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Research Article

Unobserved population heterogeneity:
A review of formal relationships

James W. Vaupel 1

Trifon I. Missov 2

Abstract

BACKGROUND
Survival models accounting for unobserved heterogeneity (frailty models) play an impor-
tant role in mortality research, yet there is no article that concisely summarizes useful
relationships.

OBJECTIVE
We present a list of important mathematical relationships that govern populations in
which individuals differ from each other in unobserved ways. For some relationships
we present proofs that, albeit formal, tend to be simple and intuitive.

METHODS
We organize the article in a progression, starting with general relationships and then turn-
ing to models with stronger and stronger assumptions.

RESULTS
We start with the general case, in which we do not assume any structure of the underlying
baseline hazard, the frailty distribution, or their link to one another. Then we sequentially
assume, first, a relative-risk model; second, a gamma distribution for frailty; and, finally,
a Gompertz and Gompertz-Makeham specification for baseline mortality.

COMMENTS
The article might serve as a handy overall reference to frailty models, especially for mor-
tality research.
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1. Population heterogeneity

Unobserved heterogeneity plays an important role in shaping mortality trajectories for
populations. An overview of unobserved heterogeneity in demographic research can be
found in Yashin, Iachine, and Begun (2000) and Vaupel and Yashin (2001b,a, 2006). Vau-
pel and Yashin (1985) present a number of examples in which hazards of individuals or
subpopulations and the hazard of the entire population follow different trajectories. We
do not review that material here and we do not discuss applications to the analysis of
empirical data; the aim of this article is to present the key mathematical relationships that
hold in models with unobserved heterogeneity. We start with the general case and intro-
duce increasingly restrictive assumptions about the distributions of baseline mortality and
unobserved heterogeneity (see Figure 1). We present short proofs and derivations as well
as some brief qualitative interpretations.

Figure 1: Structure of the presentation of relationships

General Setting

Relative Risks and Fixed Frailty

Gamma Frailty

Gompertz Hazard

Gompertz-Makeham Hazard

2. Notation and terminology

In frailty models we distinguish between the mortality schedules for individuals and the
entire population. The model for individuals depends on a random variable Z, called
frailty (Vaupel, Manton, and Stallard 1979), that is unobserved. As a result individual
mortality is captured by a conditional (on frailty) distribution. For a given realization z
of frailty Z we denote the force of mortality (also known as the intensity of mortality, the
hazard of death, the hazard function, or simply the hazard) for individuals by µ(x, z),
and the corresponding survival function by s(x, z). Canonical notation designates these
functions by µ(x | z) and s(x | z), but we prefer the version with a comma for easier
readability. The two functions are linked by the following well-known relationships:
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s(x, z) = exp

−
x∫

0

µ(t, z) dt

 and µ(x, z) = −d ln s(x, z)

dx
. (1)

We assume that the distribution of frailty among survivors to age x is characterized
by a probability density function (p.d.f.) π(x, z). The p.d.f. of frailty at the starting age
of analysis is π(0, z).

The hazard for the population

µ̄(x) =

∞∫
0

µ(x, z)π(x, z) dz (2)

and the survival function for the population

s̄(x) =

∞∫
0

s(x, z)π(0, z) dz (3)

are often designated by µ(x) and s(x), but we prefer the version with a bar-sign on top as
these functions are “averages” with respect to the frailty distribution. We will refer to (2)
and (3) as the population, marginal, or aggregate (population) hazard/survival function
and use these terms interchangeably. They are linked to one another by relationships that
are analogical to (1).

We designate the age-derivative and the relative age-derivative of a function by a dot
and an accent, respectively; e.g., for µ̄(x) we denote

˙̄µ(x) =
d

dx
µ̄(x) and ´̄µ(x) =

d
dx µ̄(x)

µ̄(x)
. (4)

This notation is not new; it can be traced back to Vaupel, Manton, and Stallard (1979) and
Vaupel (1992). Many important demographic relationships have been expressed in such
notation (see, e.g., Vaupel and Canudas-Romo 2003; Vaupel and Zhang 2010). Table A.1
summarizes the basic notation and terminology we use in the following sections.

We present many mathematical relationships: we place an asterisk after the equation
number, e.g., (17*), to denote relationships that we believe are important additions to
knowledge about population heterogeneity. We prove many of the known and new rela-
tionships. Some of these are classic proofs, in which case we provide a citation. Others
are new, at least as far as we know, or so straightforward that we did not scour the litera-
ture to determine if they had been published before. We welcome feedback from readers
about citations we should add in revised versions of this Primer. Finally some proofs are
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so easy that we did not feel that a formal proof was necessary. Again if readers disagree,
we will provide additional proofs in future versions of the Primer. One of the advantages
of publishing in Demographic Research is that articles can be revised as appropriate.

