end of follow-up or some lower relevant time limit, as noted earlier.
Alternatively, one might use parametric models such as constant or piecewise constant
transition intensities, which would allow for extrapolation beyond the maximum time
contained in the data.

We refer to the closing Section 5 for a discussion on how to estimate uncertainty.

4. Illustration

We illustrate the methods outlined in Sections 2 and 3 using data of the Asset and Health
Dynamics Among the Oldest Old (AHEAD), now part of the wider US Health and Retire-
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ment Study (HRS, Juster and Suzman 1995). The AHEAD survey includes a nationally
representative sample of initially non-institutionalized persons born before 1923, aged 70
and older in 1993. The present analysis uses only the non-Hispanic white subset; the
time scale is age. Subjects were interviewed every two years. For the purpose of illustra-
tion, the fact that the data are actually panel data, hence interval-censored, is conveniently
ignored. Properly taking interval censoring into account will only affect the initial esti-
mation of the transition intensities, not the subsequent calculation of the expected time
spent in the different states; it is this last step that we wish to illustrate. We will further
comment on interval-censoring in Section 5.

The multistate model we consider is a reversible illness-death model, illustrated in
Figure 1.

Figure 1: The reversible illness-death model of the AHEAD data

0. Healthy 1. ADL disabled

2. Death

The illness state is state 1, disabled according to the Basic Activities of Daily Living
(ADL) scale of Katz et al. (1963). The ADL scale consists of six items: walking across a
room, bathing, dressing, getting in and out of bed, using the toilet, and eating. A subject is
classified as ADL disabled when he/she responds "with difficulty" when questioned about
one or more of these items. The illness-death model of Figure 1 is reversible because
recovery from ADL disability is possible (there is a transition from state 1, ADL disabled,
back to state 0, healthy). For a total of 4032 subjects, 1929 transitions from healthy
to ADL disabled occurred during follow-up, and 679 recoveries (transitions from ADL
disability to healthy). A total of 1994 deaths (state 2) were observed, 922 from the healthy
state and 1072 from ADL disability. Since this is an older population, the majority of
subjects (2468 and 61%) are females.

http://www.demographic-research.org 1687



Beyersmann and Putter: A note on computing average state occupation times

Figure 2 shows the estimated cumulative transition intensities for each of the four
transitions, based on the non-parametric Nelson-Aalen estimates. They are shown for
males (a) and females (b) separately.

Figure 2: Non-parametric estimates of the transition intensities in the US
Health and Retirement Study, for males (a) and females (b)
separately
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The estimated transition intensities of disability (Healthy → ADL disabled) and re-
covery (ADL disabled→ Healthy), in gray, are comparable between males and females.
The shape of the cumulative intensity of disability is convex, indicating that with older
age the disability rate increases, while the shape of the cumulative intensity of recovery
is concave, indicating a decreased recovery rate with older age. Death rates, in black, are
considerably higher from the ADL disability state, compared to those from the healthy
state. In a Cox proportional hazards model, the hazard ratio between the ADL disabled
→ Death rate and the Healthy→ Death rate was estimated as 2.89 (95% confidence inter-
val (CI): 2.52 - 3.31) for males and 2.25 (95% CI: 1.99 – 2.55) for females. As expected,
death rates are higher for males than for females.

Figure 3 shows estimated transition probabilities P̂jk(75, t) based on the transition
intensities of Figure 2, again for males and females separately.
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Figure 3: Stacked plots of estimated transition probabilities P̂jk(75, t) for
j = 0 ((a) and (b)), and for j = 1 ((c) and (d)). The lightest gray
corresponds to the probability of being healthy, middle gray to
the probability of being ADL disabled and the darkest gray to the
probability of having died
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Figure 3(a) and (b) show, for males and females respectively, estimates of P0k(75, t),
i.e., conditional probabilities of being in state 0 (healthy), state 1 (ADL disabled) and
state 2 (death) ate age t, given that the subject is in state 0 (healthy) at age s = 75. The
curves are stacked; the lower curve shows P̂00(75, t), the distance between the lower and
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upper curve is P̂01(75, t), the probability of being ADL disabled, and finally the distance
between the upper curve and 1 is P̂02(75, t), the death probability. Figure 3(c) and (d)
show estimates of P1k(75, t), probabilities of being in state k at age t, given in state 1
(ADL disabled) at age 75. Clearly, until age 85 at least, the probability of being healthy
at age t is much smaller in Figure 3(c) and (d), compared to Figure 3(a) and (b), and the
probability of being ADL disabled much larger. Also the probability of having died is
considerably larger in Figure 3(c) and (d), compared to Figure 3(a) and (b).

