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Research Article

A matrix approach to the statistics of longevity in heterogeneous
frailty models

Hal Caswell 1

Abstract

BACKGROUND
The gamma-Gompertz model is a fixed frailty model in which baseline mortality in-
creases exponentially with age, frailty has a proportional effect on mortality, and frailty
at birth follows a gamma distribution. Mortality selects against the more frail, so the
marginal mortality rate decelerates, eventually reaching an asymptote. The gamma-
Gompertz is one of a wider class of frailty models, characterized by the choice of baseline
mortality, effects of frailty, distributions of frailty, and assumptions about the dynamics
of frailty.

OBJECTIVE
To develop a matrix model to compute all the statistical properties of longevity from the
gamma-Gompertz and related models.

METHODS
I use the vec-permutation matrix formulation to develop a model in which individuals are
jointly classified by age and frailty. The matrix is used to project the age and frailty dy-
namics of a cohort and the fundamental matrix is used to obtain the statistics of longevity.

RESULTS
The model permits calculation of the mean, variance, coefficient of variation, skewness
and all moments of longevity, the marginal mortality and survivorship functions, the dy-
namics of the frailty distribution, and other quantities. The matrix formulation extends
naturally to other frailty models. I apply the analysis to the gamma-Gompertz model
(for humans and laboratory animals), the gamma-Makeham model, and the gamma-Siler
model, and to a hypothetical dynamic frailty model characterized by diffusion of frailty
with reflecting boundaries.

The matrix model permits partitioning the variance in longevity into components due
to heterogeneity and to individual stochasticity. In several published human data sets,
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heterogeneity accounts for less than 10% of the variance in longevity. In laboratory pop-
ulations of five invertebrate animal species, heterogeneity accounts for 46% to 83% of
the total variance in longevity.

1. Introduction

The gamma-Gompertz (hereafter, G-G) model is one of a class of models that investigate
the effects of hidden heterogeneity — heterogeneity that is either unobservable or un-
observed — on mortality rates. It calculates various consequences of that heterogeneity
for the dynamics of cohorts (e.g. Vaupel, Manton, and Stallard 1979; Vaupel and Yashin
1985; Yashin, Iachine, and Begun 2000; Vaupel 2010; Wienke 2010; Missov 2013). I
refer to this heterogeneity as frailty, making no assumptions about its causes. The goal
of this paper is to present a matrix formulation that permits easy computation of all the
properties of the G-G and other frailty models.

Frailty models can be characterized by their components:

1. the baseline mortality rate,
2. the effects of frailty on the baseline mortality rate,
3. the dynamics of individual frailty over time, and
4. the initial distribution of frailty.

The baseline mortality rate in the G-G model is the Gompertz model, in which mor-
tality increases exponentially with age t,

µ(t) = aebt. (1)

Frailty affects mortality as a proportional hazard. If Z (a non-negative random variable)
denotes frailty, and z its realization, then the mortality of an individual with frailty z at
age t is

µ(z, t) = zµ0(t) (2)

where µ0(t) is the baseline mortality schedule. The frailty z is a fixed property of the
individual, and the initial distribution of frailty is a gamma distribution.

Many other frailty models can be created by changing one or more of these four
components. As we will see, the matrix formulation applies directly to all of them. Other
pleasing properties of the matrix formulation will be discussed in Section 7.

The dynamics at any age of a heterogeneous cohort depend on the distribution of
frailty within the cohort. The dynamics differ from the dynamics of any frailty class
because the distribution of frailty changes as the cohort ages (Vaupel and Yashin 1985).
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The more frail individuals tend to die sooner, and the cohort is progressively dominated
by individuals of lower frailty.

To summarize some well known facts about the G-G model (Wienke 2010; Vaupel and
Missov forthcoming), because frailty is unobserved, observations on the cohort reveal not
the individual mortality schedules, but rather the marginal mortality rate

µ∗(t) =

∫
π(z, t)µ(z, t)dz (3)

where π(z, t) is the distribution of frailty at age t. The survivorship function of an indi-
vidual of frailty z is

S(z, t) = exp

(
−
∫ t

0

µ(z, x)dx

)
(4)

and the marginal survivorship function of the cohort is

S∗(t) =

∫
π(z, 0)S(z, t)dz. (5)

The distribution of frailty at age t is obtained by multiplying the initial probability density
for frailty z by the probability that an individual with fraility z survives to age t, and then
scaling the result by dividing by the integral:

π(z, t) =
π(z, 0)S(z, t)∫
π(z, 0)S(z, t)dz

. (6)

The G-G model assumes that frailty is a fixed individual property and that the cohort
begins life with frailty distributed according to a gamma distribution, z ∼ gamma(k, λ)
with shape parameter k and scale parameter2 λ. The mean and variance of z are E(z) =
k/λ and V (z) = k/λ2. Thus, when E(z) = 1, the distribution is given by
gamma

(
1/σ2, 1/σ2

)
.

2The probability density function is

gamma(k, λ) =
1

Γ(k)λk
zk−1e−z/λ. (7)

Note that two parameterizations of the gamma distribution are widely used. Equation (7) is common in demog-
raphy. MATLAB uses the parameterization

gamma(k, θ)

where k is a shape parameter and θ is a rate parameter. In this parameterization, E(z) = kθ and V (z) = kθ2.
Thus in MATLAB the distribution with mean equal to 1 is gamma

(
1/σ2, σ2

)
.
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The marginal mortality rate (3) for the G-G model is a sigmoid function of age,

µ∗(t) =
aebt

1 + aσ2

b (ebt − 1)
(8)

(Yashin, Vaupel, and Iachine 1994), converging to an asymptote at b/σ2 as t gets large.
Thus, the G-G model is an attractive explanation for the widely observed pattern of de-
celerating increase in mortality with age, in both humans and other species (e.g., Vaupel
et al. 1998; Horiuchi 2003; Vaupel 2010; Missov and Finkelstein 2011).