3. General results

General Setting

Relative Risks and Fixed Frailty

Gamma Frailty

Gompertz Hazard

Gompertz-Makeham Hazard

Suppose, in a population, individuals are characterized by Z, a random variable ac-
counting for unobserved heterogeneity, with p.d.f. π(0, z) at a given starting age. We
will use Z to denote a random variable and z to denote a particular value of this random
variable for an individual. Suppose the individuals die or otherwise exit according to a
schedule specified by hazard µ(x, z) and survival function s(x, z). Then the following
relationships hold:

3A. Cohort survivorship in a population s̄(x) is the weighted average of conditional sur-
vival functions s(x, z) that correspond to all profiles π(0, z) in the study population:

s̄(x) =

∞∫
0

π(0, z) s(x, z) dz . (5)

If the population is stratified into a countable number of subgroups, i.e. when π(0, z)
is discrete, (5) becomes

s̄(x) =
∑
z

π(0, z) s(x, z) , (6)

where the support of Z could be finite or countably infinite.
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3B. The density of the frailty distribution among survivors to age x is given by

π(x, z) = π(0, z)
s(x, z)

s̄(x)
. (7)

This can be rewritten as

s(x, z) =
π(x, z)

π(0, z)
s̄(x) , (8)

a formula, due to Vaupel (1992), used in “fixed attribute dynamics” to study, e.g.,
the survival of persons with some genotype based on data on the prevalence of the
genotype at two successive ages (Gerdes et al. 2000; Zeng and Vaupel 2004).

3C. If e(0, z) denotes life expectancy at birth for the subpopulation with Z = z, then life
expectancy at birth for the entire population ē(0) is a weighted average of e(0, z)
across all profiles (Vaupel 1988):

ē(0) =

∞∫
0

e(0, z)π(0, z) dz . (9)

3D. The population hazard µ̄(x) is the weighted average of the hazards µ(x, z) of all
subpopulations at age x, weighted by the distribution π(x, z) at x:

µ̄(x) =

∞∫
0

µ(x, z)π(x, z) dz . (10)

It is the negative relative derivative of the population survivorship s̄(x):

µ̄(x) = −
d
dx s̄(x)

s̄(x)
= −´̄s(x) . (11)

3E. An identical relationship holds for remaining life expectancy ē(x) at age x – only
those individuals that survived to x count (Vaupel 1988):

ē(x) =

∞∫
0

e(x, z)π(x, z) dz . (12)
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3F. The derivative of the population hazard can be expressed as (Vaupel 1992; Vaupel
and Zhang 2010)

˙̄µ(x) = ¯̇µ(x)− σ2
µ(x) , (13)

where

˙̄µ(x) =
d

dx
µ̄(x) =

d

dx

∞∫
0

µ(x, z)π(x, z) dz ,

is the change in the hazard for the entire population at age x,

¯̇µ(x) =

∞∫
0

d

dx
µ(x, z)π(x, z) dz

is the average change in all individual hazards µ(x, z) at x, and

σ2
µ(x) =

∞∫
0

µ2(x, z)π(x, z) dz − µ̄2(x)

is the variance of µ(x, z) across all profiles. Eq. 13 implies that individuals age
faster than populations: ¯̇µ(x) > ˙̄µ(x).

Proof. This is a special case of the more general relationship for derivatives of av-
erages (see Price 1970; Vaupel 1992; Vaupel and Canudas-Romo 2003). The proof
follows from simple differentiation of

µ̄(x) =

∞∫
0

µ(x, z) s(x, z)π(0, z) dz

∞∫
0

s(x, z)π(0, z) dz

by expressing d
dx s(x, z) = −µ(x, z) s(x, z).

3G. The difference between the values of the population hazard at two different ages can
be usefully decomposed in the following way:

µ̄(x2)− µ̄(x1) = [ µ̄(x2)− µ̃(x1) ] + [ µ̃(x1)− µ̄(x1) ] (14)

∀x2 > x1 ≥ 0, where µ̃(x1) is the population hazard at age x1 of survivors to
age x2. The first term on the right-hand side of (14) captures the change in the
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population hazard among survivors to x2, and the second term measures the change
in the composition of the population due to differential survival. Relationship (14)
was introduced by Rebke et al. (2010) for any average characteristic of a population.