Estimates of the expected remaining time spent in a particular state can be “read
off” from Figure 3 as the area between curves. For instance, for males, conditional on
being healthy at age 75, an estimate of the expected remaining healthy life, Ê75,τ

00 =∫ τ
75
P̂00(75, u) du, is the area under the P̂00(75, t) curve, i.e., the lightest gray area of

Figure 3(a). Similarly, Ê75,τ
01 =

∫ τ
75
P̂01(75, u) du is the area between the lower and up-

per curve, the middle gray area of Figure 3(a). Both are easily calculated from P̂0k(75, t)
using the methods outlined in Section 3. Taking τ = 110, the expected remaining healthy
life of males, given healthy at age 75 is estimated to be 9.21 years. For females this num-
ber (the area under the lower curve of Figure 3(b)) is estimated as 10.04. Given subjects
who are healthy at age 75, the expected remaining life spent in disability equals 2.26 years
for males and 4.33 for females. Total remaining life for females (14.37 years) is almost
three years longer than males (11.47), but more than two thirds of these additional years
are spent in ADL disability.

Given subjects who are ADL disabled at age 75, expected remaining healthy life
equals 2.63 years for males and 4.11 years for females; expected remaining life in dis-
ability equals 5.21 years for males and 8.59 years for females. The difference between
males and females in expected residual life is almost 5 years; again the majority of these
additional life years is spent in disability.

At age 75, 10.9% of men and 15.7% of women were disabled. This means that ex-
pected remaining healthy life is 0.891 · 9.21 + 0.109 · 2.63 = 8.49 years for males and
0.843 · 10.04 + 0.157 · 4.11 = 9.11 years for females. The expected remaining life in dis-
ability is 0.891·2.26+0.109·5.21 = 2.58 years for males and 0.843·4.33+0.157·8.59 =
4.91 years for females. The former numbers are not unlike those of Crimmins et al. (2009)
who report disability-free life expectancy of around 11 years for 70-year-old Americans
and of less than six years at age 80. They also report less than 2 years of ADL-disabled
life expectancy at both age 70 and age 80, which is less than our numbers.
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5. Closing remarks

Product integration is the mapping that switches from the transition hazards of a multistate
model towards its matrix of transition probabilities. The product integral may easily be
approximated by a finite product which allows us to evaluate expected waiting times and
other quantities of interest even in the absence of closed formulae.

We refer to Gill and Johansen (1990) for a comprehensive overview on product in-
tegration, including historic remarks. An important statistical paper is Aalen and Jo-
hansen (1978), who used product integration on the matrix of the Nelson-Aalen estimators
of Ajk(t). It is interesting to note that the resulting so-called Aalen-Johansen estimator
of P(s, t), recently implemented in R by Allignol, Schumacher, and Beyersmann (2011)
and de Wreede, Fiocco, and Putter (2011), may also be used for numerical approxima-
tion. If the transition hazards have been determined for a simulation study, say, we may
directly use the approximation of (10). Alternatively, we may simulate a large number of
individuals, and subsequently compute the Aalen-Johansen estimator in order to approxi-
mate P(s, t).

Important statistical papers following Aalen and Johansen (1978) include Gill and Jo-
hansen (1990), who established compact differentiability of the product integral, which
enables use of the function delta method; Andersen, Hansen, and Keiding (1991), who
predicted transition probabilities based on Cox-type models for the transition hazards (re-
cently made available in R by de Wreede, Fiocco, and Putter (2011)), and Aalen, Borgan,
and Fekjær (2001), who used additive models for prediction.