Although it is simple to state, and widely used, deriving the consequences of the
G-G model is mathematically challenging. Only recently has Missov (2013) obtained
an expression for life expectancy at birth, by integrating the survivorship function (5).
The result, a function of the Gompertz parameters a and b and the gamma distribution
parameters k and λ, is

e0(a, b, k, λ) =
1

bk
2F1

(
k, 1; k + 1; 1− 1

bλ

)
(9)

where the function 2F1(·) is the Gaussian hypergeometric function.3

Life expectancy, however, is only one of many demographic properties implied by a
mortality model. My goal here is to present a matrix formulation that provides not only
the mean, but all the moments of longevity, various measures of life disparity, and the
full dynamics of the joint distribution of age and frailty. It will become apparent from
the construction of this model that it applies equally to a much broader class of frailty
models, and I will present examples.

The organization of this paper is as follows. Section 2 derives the matrix model, using
methods developed for populations in which individuals are jointly classified by age and
stage. Section 3 derives the fundamental matrix, the moments of longevity, the distri-
bution of age at death, and other indices from the matrix model including (Section 3.4)
the dynamics of the frailty distribution over the life of the cohort. Section 4 analyzes
an example, using parameter estimates for Swedish females taken from Missov (2013).
Section 5 discusses some interesting generalizations, with examples. Section 6 uses the
model to partition variance in longevity into components due to individual stochasticity
and heterogeneous frailty. Section 7 concludes by presenting a protocol for computation
and discusses further extensions.

3For more on the Gaussian hypergeometric distribution, see Abramowitz and Stegun (1965, 15.1.1) or the
online version in the NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/15.
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2. The matrix formulation of the gamma-Gompertz model

Notation. In what follows, matrices are denoted by upper-case boldface letters, and
vectors by lower-case boldface letters. Where necessary, the dimensions of matrices and
vectors are denoted by subscripts; thus In is an identity matrix of order n and 1n is a
n× 1 vector of ones. The vector ei is the ith unit vector. The diagonal matrix with x on
the diagonal and zeros elsewhere is denoted D(x). The symbol ◦ denotes the Hadamard,
or element-by-element product. The symbol ‖x‖ denotes the 1-norm of the vector x. The
number of age classes is ω and the number of frailty groups is g.

The matrix G-G model is an age-stage classified model in which stages correspond to
frailty classes. Age-stage classified matrix models have been analyzed in other contexts
by Caswell (2009, 2011, 2012) and Caswell and Salguero-Gómez (2013). The model is
created using the vec-permutation formalism (Hunter and Caswell 2005) and analyzed
using absorbing Markov chain theory (Caswell 2006, 2009, 2013)

To construct the matrix G-G model, let us introduce some notation. Age is described
by a set of discrete age classes 1, . . . , ω. The baseline mortality rates are contained in a
vector µ0 of dimension ω × 1. For the Gompertz mortality model, the baseline mortality
rate vector is

µ0 = a


e0b

e1b

e2b

...
e(ω−1)b

 (10)

Frailty is described by a set of g discrete frailty classes; the frailty values of these
classes are given by a g×1 vector z. To create the frailty classes, first specify a maximum
frailty, where the cumulative gamma distribution reaches some high value; say, 0.9999.
Since very high values of frailty are rapidly eliminated, this end of the distribution is, in
practice, not very important. Then specify a minimum value of frailty as some very small
number; for the applications reported here, a value on the order of 10−7 was adequate.
Since individuals with very low frailty will persist for a long time in the population, it is
important that zmin be small.

Experience suggests that logarithmically spaced values between zmin and zmax work
well, because they provide more detail in the frailty distribution at the low end, precisely
where individuals will persist the longest. An alternative is to evenly divide the inverse
of the cumulative distribution function, so that values are most closely spaced where the
concentration of initial probability is greatest. Given the vector z of frailty classes, the
vector of mortality rates by age, for frailty class i, is

µi = ziµ0 (11)
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The distribution of individuals among frailty classes at age t is given by the vector
π(t); the initial frailty distribution of the cohort is given by π(0). In the matrix G-G
model, π(0) is a discrete gamma distribution with mean of 1 and a specified variance.

2.1 Constructing transition matrices and the vec-permutation model

To construct the age-stage model, define a survival matrix for each frailty class, and a
matrix of frailty transitions for each age class, as follows.

1. Create a survival matrix Ui for each frailty class i. It contains survival probabilities
on the first subdiagonal and zeros elsewhere, and is of dimension ω × ω.

Ui =


0 0 · · · 0

e−µ(zi,0) 0 · · · 0
...

. . .
...

0 · · · e−µ(zi,ω−1) 0

 (12)

2. Create a matrix Dj describing transitions among frailty classes for each age class
j. In the gamma-Gompertz model, frailty does not change, so Dj = Ig for all j.

3. Create block-diagonal matrices U and D by placing the Ui (respectively, Dj) on
the diagonal with zeros elsewhere. Both matrices are of dimension ωg × ωg.

U =

 U1 · · · 0
...

. . .
...

0 · · · Ug

 D =

 D1 · · · 0
...

. . .
...

0 · · · Dg

 (13)

In the gamma-Gompertz model, D = Iωg .

The state of the cohort at age t is given by a vector ñ(t), which is derived from the
array

N (t) =

 n11 · · · n1g
...

...
nω1 · · · nωg

 (14)

that describes the abundance of all age-frailty categories. The population vector is

ñ = vecN T; (15)

558 http://www.demographic-research.org
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that is,

ñ =



n11
...
n1g

...
nω1

...
nωg


(16)

The ith block of entries in ñ contains a sub-vector giving the abundance of the frailty
classes within age class i.

The joint age-frailty composition of the cohort is projected as

ñ(t+ 1) = Ũñ(t) (17)

where the projection matrix is
Ũ = DKUKT (18)

In equation (18), K (to be more precise, Kω,g) is the vec-permutation matrix, or commu-
tation matrix (Magnus and Neudecker 1979; Henderson and Searle 1981). See (Hunter
and Caswell 2005; Caswell 2012) for more about models of the form (18).