4. Relationships for relative-risk models with fixed frailty

General Setting

Relative Risks and Fixed Frailty

Gamma Frailty

Gompertz Hazard

Gompertz-Makeham Hazard

The results presented above hold for any population in which the value of Z for an indi-
vidual is independent of the value of Z for any other individual. The index z could pertain
to a fixed number (realization of a random variable) or vector of numbers (realization of a
random vector). Indeed, an individual might have a vector z = (z1, z2, . . .) that uniquely
defines a stochastic mortality or attrition trajectory. In this section we restrict ourselves
to a fixed single frailty parameter that acts multiplicatively on the baseline hazard. We do
not specify, though, any parametric distribution for it. In a multiplicative (proportional-
hazard, relative-risk) fixed-frailty model (Vaupel et al. 1979), Z can be interpreted as
“frailty”, and the individual force of mortality is defined as

µ(x, z) = z µ(x) , (15)

where µ(x) ≡ µ(x, 1) is the baseline hazard. In this setting, the following relationships
hold:

4A. The population hazard µ̄(x) at any age x is a function of the baseline hazard µ(x)

and the average frailty z̄(x) =
∞∫
0

z π(x, z) dz among survivors to this age (Vaupel,

Manton, and Stallard 1979)

µ̄(x) = z̄(x)µ(x) . (16)
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Because frailer individuals die out first, z̄(x) decreases with age x and, as a result,
the force of mortality for individuals increases faster than the force of mortality for
the population as a whole.

4B. A similar relationship links the changes in the hazards of individuals and the popu-
lation:

¯̇µ(x) = z̄(x) µ̇(x) . (17*)

As z̄(x) declines, the change in the force of mortality for the population becomes
smaller than the change in the baseline hazard.

Proof.

¯̇µ(x) =

∞∫
0

µ̇(x) z π(x, z) dz = z̄(x) µ̇(x)

4C. The variance of the conditional hazard at age x equals the product of the squared
baseline hazard and the variance of the frailty distribution at x

σ2
µ(x) = µ2(x)σ2

z(x) , (18*)

where σ2
z(x) =

∞∫
0

z2 π(x, z) dz − z̄2(x).

Proof.

σ2
µ(x) =

∞∫
0

z2 µ2(x)π(x, z) dz −

 ∞∫
0

z µ(x)π(x, z) dz

2

=

= µ2(x)


∞∫

0

z2 π(x, z) dz −

 ∞∫
0

z π(x, z) dz

2
 =

= µ2(x)σ2
z(x)

A simple corollary is that the squared coefficients of variation of conditional mortal-
ity and frailty are equivalent at any age x:

CV2
µ(x) = CV2

z(x) . (19*)
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Proof.

CV2
µ(x) =

σ2
µ(x)

µ̄2(x)
=
µ2(x)σ2

z(x)

z̄2(x)µ2(x)
= CV2

z(x)

4D. The relative derivative of the population hazard can be expressed as

´̄µ(x) = µ́(x)− µ̄(x) CV2
z(x) . (20*)

Proof. Divide both sides of (13) by µ̄(x) and take advantage of (17*) and (19*).

Eq. 20* has a useful implication (Missov and Vaupel 2014). Suppose the population
hazard levels off after age x∗, i.e.

µ̄(x) = µ̄∗ ≡ const ∀x ≥ x∗ > 0 . (21)

Then the (relative) derivative of the population hazard vanishes

˙̄µ(x) = ´̄µ(x) = 0 (22)

and (20*) is reduced to

µ́(x) = µ̄∗ · CV2
z(x) . (23)

Although this equation has infinitely many solutions, two special cases offer straight-
forward demographic interpretation:
1. µ́(x) = CV2

z(x) = 0, which implies a homogeneous population exposed to a
constant hazard, and

2. µ́(x) = b ≡ const and CV2
z(x) = γ ≡ const, which implies a Gompertz base-

line and gamma-distributed frailty (Missov 2012; Missov and Vaupel 2014).

4E. The average frailty of the dead at x

z†(x) =

∞∫
0

z µ(x, z)π(x, z) dz

∞∫
0

µ(x, z)π(x, z) dz

(24)

can be expressed (Vaupel, Manton, and Stallard 1979) as

z†(x) = z̄(x)
[
1 + CV2

z(x)
]
. (25)
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Proof. Follows by substituting (15) under the integrals in (24) and reorganizing
terms.

The major analytical advantage of assuming relative risks is that the marginal distri-
bution can be expressed from the conditional distribution through the Laplace trans-
form (Laplace 1782, 1785), the properties of which have been thoroughly studied
by Doetsch (1937, 1950, 1955, 1956). The Laplace transform of a function f(z) is
defined as

L(s) =

∞∫
0

e−szf(z)dz . (26)

If f(z) is a p.d.f. of a random variable Z, then (26) is the expected value of the
random variable e−sZ . In this case the Laplace transform is also denoted by LZ and
is called the Laplace transform ofZ or the Laplace transform of the distribution ofZ.