Both in the example, where we have used the non-parametric Nelson-Aalen and
Aalen-Johansen estimators, and in the more technical part of the paper we have relied
on a time-inhomogeneous Markov assumption, which may be violated in applications. A
major breakthrough in non-parametric inference for non-Markov multistate models was
achieved by Datta and Satten (2001), who showed asymptotic unbiasedness of the Aalen-
Johansen estimation of the state occupation probabilities (but not transition probabilities)
in the presence of random right-censoring; Glidden (2002), also using product integration,
subsequently provided weak convergence results. For the special case of the illness-death
model without recovery, Meira-Machado, Uña-Álvarez, and Cadarso-Suárez (2006) de-
veloped non-parametric estimators of the transition probabilities based on an estimator
of a bivariate survival function; see also Meira-Machado and Pardinas (2011) for an im-
plementation in R. More recently, Allignol et al. (2013) showed that simple competing
risks-type techniques can be used to compute the Meira-Machado et al. estimator. They
also provided a simplified estimator, which allows for random left-truncation and general-
izes to arbitrary multistate models. We refer readers to these works for further references
on non-Markov models. We also mention Spitoni, Verduijn, and Putter (2012) who stud-
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ied estimation of transition probabilities in Markov renewal models, also using product
integration.

Throughout, our point of view has been that the transition hazards are given, i.e.,
known as in a simulation, determined by expert guesses or statistically estimated, and our
aim has been to demonstrate the link from the transition hazards via the transition proba-
bilities towards expected waiting times. In the illustration of Section 4, we have empha-
sized this link, but have ignored that the data were interval-censored, a common compli-
cation, not only with demographic data. One popular approach to account for interval-
censoring are embedded Markov chains, see, e.g., Laditka and Wolf (1998), Izmirlian
et al. (2000), Van Den Hout, Jagger, and Matthews (2009) and also Lièvre, Brouard, and
Heathcote (2003), who have provided the popular IMaCh software (http://euroreves.ined.
fr/imach/); see, e.g., Crimmins et al. (2009) and Cambois et al. (2011) for recent applica-
tions of IMaCh. A recent review on statistical inference in the illness-death model without
recovery in the presence of interval-censoring, has been given by Touraine, Helmer, and
Joly (2013) who also pay special attention to life expectancies. In another recent pa-
per, Wolf and Gill (2009) have compared using embedded Markov chains with ignoring
interval-censoring; interestingly, these authors found that no method performed uniformly
superior with respect to life expectancies.

Finally, we have not considered quantification of uncertainty. If asymptotic distribu-
tional properties are available for the initial transition hazard estimation, these may be
transferred to estimation of the transition probabilities and expected waiting times using
the functional delta method. However, the formulae may become formidable, and we sug-
gest following the advice of Andersen et al. (1993), p.221, who consider the bootstrap as
‘an attractive alternative to the calculation of a complicated asymptotic distribution’. For
multistate data, different bootstrap variants are available. The most straightforward choice
is to repeatedly draw with replacements from the individual units, implemented in R in
the msboot function of the mstate package. Another option, typically computation-
ally faster, is the so-called wild bootstrap (e.g. Martinussen and Scheike 2006; Spitoni,
Verduijn, and Putter 2012; Beyersmann, di Termini, and Pauly 2013). Sometimes simply
called ‘simulation method’, the wild bootstrap relies on introducing computer-generated
standard normal variates into the estimation procedure in such a way that the asymptotic
normal limit is approximated by a Gaussian process with approximately the right covari-
ance structure. Correctness of the bootstrap can, e.g., be shown by first verifying that the
bootstrap works for the initial hazard estimation and subsequently applying the functional
delta method again. For example, van der Vaart and Wellner (1996), p. 383, prove that
the bootstrap works for the non-parametric Nelson-Aalen estimator.
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