Because frailty is fixed in the gamma-Gompertz model, Ũ reduces to Ũ = KUKT.
However, it is good practice to retain the matrix D as a reminder of its potential use when
frailty is dynamic rather than static.

2.2 The absorbing Markov chain

The matrix Ũ in (17) is the transient matrix of an absorbing Markov chain (Feichtinger
1971; Caswell 2001, 2006, 2009; van Raalte and Caswell 2013). The transition matrix of
this chain is

P =

(
Ũ 0

M̃ I

)
(19)

where M̃ is a mortality matrix describing the transitions from transient (i.e., living) states
to absorbing (i.e., dead) states. The fundamental matrix of the chain is

Ñ =
(
Iωq − Ũ

)−1

(20)

with dimension ωg × ωg. The (i, j) entry of Ñ is the expected number of visits to state
i, conditional on starting in a state j, where states describe the full joint age×frailty
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distribution. From the fundamental matrix we can compute all the statistics of the cohort
survival properties. We turn now to these analyses.

3. Analysis of the model

The fundamental matrix Ñ of the joint chain contains all the information necessary to de-
rive the marginal survival function s∗ (a vector of dimension ω×1) and the corresponding
marginal fundamental matrix N∗ (of dimension ω × ω).

3.1 The marginal survival and mortality functions

To obtain the marginal dynamics of the cohort age distribution, first average the columns
of Ñ over the initial frailty distribution. If, as in the gamma-Gompertz case, the initial
frailty distribution has positive support only in the first age class, the result is

s̃ = Ñ
[
e1 ⊗ π(0)

]
.

This column vector gives the expectation, over π(0), of the number of visits to each
age-frailty state by an individual in the first age class.

Next, sum the rows of the vector s̃ within each frailty class to obtain the marginal
mean number of visits to each age class for an individual in the initial cohort. Because
the underlying demographic model is age-classified, a transient state (i.e., an age class)
can be visited at most once; hence the mean number of visits to age class i is the proba-
bility of visiting age class i, which is the survivorship to age class i. Thus the marginal
survivorship function s∗ is

s∗ =
(
Iω ⊗ 1T

g

)
s̃ (21)

=
(
Iω ⊗ 1T

g

)
Ñ [e1 ⊗ π(0)] (22)

The marginal mortality rate vector µ∗ is given by the difference in the log of subse-
quent terms of s∗,

µ∗
i = − log

(
s∗i+1

s∗i

)
(23)
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3.2 The marginal fundamental matrix

The fundamental matrix Ñ gives the number of visits to each age-frailty class. We need
the marginal fundamental matrix N∗, which gives the expected number of visits to each
age class. To obtain N∗, note that the vector s∗ is the first column of N∗, and that the full
matrix is

N∗ =



s∗1 0 0 · · · 0

s∗2
s∗2
s∗2

0 · · · 0

s∗3
s∗3
s∗2

s∗3
s∗3
· · · 0

s∗4
s∗4
s∗2

s∗4
s∗3
· · · 0

...
...

... · · · 1


(24)

(Keyfitz and Caswell 2005, Eq. 10.5.4)4, which can be written

N∗ =
[
s∗1T

s D (s∗)
−1
]
◦Y (25)

where Y is a lower triangular matrix with ones on and below the diagonal and zeros
elsewhere.

3.3 Longevity, variation, and disparity

Many statistics of longevity can be obtained from the marginal fundamental matrix N∗

(e.g., Caswell 2001, 2006, 2009, 2013; van Raalte and Caswell 2013; Engelman, Caswell,
and Agree 2014). These statistics describe the marginal results for the cohort starting with
the initial frailty distribution π(0), including:

1. The moments of the number of visits to each of the transient states. Because tran-
sient states (age classes) in an age-classified model can be visited no more than
once, these moments may be less interesting in the G-G model than in models with
more complicated stage structure. Letting N∗

i be the matrix of the ith moments of
the number of visits, N∗

1 is given by (24), and the higher moments include

N∗
2 =

(
2N∗

dg − I
)
N∗

1 (26)

N∗
3 =

[
6
(
N∗

dg

)2 − 6N∗
dg + I

]
N∗

1 (27)

N∗
4 =

[
24
(
N∗

dg

)3 − 36
(
N∗

dg

)2
+ 14N∗

dg − I
]

N∗
1. (28)

4It seems appropriate to note that Keyfitz presented this result in the first edition of the book in 1977.
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where N∗
dg is a diagonal matrix with the diagonal elements of N∗

1 on the diagonal
and zeros elsewhere (e.g., Caswell 2006, 2009, 2013); for a mathematical source
see Iosifescu (1980).

2. The moments and statistics of longevity. Longevity is equivalent to the time until
absorbtion in one of the absorbing states. The vector η1 of mean longevities (i.e.,
life expectancies) of each age class is given by the column sums of N∗, and subse-
quent moments are as follows, where ηi is the vector of ith moments of longevity:

ηT
1 = 1T

ωN∗ (29)
ηT
2 = ηT

1 (2N
∗ − I) (30)

ηT
3 = ηT

1

[
6 (N∗)

2 − 6N∗ + I
]

(31)

ηT
4 = ηT

1

[
24 (N∗)

3 − 36 (N∗)
2
+ 14N∗ − I

]
. (32)

(Caswell 2006, 2009, 2013). These moments provide a complete set of longevity
statistics, including the variance, standard deviation, coefficient of variation, and
skewness of longevity:

V (η) = η2 − η1 ◦ η1 (33)

SD(η) =
√
V (η) (34)

CV (η) = D (η1)
−1
SD (η) (35)

Sk (η) = D (V (η))
−3/2 [

η3 − 3η1 ◦ η2 + 2η1 ◦ η1 ◦ η1

]
(36)

3. The joint and marginal distributions of age and stage at death. Because the matrix
G-G model is an age-stage structured model, the joint and marginal distributions of
age and frailty class at death are obtained using the mortality matrix M̃ in (19).
If M̃ is created by defining absorbing states corresponding to the age and frailty
class at death, then M̃ = D

(
1T
ωg − 1T

ωgŨ
)