4F. Population survival at age x is the Laplace transform of the frailty distribution cal-
culated at the baseline cumulative hazard

s̄(x) = LZ(H(x)) , (27)

where LZ(·) is the Laplace transform of the frailty distribution at the initial age and
H(x) =

∫ x
0
µ(x)dx is the baseline cumulative hazard. The hazard of the population

µ̄(x) can be then expressed via the same Laplace transform and the baseline hazard:

µ̄(x) = −µ(x)
d

ds
lnLZ(s)

∣∣∣∣
s=H(x)

= −µ(x) ĹZ(s)
∣∣∣
s=H(x)

. (28)

Proof. The expression for s̄(x) follows by expressing s(x, z) in terms of H(x, z) =
zH(x)

s̄(x) =

∞∫
0

s(x, z)π(0, z)dz =

∞∫
0

e−zH(x)π(0, z)dz = LZ(H(x))

and the expression for µ̄(x) results from taking the negative relative derivative of the
expression for s̄(x).
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5. Relationships for relative-risk models with gamma-distributed
fixed frailty

General Setting

Relative Risks and Fixed Frailty

Gamma Frailty

Gompertz Hazard

Gompertz-Makeham Hazard

All results in the previous section hold when frailty acts multiplicatively on the baseline
hazard. In this section we will make the additional assumption that frailty is gamma-
distributed (Vaupel, Manton, and Stallard 1979). The gamma distribution Γ(k, λ) with
positive parameters k, λ has a density

π(0, z) =
λk

Γ(k)
zk−1 e−λz . (29)

Frailty is often assumed to be gamma-distributed for several reasons. First, the gamma
distribution has a flexible shape and converges to a normal distribution as k → ∞ (di-
rect corollary of the central limit theorem). Second, the gamma distribution has a simple
Laplace transform (1 + s/λ)

−k (Mellin 1900), which makes working with the marginal
distribution convenient. Third, π(x, z) is gamma distributed at all ages x with the same k
and λ(x) = λ + H(x). Finally, the gamma distribution has a regularly varying density,
which is the property frailty distributions possess in a wide family of survival models
with unobserved heterogeneity (Missov and Finkelstein 2011). If π(0, z) is a regularly
varying density, then π(x, z) will approach a gamma distribution as s̄(x) approaches zero
(see Abbring and van den Berg 2007; Missov and Finkelstein 2011; Missov and Vaupel
2014). In relative-risk models with gamma-distributed fixed frailty, the following rela-
tionships hold:

5A. 1. The average frailty of survivors to age x or, formally speaking, the expected value
of the frailty random variable at age x, equals (Vaupel, Manton, and Stallard
1979)

z̄(x) =
k

λ+H(x)
. (30)
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Proof. Using (7) and s(x, z) = [s(x)]z = e−zH(x), we get

z̄(x) =

∞∫
0

z π(x, z) dz =
1

s̄(x)

∞∫
0

z π(0, z) s(x, z) dz =

=

(
1 +

H(x)

λ

)k
kλk

(λ+H(x))
k+1

=
k

λ+H(x)
.

2. Suppose the frailty distribution at the starting age has a unit expectation z̄(0) = 1.
This means that the “average” or “standard” individual is subjected to the baseline
hazard µ(x). A mean of one implies k = λ = 1/γ, where γ can be interpreted
as the squared coefficient of variation of Z at any age x. Then (Vaupel, Manton,
and Stallard 1979)

z̄(x) =
1

1 + γ H(x)
. (31)

Proof. Follows directly from (30).

5B. 1. Vaupel, Manton, and Stallard (1979) showed that population survival in a relative-
risk model with fixed gamma-distributed frailty is given by

s̄(x) = LZ(H(x)) =

(
1 +

H(x)

λ

)−k
. (32)

In addition, if z̄(0) = 1, then

2.
s̄(x) = (1 + γH(x))

− 1
γ (33)

and

3.
z̄(x) = [s̄(x)]γ . (34)

Proof. (34) follows directly from (31) and (33).
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5C. If z̄(0) = 1, then (Vaupel 2002)

1.
µ̄(x) = µ(x) [s̄(x)]γ (35)

and (Vaupel, Manton, and Stallard 1979)

2.

µ̄(x) =
µ(x)

1 + γH(x)
. (36)

5D. In a relative-risk model with fixed gamma-distributed frailty the average frailty of
the dead can be expressed as (Vaupel, Manton, and Stallard 1979)

z̄†(x) = z̄(x) · (1 + γ) . (37)

Proof. Follows directly from (25) taking into account that the squared coefficient of
variation for gamma-distributed frailty at any age x is equal to γ.