. Then column j of the matrix

B̃ = M̃Ñ (37)

gives the joint distribution of age and frailty at death, conditional on reaching the
age-frailty combination in column j (Caswell 2012).
Averaging the first g columns of B̃ over the initial frailty distribution gives a vector
φ̃ containing the distribution of age and frailty at death of a cohort with initial
frailty distribution π(0):

φ̃ = B̃
[
e1 ⊗ π(0)

]
(38)
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The marginal distributions of age and of frailty at death are obtained by summing
over the appropriate rows of φ̃,

φ∗
age =

(
Iω ⊗ 1T

g

)
φ̃ (39)

φ∗
frailty = (1T

ω ⊗ Ig) φ̃ (40)

3.4 Projecting the distributions of age, frailty, and mortality

The population vector giving the abundance by age and frailty class is projected by the
matrix Ũ in (18):

ñ(t+ 1) = Ũñ(t) (41)

If, as in the G-G model, the initial cohort has support only in the first age class, with
distribution π(0), then ñ(0) = (eT

1 ⊗ Ig)π(0).
Let p̃(t) be the vector giving the proportional age-frailty distribution at time t. It is

given by

p̃(t+ 1) =
Ũp̃(t)

‖Ũp̃(t)‖
, (42)

with p̃(0) = ñ(0)/‖ñ(0)‖.
The marginal age vector and the marginal proportional age distribution vector are

obtained by summing over frailty classes within age classes, as was done in (39) for the
death distribution. They are given by

n∗(t) =
(
Iω ⊗ 1T

g

)
ñ(t) (43)

p∗(t) =
(
Iω ⊗ 1T

g

)
p̃(t) (44)

The marginal frailty vector and the marginal proportional frailty distribution are obtained
by summing ñ and p̃ over age within each frailty class, as was done in (40) for the death
distribution:

m∗(t) = (1T
ω ⊗ Ig) ñ(t) (45)

π(t) = (1T
ω ⊗ Ig) p̃(t) (46)

The marginal distribution vector π(t) corresponds to the frailty distribution as a function
of age given in (6). From π(t), the statistics, particularly the mean and variance, of frailty
and of any quantity that is a function of frailty, can be calculated, to quantify the effects of
selection as a function of age. For example, the mean frailty at age t is given by zTπ(t),
and the second moment is given by (z ◦ z)

T
π(t), where z is the vector of frailty values.

Cha and Finkelstein (2013) have recently discussed the interesting problem of the
moments and statistics (variance, CV) of age-specific mortality in an aging cohort. The
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marginal mortality rate µ∗ in (23) is the first moment; we can calculate all the moments,
and hence such statistics as the variance, CV, skewness, etc. as follows.

First, use the frailty model to create hazard matrices Hm containing the mth powers
of the mortality rates,

Hm =

 µm11 · · · µm1g
...

...
µmω1 · · · µmωg

 (ω × g) (47)

The form of Hm will depend on the chosen frailty model; in the special case of the G-G
model,

Hm = (µ0z
T) ◦ · · · ◦ (µ0z

T)︸ ︷︷ ︸
m times

(48)

where µ0 is the baseline mortality vector and z the vector of frailty values for the g frailty
classes.

Then, create a matrix Π containing, as columns, the frailty distributions obtained
from (46),

Π =
[
π(0) · · ·π(ω − 1)

]
(g × ω) (49)

The vector containing the mth moments of the marginal mortality is the diagonal of
HmΠ,

µ∗
m = diagonal of HmΠ (50)

=
[
I ◦ (HmΠ)

]
1 (51)

4. An example: Swedish females

An example of the calculations is provided by using the G-G parameters a, b, and k
estimated by Missov (2013) from period mortality data on Swedish females from 1891
to 2010. I used these parameters, for the arbitrarily selected year 1950, to create the
matrices U and D (â = 0.0340, b̂ = 0.1200, k̂ = 8.2300). Calculations were carried out
with ω = 150 age classes and g = 100 logarithmically spaced frailty classes. A MATLAB
program to carry out these calculations is available in the Supplementary Material to this
paper.

The marginal mortality rate µ∗(t) is shown in Figure 1. It increases nearly expo-
nentially until about age 75, at which point the effects of selection on mortality become
apparent and the increase decelerates; mortality converges to an asymptote at about age
100.
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Figure 1: Gamma-Gompertz mortality rate µ(t) as a function of age, t.
Straight black lines show the age-specific mortality rates for a few
of the frailty classes in the model. The curved red line shows the
marginal hazard µ∗(t). Parameters for Swedish females as
reported in Missov (2013) for the year 1950
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4.1 Statistics of longevity

The mean, standard deviation, coefficient of variation, and skewness of longevity, com-
puted from N∗ using equations (33)–(36), are shown in Figure 2. The remaining life
expectancy and its standard deviation both decrease with age, but the relative variation,
as measured by the coefficient of variation, increases up to about age 90 and then de-
creases slightly. The distribution of longevity goes from negative to positive skewness
with increasing age.
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Figure 2: Statistics of longevity for the gamma-Gompertz model, as a
function of age, using parameters reported in Missov (2013) for
the year 1950. (a) Life expectancy. (b) Standard deviation of
longevity. (c) Coefficient of variation of longevity. (d) Skewness of
longevity. This and all subsequent figures, unless otherwise noted,
computed with g = 100 and ω = 150
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(d) Skewness of longevity
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4.2 Dynamics of frailty

The selection against more frail individuals is seen in the dynamics of the distribution of
frailty π(t) (Figure 3). Both the mean and the standard deviation of frailty decrease with
age, with the decline becoming visually evident after about age 50. The CV of frailty is
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known to remain constant with age in the G-G model (Wienke 2010, p. 75). In the matrix
calculation, it is very nearly constant, increasing slightly at about age 75.

Figure 3: Changes due to selection in the distribution of frailty, and in the
mean, CV, and skewness of that distribution, over the life of a
cohort. Parameters for Swedish females, as reported in Missov
(2013) for the year 1950
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(b) Mean frailty
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(c) Standard deviation of frailty
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4.3 Effects of the G-G parameters

Figures 4–6 show the effects of varying a, b, and the variance, 1/k, of the initial frailty
distribution over several orders of magnitude centered on the values for Swedish females
in 1950.
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Figure 4: Statistics of longevity for the gamma-Gompertz model, using
parameters reported in Missov (2013) for Swedish females in 1950,
as a function of the Gompertz parameter a
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(c) CV of longevity
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(d) Skewness of longevity
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Not surprisingly, life expectancy declines with increases in a; roughly speaking, a
10-fold increase in a reduces life expectancy at birth by about 10 years (Figure 4). The
standard deviation of longevity also declines with increasing a, more dramatically at older
ages. Together, these changes lead to a coefficient of variation that increases with a. The
skewness of the distribution of longevity also increases with a. When measured at birth,
it is negative, but by age 60 skewness changes from negative to positive as a increases.
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Figure 5: Statistics of longevity for the gamma-Gompertz model, using
parameters reported in Missov (2013) for Swedish females in 1950,
as a function of the Gompertz parameter b, for ages 0, 30, and 60
years
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(b) Standard deviation of longevity
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(c) CV of longevity
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(d) Skewness of longevity
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Increases in b also reduce life expectancy (Figure 5). The standard deviation of
longevity peaks at an intermediate value of b, and declines sharply at higher or lower
values. The coefficient of variation of longevity increases with b until at older ages it
eventually declines. At very high values of b the expectation and standard deviation of
longevity at older ages become zero and the coefficient of variation is undefined.
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Figure 6: Statistics of longevity at ages 0, 30, and 60 years for the
gamma-Gompertz model as a function of the variance in the
gamma distribution of frailty (equal to 1/k). Parameters as
reported in Missov (2013) for Swedish females in 1950. The
vertical lines indicate the observed value of variance
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(b) Standard deviation of longevity
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(c) CV of longevity
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(d) Skewness of longevity
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The effects of changes in the variance σ2 = 1/k of the initial frailty distribution π(0)
are shown in Figure 6. Expected longevity is relatively insensitive to σ2 until it becomes
much higher than that observed for Swedish females, at which point the mean, variance,
and coefficient of variation of longevity all begin to increase with σ2. The skewness
of longevity increases to a peak (at values much higher than those observed), and then
declines again at extremely high values of σ2.
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4.4 Numerical reliability

Based on his results using the Gaussian hypergeometric function (9), Missov (2013) re-
ports a life expectancy of 77.29 years for Swedish females in 1950. Evaluating his for-
mula with the Gaussian hypergeometric function as implemented in MATLAB or in Wol-
fram Alpha gives a result of 76.22 years. The matrix calculation yields 77.23 years or,
when adjusted by 0.5 years to correspond to a trapezoidal integration of the survival func-
tion, 76.73 years. The differences among the various implementations of the calculation
are small (Table 1).

Table 1: Comparison of life expectancy results from Missov (2013), from this
paper, and from Missov’s theorem implemented in MATLAB and
calculated using Wolfram Alpha. The adjusted value from this
paper has had 0.5 years subtracted to make the result directly
comparable to a trapezoidal computation of the integral of S∗(t).
For the matrix calculations, ω = 150 and g = 100

Source Expected longevity

Missov (2013) 77.29
Missov via Matlab 76.22
Missov via Wolfram 76.22
Matrix method 77.23
Matrix method (adjusted) 76.73

Because the matrix calculation is a discrete model, the results are influenced by the
number of frailty classes g and the number of age classes ω included in the model. The
number of frailty classes determines how closely π(0) can approximate a gamma dis-
tribution, and the ability of π(t) to capture the distribution of frailty at late ages when
selection has been operating for a long time. The number of age classes determines the
extent to which the longevity statistics are influenced by the death of all remaining indi-
viduals at age ω, which is not part of the G-G model, but must appear in any finite state
approximation.

Figure 7 shows the effect of ω and of g on the expectation and the standard deviation
of longevity. For this example, choosing ω > 100 and g > 40 provides reliable estimates
of both the mean and the variation of longevity for this data set. Too small a value of ω
reduces both the mean and the standard deviation, because the survival curve is truncated
at age ω.
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Figure 7: Effect of the number of age classes ( ω) and the number of frailty
classes (g) on the estimates of life expectancy and the standard
deviation of longevity, at ages 0 and 50. (a) and (b) show the effects
of age classes, with g = 100. (c) and (d) show the effect of the
number of frailty classes, with ω = 150
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5. Generalizations and extensions of the model

The calculations of N∗, s∗, and all the quantities derived from them depend only on the
vec-permutation model structure (18). As a result, the analysis can be extended from the
G-G model to other models for baseline mortality, other models for the effects of frailty,
other frailty distributions, and other models for the dynamics of frailty.
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5.1 Models for baseline mortality

The baseline mortality schedule µ0 is used to create the frailty-specific mortality sched-
ules µi in equation (11). These schedules are used to create the matrices Ui that appear
in (13). The Gompertz model is only one possible choice of a baseline schedule. Here,
I examine some alternatives; the results, in the same format as Figures 2, 3, and 4–6 are
collected in Appendix A.

The Gompertz-Makeham model

µ(x) = aebx + c, (52)

is obtained by adding an age-independent morality hazard c to the Gompertz model. The
gamma-Makeham model results from incorporating a porportional frailty effect

µi = zi
(
aebi + c

)
(53)

where the zi have a gamma distribution at age 0.
Modifying µ0 in equation (11) transforms the G-G model to the gamma-Makeham

model, with

µ0 =

 e0b

...
e(ω−1)b

+ c

 1
...
1

 (54)

All analyses of the gamma-Makeham model then follow from Ñ, computed from µ(z),
just as with the G-G model.