5E. Suppose the baseline hazards µ1(x) and µ2(x) of two populations are proportional
by a factor of R:

µ2(x) = Rµ1(x) , (38)

where, without loss of generality, R > 1. Then

1. if frailty is gamma-distributed with mean 1 and squared coefficient of variation γ
for both populations, the marginal hazards µ̄1(x) and µ̄2(x) of the two popula-
tions converge (Manton and Stallard 1981).

Proof. Eq. 38 implies that H2(x) = RH1(x). Using in addition (16) and (31),
we get

R̄(x) :=
µ̄2(x)

µ̄1(x)
=
R+RγH1(x)

1 +RγH1(x)
.

R̄(x) > 1 because R > 1 and lim
x→∞

R̄(x) = 1.

2. if frailty is gamma distributed with mean 1 for both populations, but the respective
squared coefficients of variation γ1 and γ2 are such that γ2 > γ1, then there is a
crossover of the marginal hazards µ̄1(x) and µ̄2(x).
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Proof. On the one hand,

R̄(0) = R > 1 .

and, on the other hand,

lim
x→∞

R̄(x) = lim
x→∞

R+Rγ1H1(x)

1 +Rγ2H1(x)
=
γ1

γ2
< 1 .

Hence there is a crossover at x0, at which H1(x0) = R−1
R(γ2−γ1) . 3

5F. Suppose there exists an age x∗ such that

µ2(x) =

{
Rµ1(x) , x < x∗

R∗ µ1(x) , x ≥ x∗ ,

where R > 1 and R∗ are constants, and frailty is gamma-distributed with mean 1
and squared coefficient of variation γ for both populations. Then there is a crossover
of µ̄1(x) and µ̄2(x) if R∗ < 1+RγH1(x∗)

1+γH1(x∗) .

Proof. For x < x∗

R̄(x) =
R+RγH1(x)

1 +RγH1(x)
> 1 .

At x = x∗

R̄(x∗) =
R∗ [1 + γH1(x∗)]

1 +RγH1(x∗)
.

This quantity is less than 1 (i.e., there is a crossover) if

R∗ <
1 +RγH1(x∗)

1 + γH1(x∗)
.

Note that R∗ can exceed 1. 4

5G. Demographic models have often two time dimensions (age and period) with a third
one (cohort) being their linear combination. As a result survival models in demog-
raphy are often defined on a surface. The negative relative derivative of µ̄(x, y) with
respect to year y is denoted as ρ̄(x, y) and captures yearly mortality improvement:

3 This proof is original.
4 This proof is original.
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ρ̄(x, y) = − 1

µ̄(x, y)

∂

∂y
µ̄(x, y) .

In a relative-risk model with gamma-distributed frailty ρ̄(x, y) can be expressed as

ρ̄(x, y) = ρ(x, y)− γ ´̄sc(x, y) (39*)

where s̄c(x, y) denotes survival to age x for the cohort born in y − x,

´̄sc(x, y) = − 1

s̄c(x, y)

∂

∂y
s̄c(x, y) ,

and

ρ(x, y) = − 1

µ(x, y)

∂

∂y
µ(x, y) .

Hence the rate of progress for the population is less than the rate of progress for the
individuals in the population.

Proof. By analogy to the uni-dimensional case (35), we have

µ̄(x, y) = µ(x, y) s̄γc (x, y) .

Combining the latter with the definitions of ρ̄(x, y) and ρ(x, y), we get

ρ̄(x, y) = −
∂
∂y µ(x, y) · s̄γc (x, y) + µ(x, y) · ∂∂y s̄

γ
c (x, y)

µ(x, y) s̄γc (x, y)
=

= ρ(x, y)−
∂
∂y s̄

γ
c (x, y)

s̄γc (x, y)
= ρ(x, y)− γ

∂
∂y s̄c(x, y)

s̄c(x, y)
.
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6. Relationships for relative-risk models with gamma-distributed
fixed frailty and Gompertz hazard (gamma-Gompertz (ΓG)
models)

General Setting

Relative Risks and Fixed Frailty

Gamma Frailty

Gompertz Hazard

Gompertz-Makeham Hazard

A further level of detail in survival models with unobserved heterogeneity can be reached
by specifying the baseline distribution. For various theoretical and empirical reasons the
Gompertz exponential-increase law (Gompertz 1825) is often assumed as the baseline
hazard in models of adult mortality. The Gompertz function can be expressed as

µ(x) = aebx = beb(x−M) ,

where a = µ(0) is the hazard at the initial age, b is the rate of increase, and M is the
mode (Missov et al. 2014).