Zarulli et al. (2013) estimated the parameters in the gamma-Makeham model as part
of an analysis of the effects of education on the mortality of male and female cohorts in
Turin, Italy, from 1971 to 2007. I analyzed their data for the baseline cohort of women,
for which AIC calculations indicated that the gamma-Makeham model was much more
well-supported by the data than the G-G model (Zarulli et al. 2013). Figure A.1 shows the
expectation, standard deviation, CV, and skewness of remaining longevity as a function
of age. The patterns are qualitatively similar to the gamma-Gompertz results for Swedish
females (Figure 2). Selection reduces the mean and the standard deviation of frailty as
age approaches 100, and the log of the marginal mortality rate increases with age in a
sigmoid fashion (Figure A.2).

There is no reason to stop at the gamma-Makeham model. Gage (1998) and Engel-
man, Canudas-Romo, and Agree (2013) have added gamma-distributed frailty to the Siler
model for mortality

µ0(x) = ea1−b1x + ea2+b2x + ea3 (55)

where exp(a1−b1x) is a declining force of infant mortality, exp(a2+b2x) is an increasing
force of old age mortality, and exp(a3) is a constant force of background mortality. An
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analysis of the gamma-Siler model requires only substituting this expression for µ0 for
the gamma-Gompertz mortality function in (10).

Engelman, Canudas-Romo, and Agree (2013) estimated parameters of a gamma-Siler
model for cohorts of Swedish females born from 1875–1916. Here I show results for
the 1900 cohort. The expectation, standard deviation, CV, and skewness of remaining
longevity are shown as functions of age in Figure A.3. The patterns differ from those
of the G-G and gamma-Makeham models mainly in that they show the effects of the
infant mortality term. This effect is also apparent in the marginal mortality function (Fig-
ure A.4c) which declines sharply after birth, remains low, and then increases, eventually
reaching a plateau at older ages.

These examples use parametric functions for the baseline mortality schedule, but they
can easily be extended to semiparametric or nonparametric estimates. The estimated
mortality function simply needs to be incorporated into the matrices Ui.

5.2 Models for the effects of frailty

In the G-G model, frailty affects mortality as a proportional hazard. Other models for the
effects of frailty can be incorporated into the construction of the matrices Ui, by replacing
the proportional hazard formulation in (11) with an expression appropriate to the frailty
effects.

Vaupel and Yashin (2006), for example, briefly considered a model in which frailty
acted to accelerate aging, with

µ(z, x) = µ0(zx). (56)

They pointed out that, if the baseline mortality schedule is Gompertz, then small changes
in z can have large effects on the mortality, especially at later ages. Figure 3 of Vaupel
and Yashin (1985) shows an example with two frailty classes.

Accelerated failure time (AFT) models typically specify frailty in terms of its effect
on the survival function, so that

s(z, x) = s(zx) (57)

which implies that
µ(z, x) = zµ(zx). (58)

(e.g., Anderson and Louis 1995; Keiding, Andersen, and Klein 1997; Klein, Pelz, and
Zhang 1999; Pan 2001).

To incorporate such a model in the matrix calculations require only an appropriate
change in the the expression (11) for the mortality rate of each frailty class.
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5.3 Models for the distribution of frailty

The gamma distribution is attractive as a distribution of frailty for its mathematical prop-
erties, and theoretical results suggest that it is likely to underlie mortality trajectories that
reach a plateau at old ages (Missov and Finkelstein 2011). However, any non-negative
initial distribution π(0) can be incorporated in the calculation of the marginal survival s∗

in (22), and the dynamics of the frailty distribution generated by (46). This includes other
parametric distributions as well as specification of discrete frailty classes (e.g., Vaupel
and Carey 1993).

5.4 Models for the dynamics of frailty

In the G-G model, frailty is a fixed property of an individual. However, individual hetero-
geneity may be dynamic, increasing (debilitation) or decreasing (recuperation) over time
due to stress, disease, etc. The matrix model readily incorporates any finite-state Markov
chain as a model for dynamic heterogeneity, by properly specifying the matrices Di, for
i = 1, . . . , ω.

For example, Vaupel and Yashin (2006) considered a model with two frailty states, z1
and z2. Individuals begin life with frailty z1 and mortality µ1(x), and change from state
one to state two at a rate λ(x). The second frailty state might represent a morbid event
such as a heart attack. This model generalizes to a model considered by Le Bras (1976)
and Gavrilov and Gavrilova (1992) with a countably infinite number of frailty classes.
The mortality rate in frailty class i is µi = µ0 + ziµ, and frailty increases at the rate
λ0 + ziλ. The debilitation process leads to a stochastic increase in individual frailty over
time. The resulting sigmoid trajectory of marginal mortality cannot be distinguished for
that produced by the G-G model with an additive Makeham term (Yashin, Vaupel, and
Iachine 1994; Yashin, Iachine, and Begun 2000).

Yashin, Vaupel, and Iachine (1994) considered a model in which the cohort starts with
some intial frailty distribution, and then frailty of each individual proceeds in accordance
with the LeBras model. Vaupel, Yashin, and Manton (1988) modelled the dynamics of
frailty as a diffusion process, in which individuals may, with equal probability, become
more frail or recuperate to a lower frailty level.

As an example of a model with dynamic heterogeneity, consider a hypothetical sce-
nario where individual frailty changes as a diffusion process with reflecting boundaries.
Frailty is as likely to increase as to decrease, but it cannot decline below 0 or increase
above some maximum limit. If the changes in frailty follow a diffusion process, then the
discrete time transition matrix D can be written

D = ekQ (59)
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where Q is the intensity matrix of a continuous-time, nearest-neighbor random walk with

qij =


1 j = i− 1
−2 j = i
1 j = i+ 1
0 otherwise

(60)

except that, at the boundaries, q1,1 = qg,g = −1. The coefficient k adjusts the speed
of diffusion (e.g., Kondor and Lafferty 2002). Unlike the LeBras model, this diffusion
model does not change the rate of indisposition or recuperation as the frailty changes, but
such dynamics could easily be incorporated.