On the one hand, the Gompertz distribution is a truncated (at 0) Gumbel distribution
(see Gumbel 1958; Lenart and Missov 2014, for a broader discussion), which is a mem-
ber of the class of generalized extreme value (GEV) distributions. The latter describe
distributions of minima or maxima of a set of random variables. Assume a living organ-
ism (or an engineered object) consisting of systems, in which each system is comprised of
organs (elements). The life of each system is determined by the minimal organ (element)
lifetime in it, and the life of the entire organism (engineered object) is determined by the
distribution of these minima. It is not surprising then, that the two most popular baseline
mortality distributions are the Weibull (also belonging to GEV) and the Gompertz, as
they, first, stem from GEV (although, the Gompertz distribution is not a GEV itself), and,
second, model aging processes. Empirically speaking, many time-to-event datasets can
be fitted with serviceable accuracy by a Gompertz hazard. An extension to the Gompertz
model is the Gompertz-Makeham curve aebx + c, which assumes an age-independent
mortality component, and often provides a better fit. In both the gamma-Gompertz (ΓG)
and the gamma-Gompertz-Makeham (ΓGM) model settings, the force of mortality for the
population eventually levels off.
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In a ΓG model with k = λ = 1/γ the following relationships hold:

6A. The population hazard can be represented in several equivalent forms:

1. in terms of the ΓG parameters only (Vaupel, Manton, and Stallard 1979;
Missov et al. 2014)

µ̄(x) =
aebx

1 + aγ
b (ebx − 1)

=
beb(x−M)

1 + γe−bM (ebx − 1)
. (40)

Proof. Follows from (36) taking into account the functional form of the Gom-
pertz baseline cumulative hazard

H(x) =
a

b
(ebx − 1) = e−bM (ebx − 1) . (41)

2. in terms of the baseline hazard, the observed cohort survivorship s̄(x) from
the initial age to age x, and the squared coefficient of variation γ of frailty
(Vaupel 2002)

µ̄(x) = aebx [s̄(x)]
γ

= beb(x−M) [s̄(x)]
γ
. (42)

Proof. Follows from (35) taking into account the expression for the Gompertz
hazard µ(x) = aebx = beb(x−M).

3. incorporating information about the mortality plateau

µ̄(x) = {1− [s̄(x)]
γ} µ̄∗ + [s̄(x)]

γ
µ̄0 , (43*)

where µ̄∗ = lim
x→∞

µ̄(x) = b/γ denotes the plateau and µ̄0 = µ̄(0) = a is the
mortality level at the starting age.

Proof. We express ebx from

s̄(x) =
(

1 +
aγ

b
(ebx − 1)

)− 1
γ

(a corollary of (33) for a Gompertz baseline) and substitute it in (42).

6B. The average frailty among survivors to age x also has three equivalent representa-
tions:
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1. in terms of the ΓG parameters only (Vaupel, Manton, and Stallard 1979)

z̄(x) =
[
1 +

aγ

b
(ebx − 1)

]−1

. (44)

Proof. Follows from (31) and (41).

2. incorporating information about the mortality plateau

z̄(x) =
µ̄∗ − µ̄(x)

µ̄∗ − µ̄0
. (45*)

Proof. Follows from (43*) by taking z̄(x) = [s̄(x)]γ into account and reorga-
nizing terms.

3. rewriting (45*) in terms of parameters b and γ

z̄(x) =
b− γµ̄(x)

b− γµ̄0
. (46*)

Proof. We take advantage of the fact that µ̄∗ = b/γ.

6C. Population survivorship can also be expressed in three alternative ways:
1. in terms of the ΓG parameters only (Vaupel, Manton, and Stallard 1979)

s̄(x) =
[
1 +

aγ

b
(ebx − 1)

]− 1
γ

. (47)

Proof. Population survivorship is the Laplace transform of the frailty distri-
bution calculated for the baseline cumulative hazard. The relationship follows
directly from (33) taking into account the form of the Gompertz cumulative
hazard.

2. incorporating information about the mortality plateau

s̄(x) =

[
µ̄∗ − µ̄(x)

µ̄∗ − µ̄0

] µ̄∗
b

. (48*)

Proof. Follows from s̄(x) = [z̄(x)]1/γ = [z̄(x)]µ̄
∗/b and (45*).

3. rewriting (48*) in terms of parameters b and γ

s̄(x) =

[
b− γµ̄(x)

b− γµ̄0

] 1
γ

. (49*)
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6D. The rate of aging b̄(x) of a population, known as LAR, the lifetable aging rate (Ho-
riuchi and Coale 1990), is usually defined in demography as the relative derivative
of the population force of mortality µ̄(x) with respect to age x:

b̄(x) =
1

µ̄(x)

d

dx
µ̄(x). (50)

In a ΓG model b̄(x) can be represented in at least two different ways. In both cases
the individual rate of aging b exceeds the rate of aging b̄(x) of the population.

1.
b̄(x) = b− γµ̄(x) (51*)

Proof. Taking the derivative of µ̄(x) with respect to x leads to:

b̄(x) =
¯̇µ(x)

µ̄(x)
−
σ2
µ(x)

µ̄(x)
.

The first term on the right-hand side is equal to b for a Gompertz baseline
µ(x) = aebx. The second term can be represented as a product of µ̄(x) and
the squared coefficient of variation of µ(x, z) (or, using (19*), of frailty) at
age x:

σ2
µ(x)

µ̄(x)
= µ̄(x)

σ2
µ(x)

µ̄2(x)
= µ̄(x) CV2

µ(x) = µ̄(x) CV2
z(x) .

The squared coefficient of variation of the gamma distribution depends only
on the shape parameter and equals 1/k. As the distribution of frailty for all
x is gamma with one and the same shape parameter k = 1/γ, CV2

z(x) = γ,
which completes the proof.

2.

b̄(x) = b

(
1− µ̄(x)

µ̄∗

)
(52*)

Proof. Once again we take advantage of µ̄∗ = b/γ.
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General Setting

Relative Risks and Fixed Frailty

Gamma Frailty

Gompertz Hazard

Gompertz-Makeham Hazard

7. Relationships for relative-risk models with
gamma-distributed fixed frailty and Gompertz-Makeham
hazard (gamma-Gompertz-Makeham (ΓGM) models)

A standard extension of the Gompertz model is to add a constant term that ac-
counts for extrinsic mortality, not related to aging processes (Makeham 1860). The
resulting gamma-Gompertz-Makeham (ΓGM) fixed-frailty model is defined by a
conditional hazard

µ(x, z) = z aebx + c ,

which for k = λ = 1/γ results in the following population hazard (Manton, Stal-
lard, and Vaupel 1981)

µ̄(x) =
aebx

1 + aγ
b (ebx − 1)

+ c . (53)

This is an additive-hazards model with a Gompertz age-dependent component af-
fected by frailty, and a constant Makeham component c accounting for non-aging-
related mortality. Most relationships derived for the gamma-Gompertz model (ad-
justed for c) hold in the ΓGM settting, too. The only substantial difference concerns
the rate of aging b̄(x) for the population.
7A. Vaupel and Zhang (2010) present an exact expression for b̄(x) in ΓGM mod-

els:

b̄(x) =
˙̄µ(x)

µ̄(x)
= b

(
1− c

µ̄(x)

)
− γ

(
1− c

µ̄(x)

)
[µ̄(x)− c] . (54)

Proof. One should take advantage of (53) and reorganize terms.

7B. Vaupel and Zhang (2010) derive a relationship, involving the eventual ΓGM
mortality plateau µ̄∗ = b/γ + c, as well:
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b̄(x) = b

(
1− c

µ̄(x)

)
µ̄∗ − µ̄(x)

µ̄∗ − c
. (55)

Proof. At the plateau b̄(x) = 0 and µ̄(x) = µ̄∗, which implies γ = b/(µ̄∗ −
c). Substituting γ in (54) and reorganizing terms accordingly completes the
proof.

7C. If in addition c ≈ 0, i.e., when µ(x) ≈ aebx, then

b̄(x) ≈ b
(

1− µ̄(x)

µ̄∗

)
. (56)

This is an approximate multiplicative relationship between b̄(x) = ´̄µ(x), the
rate of aging for the population, and b = µ́(x), the rate of aging for individu-
als. If c = 0, then the exact relationship (56) holds.

7D. A widely used demographic indicator in comparative research is the remaining
life expectancy at age x, denoted by e(x) and expressed as

e(x) =

∞∫
x

t d(t) dt =
1

s(x)

∞∫
x

s(t) dt . (57)

From a statistics perspective, this represents the first moment (i.e., mean) of
the underlying distribution of deaths after age x. Life expectancy in a gamma-
Gompertz-Makeham framework equals (Missov and Lenart 2013)

e(x) =
(bλ)k e−(bk+c)x

ak(bk + c)
2F1

(
k +

c

b
, k; k +

c

b
+ 1;

(
1− bλ

a

)
e−bx

)
,

(58)
where

2F1(α, β; γ; z) =

∞∑
j=0

(α)j (β)j
(γj)

zj

j!
, (59)

is the Gaussian hypergeometric function defined for γ > β > 0 (see, for
example, Bailey 1935). For n ∈ N, (m)n = m(m + 1) . . . (m + n − 1)
denotes the Pochhammer symbol with (m)0 = 1. Note that for x = 0 (58)
provides an expression for life expectancy at birth.