Using the matrix D from (59) to create the block matrix D in (13), and combining this
with the Gompertz mortality for the Swedish females, gives the results shown in Figure 8.
Both life expectancy and the standard deviation of longevity are maximized at intermedi-
ate values of diffusion. There is a balance between creation of diversity by diffusion, and
removal of diversity by selection (a balance familiar from mutation-selection calculations
in population genetics). At sufficiently high rates of diffusion, individual move among
frailty levels so rapidly that they cannot avoid exposure to high levels of frailty (this re-
duces life expectancy), and because all individuals experience this random movement the
variance in frailty is also reduced.

Figure 8: The expectation and the standard deviation of longevity at birth
for the gamma-Gompertz model with added diffusion of frailty.
Parameters as reported in Missov (2013) for Swedish females in
1950, using g = 120 and ω = 150
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The interaction between the creation of heterogeneity by diffusion and its elimination
by selection is shown in Figure 9. The standard deviation of frailty increases from its
value at birth, under the impact of diffusion. Eventually, mortality increases enough to
reduce the variation by selection. As diffusion declines to zero, the increase in hetero-
geneity is smaller, and its reduction due to selection more prominent.

Figure 9: The standard deviation of frailty in a gamma-Gompertz model
with diffusion of frailty, at zero, low (k = 1), medium (k = 10), and
high (k = 100) values of diffusion. Parameters as reported in
Missov (2013) for Swedish females in 1950, using g = 120 and
ω = 150
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5.5 Some animal mortality patterns

In an exploration of the effects of heterogeneity on the distribution of age at death, Hori-
uchi (2003) estimated G-G parameters from data on laboratory populations of five species
of invertebrate animals: a bean beetle (Callosobruchus maculatus), the medfly (Ceratitis
capitata), the fruit fly Drosophila melanogaster, the nematode Caenorhabditis elegans,
and a parasitoid wasp (Diachasimimorpha longicaudata.) Because the estimated G-G
parameters for these species do not appear in the original paper, they are listed here in
Table B.1.

These species exhibit considerably greater variance in frailty than do the human ex-
amples considered so far, ranging from 0.90 to 2.18. In contrast, estimates of the initial
variance for Swedish females from 1891 to 2010 range from 0.10 to 0.14 (Missov 2013).
Figure 10 shows the marginal mortality rate for each species as a function of age, with
age and mortality rate both standardized relative to life expectancy at birth. The marginal
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mortality rates reach a plateau at an age of about 1 life expectancy, at a standardized
mortality rate of 0.1 to 0.5. Further interspecific analyses would be interesting.

Figure 10: The marginal mortality rate µ∗(t) as a function of standardized
age t, for five species of invertebrate animals, based on G-G
parameters estimated by Horiuchi (2003). The age abcissa is scaled
by dividing age by the life expectancy at birth. The mortality rate
is standardized by multiplying by the same life expectancy
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6. Heterogeneous frailty vs. individual stochasticity: partitioning
variance in longevity

Inter-individual variance in longevity is often taken to be evidence of heterogeneity or
inequality among individuals in their mortality risks. However, variance also arises from
individual stochasticity, the random variation to which the fates of indivduals are subject
even if they experience exactly the same risks at every stage of the life cycle (Caswell
2009, 2011; Tuljapurkar, Steiner, and Orzack 2009). The only way to evaluate the contri-
bution of heterogeneity is to partition the variance into components due to heterogeneity
and to individual stochasticity. Frailty models permit us to do so.

The variance in longevity shown in Figure 11 arises from both individual stochasticity
and heterogeneous frailty. However, as the variance in the initial frailty distribution π(0)
approaches zero, the remaining variance in longevity is due only to individual stochastic-
ity. Figure 11 shows that only a small fraction is due to heterogeneity; most of it is due to
individual stochasticity.
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Figure 11: The variance of longevity, at ages 0 and 60, as a function of the
variance of the initial frailty distribution. (a) The
gamma-Gompertz model, calculated from parameters reported by
Missov (2013) for Swedish females in 1950. (b) The
gamma-Makeham model, calculated from parameters reported by
Zarulli et al. (2013) for a cohort model of the female population of
Turin. (b) The gamma-Siler model, calculated from parameters
reported by Engelman, Canudas-Romo, and Agree (2013) for
Swedish females born in 1900. The vertical lines indicates the
observed values of initial variance in frailty
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(b) Gamma-Makeham model
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(c) Gamma-Siler model
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This is not always the case. Table 2 compares the decomposition of the variance for
Swedish females (using the G-G, gamma-Makeham, and gamma-Siler mdoels) with that
for the animal species from Horiuchi (2003). In the human populations, heterogeneity
accounts for only 2–7% of the variance in longevity. In the experimental animal data,
heterogeneity accounts for 46% to 83% of the variance in longevity. These patterns de-
serve further empirical investigation.

Table 2: Decomposition of the variance in longevity for human populations
and laboratory populations of invertebrate species. The variance σ2

in initial frailty, the variance V (η) in longevity and the components
of V (η) due to individual stochasticity and to heterogeneous frailty,
and the proportion of the variance due to heterogeneity. Species are
listed in order of increasing initial variance in frailty. Data from
Horiuchi (2003)

Species σ2 V (η) Stochasticity Heterogeneity Proportion

Sweden 1950 G-G 0.122 122.9 114.1 8.72 0.071
Turin G-M 0.096 351.6 347.3 104.3 0.012
Sweden 1900 G-S 0.120 1091.7 1074.1 17.60 0.016
nematode 0.90 18.0 9.7 8.3 0.46
fruit fly 0.94 88.1 46.1 42.0 0.48
beetle 1.31 12.7 5.2 7.5 0.59
medfly 1.34 81.8 29.5 52.3 0.64
wasp 2.18 30.3 5.1 25.2 0.83

7. Conclusions

The gamma-Gompertz and other frailty models provide a powerful way to analyze the
mortality of heterogeneous cohorts (Wienke 2010; Vaupel and Missov forthcoming), by
capturing the interacting effects of changing mortality with age and selection among indi-
viduals with different frailty states. The G-G model is a special case in which the baseline
mortality rate follows the Gompertz model (1) and frailty affects the baseline as a propor-
tional hazard, as in (11). The frailty dynamics are fixed, so that D in (13) is an identity
matrix, and the initial distribution π(0) is a gamma distribution with a mean of 1. As we
have seen, many other models can be created by changing one or more of these compo-
nents. The vec-permutation matrix model (18) methodically keeps track of both age and
frailty, and makes it easy to calculate the properties of the joint age×frailty distribution,
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the marginal age-specific mortality and survival functions, and a complete set of statistics
of longevity.

Table 3 gives a step-by-step protocol for the analysis of the G-G and other frailty
models. Other choices of baseline mortality rate (e.g., the Makeham model or the Siler
model considered in Section 5.1), the action of frailty (e.g., accelerated failure time mod-
els), the dynamics of frailty (e.g., the frailty diffusion models discussed in Section 5.4),
or the initial distribution of frailty require only simple modifications of the appropriate
steps in Table 3.

Table 3: A protocol for analysis of the gamma-Gompertz model

1. Specify the Gompertz parameters a and b, and the gamma distribution
paramater k. Choose values for the numbers of age classes ω and the
number of frailty classes g.

2. Generate the baseline mortality vector µ0 from (10)
3. Specify the frailty classes zi, i = 1, . . . , g, and the discrete approximation

to the gamma distribution π. Logarithmically-spaced frailty classes are
recommended.

4. Create the matrices Ui, for i = 1, . . . , g, as in equation (12).
5. Create the block diagonal matrices U and D according to (13).
6. Create the joint transition matrix Ũ according to (18).
7. Analyze the model

(a) Compute the fundamental matrix Ñ from (20).
(b) Compute the marginal survival function s∗ from (22).
(c) Generate the marginal fundamental matrix N∗ from (24).
(d) Generate life expectancy and other indices of longevity from N∗

using (25)–(36).
8. Project the dynamics of the age-frailty distribution ñ(t) with (41). Obtain

the marginal age abundance vector n∗ using (43) and the marginal age
distribution vector p∗ using (44).

9. Obtain the marginal frailty abundance vector m∗ using (45) and the frailty
distribution π(t) from equation (46).

10. If desired, create the mortality matrix M̃ and generate the distributions of
age and of frailty at death from equations (38)–(40).

7.1 Some pleasant properties of the matrix formulation

Too often, analytical methods are treated as competitors, as if there was one best way to
carry out a calculation. This is generally false, usually counterproductive, and a tempta-
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tion to be resisted. Although the matrix formulation of frailty models has many pleasant
properties, it complements, rather than replaces, other formulations (e.g., matrix notation
is unlikely to lead to easily interpretable symbolic results). Some properties worth noting
include the following.

1. Easy computation: all the statistics of longevity, and all the dynamics of the joint
age-frailty distribution, are readily computed. A MATLAB script to compute the
results for the Swedish example from Missov (2013) is included in the Supplemen-
tary Material to this paper.

2. Variance decomposition: because the matrix formulation clearly separates the het-
erogeneity from the stochastic process of mortality, it facilitates decomposition of
the variance in longevity into their contributions.

3. Generality: the analysis extends to any age×frailty model (Table 3) and, indeed,
to stage-classified (e.g., educational status, health status) or multi-stage models as
well as age-classified models.

4. Population growth and stable population theory: the matrix formulation has the
potential to incorporate heterogeneous frailty into models of population growth,
and hence into stable population theory (Caswell 2012).

5. Sensitivity analysis: because the results are obtained by matrix operations, they
are directly amenable to sensitivity analysis using matrix calculus methods (e.g.,
Caswell 2006, 2007, 2008, 2009, 2012, 2013; van Raalte and Caswell 2013; Engel-
man, Caswell, and Agree 2014) Such methods will provide the levels of sensitivity
of the moments of longevity, the joint distribution of age and stage at death, and
the survivorship and mortality functions to changes in any of the parameters of the
model. Results will be presented elsewhere.

6. Likelihood and parameter estimation. The formulation as an absorbing Markov
chain may potentially contribute to the computation of likelihood functions from
data on individuals. Such approaches have been used by animal ecologists ana-
lyzing mark-recapture data (e.g., Caswell and Fujiwara 2004) and implemented in
some software packages (Pradel 2005; Choquet and Nogue 2010). Because frailty
is inherently unobserved, issues of identifiability arise, which can also sometimes
be addressed using the Markov chain formulation (Hunter and Caswell 2009).
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Appendix A: Gamma-Makeham and Gamma-Siler models

This appendix collects results on the statistics of longevity and the dynamics of frailty
for the gamma-Makeham model and the gamma-Siler model, in the same format used for
results from the G-G model in Figures 2 and 3.

A.1 Gamma-Makeham

Figure A.1: Statistics of longevity for the gamma-Makeham model, as a
function of age. Calculated from parameters reported by Zarulli
et al. (2013) for a cohort model for the female population of Turin
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Figure A.2: Statistics of frailty, and marginal mortality rate µ∗, for the
gamma-Makeham model, as a function of age. Calculated from
parameters reported by Zarulli et al. (2013) for a cohort model for
the female population of Turin
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A.2 Gamma-Siler

Figure A.3: Statistics of longevity for the gamma-Siler model, as a function of
age. Calculated from parameters reported by Engelman,
Canudas-Romo, and Agree (2013) for Swedish females born in
1900
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Figure A.4: Statistics of frailty, and marginal mortality rate µ∗, for the
gamma-Siler model, as a function of age. Calculated from
parameters reported by Engelman, Canudas-Romo, and Agree
(2013) for Swedish females born in 1900
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Appendix B: Parameters for animal species

Table B.1: Gamma-Gompertz parameters for the invertebrate animal species
analyzed by Horiuchi (2003); data provided by Horiuchi (personal
communication)

Species a b k

Medfly 0.0027 0.2168 0.7530
Nematode 6.9970× 10−4 0.4059 1.1264
Wasp 0.0278 0.4575 0.4640
Drosophila 6.0558× 10−5 0.1878 1.0796
Beetle 1.3760× 10−4 0.5671 0.7721
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