Proof. As the proof is very technical, we redirect readers to Missov and Lenart
(2013, Appendix A.1., p.33–34).
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Note that for c = 0 and x = 0 (58) is reduced to an expression for gamma-
Gompertz life expectancy (Missov 2013)

e(0) =
1

bk
2F1

(
k, 1; k + 1; 1− a

bλ

)
. (60)

8. Conclusion

Unobserved heterogeneity should not be overlooked when fitting models to time-
to-event data, as this might lead to dubious estimation results (Elbers and Ridder
1982; Heckman and Singer 1982). It can be captured by a random variable (frailty)
that accounts for individual susceptibility. We presented a list of relationships,
starting from the general setting, in which no assumptions about the baseline haz-
ard or the frailty distribution were made. Then we derived a series of relationships
which hold when we add, sequentially, one additional assumption at a time. First,
we focused on multiplicative fixed-frailty models. Then we specified a parametric
distribution for frailty (gamma), and, finally, we focused on particular parametric
baseline hazards (Gompertz or Gompertz-Makeham). The relationships provide
a link between the mortality schedule for individuals and the mortality schedule
for the entire population, e.g., by comparing the conditional and the marginal dis-
tribution of deaths, as well as the rates of aging and mortality improvement for
individuals and the population.
In this article we treat unobserved heterogeneity as a random variable that has an
independent realization for each individual (Vaupel, Manton, and Stallard 1979).
Times to event, however, might be dependent within certain subgroups, e.g. twin
pairs, households, etc. Fixed-frailty models can be extended to capture such phe-
nomena. Shared frailty models (introduced by Clayton 1978) are based on the
assumption that a heterogeneous population is stratified, and all individuals within
a cluster share the same frailty. Cluster-specific frailties are considered to be mutu-
ally independent. The relationships we present in this article hold for shared frailty
models as well. One just has to bear in mind that “individuals” become “clusters”.
Correlated frailty models (dating back to Aalen 1987; Marshall and Olkin 1988;
Yashin, Vaupel, and Iachine 1995) treat dependencies more flexibly – individu-
als within a cluster do not necessarily share the same frailty, but their frailties are
correlated. Frailties belonging to different clusters are assumed independent. An
overview of shared and correlated frailty models is presented in Hougaard (2000);
Duchateau and Janssen (2008) and Wienke (2010). Most relationships we present
in this article do not hold for correlated frailty models as the relationships do not
contain any terms capturing the correlation structure. They also would not hold in

680 http://www.demographic-research.org

http://www.demographic-research.org


Demographic Research: Volume 31, Article 22

multilevel frailty models (see Sastry 1997; Bolstad and Manga 2001; Manga 2001;
Yau 2001), in which the study population is stratified at different levels. The cor-
relation structure in such models is complex and only strong assumptions about
it lead to meaningful relationships. Vaupel and Yashin (2006) briefly discuss the
array of different kinds of frailty models, including changing-frailty models.
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Appendix

Table A.1: Functions used in the main text (column 1), corresponding standard
probability theory notation (column 2), most commonly used name
in the main text (column 3), and alternative names (column 4).

Function Canonical Notation Name Alternative Names

µ(x, z) µ(x | z) individual force individual hazard (function)
of mortality conditional force of mortality

conditional hazard (function)
µ(x) µ(x | 1) baseline force baseline hazard (function)

of mortality
s(x, z) s(x | z) individual survival conditional survival

function function
π(0, z) p.d.f. of frailty at p.d.f. of frailty at

initial age of analysis age 0
π(x, z) p.d.f. of frailty at p.d.f. of frailty among

age x (x > 0) survivors to age x (x > 0)

µ̄(x)
∞∫
0

µ(x | z)π(x, z)dz population force population hazard (function)

of mortality aggregate population hazard
marginal force of mortality
marginal hazard (function)

s̄(x) s(x) population survival marginal survival
function function

σ2
µ(x) Varµ(x |Z) variance of µ(x, z)

µ̇(x)
dµ(x | 1)
dx age-derivative of see entry for µ(x)

baseline hazard
˙̄µ(x)

dµ̄(x)
dx age-derivative of see entry for µ̄(x)

population hazard

¯̇µ(x)
∞∫
0

dµ(x,z)
dx π(x, z)dz average change in

µ(x, z) at age x
µ́(x) 1

µ(x | 1)
dµ(x | 1)
dx relative derivative see entry for µ(x)

of baseline hazard
´̄µ(x) 1

µ̄(x)
dµ̄(x)
dx relative derivative of see entry for µ̄(x)

population hazard
b̄(x) 1

µ̄(x)
dµ̄(x)
dx rate of aging

of a population
ρ̄(x, y) − 1

µ̄(x,y)
dµ̄(x,y)
dy rate of mortality

improvement at
age x in year y
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