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An empirical analysis of the importance of controlling for 

unobserved heterogeneity when estimating the income-mortality 

gradient 

Adriaan S. Kalwij
1
 

Abstract 

BACKGROUND 

Statistical theory predicts that failing to control for unobserved heterogeneity in a 

Gompertz mortality risk model attenuates the estimated income-mortality gradient 

toward zero. 
 

OBJECTIVE 

I assess the empirical importance of controlling for unobserved heterogeneity in a 

Gompertz mortality risk model when estimating the income-mortality gradient. The 

analysis is carried out using individual-level administrative data from the Netherlands 

over the period 1996–2012. 
 

METHODS 

I estimate a Gompertz mortality risk model in which unobserved heterogeneity has a 

gamma distribution and left-truncation of life durations is explicitly taken into account. 
 

RESULTS 

I find that, despite a strong and significant presence of unobserved heterogeneity in both 

the male and female samples, failure to control for unobserved heterogeneity yields 

only a small and insignificant attenuation bias in the negative income-mortality 

gradient. 
 

CONCLUSIONS 

The main finding, a small and insignificant attenuation bias in the negative income-

mortality gradient when failing to control for unobserved heterogeneity, is positive 

news for the many empirical studies, whose estimations of the income-mortality 

gradient ignore unobserved heterogeneity. 

 

 

                                                           
1 Utrecht University School of Economics, Tjalling C. Koopmans Institute, and Network for Studies on 

Pensions, Aging and Retirement (Netspar), the Netherlands. E-Mail: a.s.kalwij@uu.nl. 
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1. Introduction 

The main contribution of this paper to the literature is to statistically test the empirical 

importance for the income-mortality gradient of controlling for unobserved 

heterogeneity in a Gompertz mortality risk model. Statistical theory predicts that failing 

to control for unobserved heterogeneity attenuates the estimated income-mortality 

gradient toward zero. Using individual-level administrative data from the Netherlands, I 

estimate a Gompertz mortality risk model in which unobserved heterogeneity has a 

gamma distribution, taking into account left-truncation of life durations due to 

individuals only entering the sample after age 65. The main finding is that for both men 

and women, unobserved heterogeneity is strongly and significantly present, but that 

failing to control for it does not significantly attenuate the income-mortality gradient 

toward zero. 

Empirical studies covering many populations and time periods have found a strong 

and significant inverse relationship between income and mortality risk.
2
 This negative 

income-mortality gradient, a dimension of the health gradient by socioeconomic status, 

has important implications for economic and public health policies (Brown 2000; 

Huisman et al. 2005; Menchik 1993; Nelissen 1999; Whitehouse and Zaidi 2008). Most 

particularly, it suggests a need for public health interventions to reduce health risk 

factors in low-income groups. Suggestions for economic policy vary from using welfare 

programs to alleviate poverty, and thereby possibly improve health in low-income 

groups, to addressing the issue that financial products such as uniformly priced private 

pension plans have a lower (higher) internal rate of return for low (high)-income groups 

as they have lower (higher) life expectancy. 

The standard empirical framework for estimating the income-mortality gradient is 

a hazard rate model, in which individual mortality risk is explained by age, income, and 

possibly other covariates. In any empirical analysis of mortality risk, however, a sample 

of individuals inherently becomes more selected with age in terms of both observed and 

unobserved individual characteristics (Vaupel and Yashin 2006). Time-invariant 

unobserved individual characteristics (hereafter, unobserved heterogeneity) are, for 

instance, related to individual differences in longevity endowment, such as genes 

(Robine 2007), macroeconomic conditions around birth (Van den Berg, Lindeboom, 

and Portrait 2006), parents’ socioeconomic status (Flores and Kalwij 2014) or even 

prenatal circumstances (Barker 1995). 

Statistical theory predicts that failing to control for unobserved heterogeneity in a 

mortality model with a proportional hazard specification attenuates the estimated 

                                                           
2 See Blakely et al. (2004) for New Zealand, Duleep (1986) for the U.S., Gaudecker and Scholz (2007) for 
Germany, Kalwij, Alessie, and Knoef (2013) for the Netherlands, Leombruni et al. (2010) for Italy, 

Martikainen et al. (2001) for Finland, and Osler et al. (2002) for Denmark. 
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(positive) age and covariate effects toward zero (Bretagnolle and Huber-Carol 1988; 

Aalen 1994; Chamberlain 1985; Lancaster 1990; Schumacher, Olschewski, and 

Schmoor 1987). The consequences of ignoring such unobserved heterogeneity in the 

age-mortality gradient has received much attention in the literature following a seminal 

paper by Vaupel, Manton, and Stallard (1979) that refers to unobserved heterogeneity 

as “frailty”. Although Vaupel, Manton, and Stallard’s (1979) work sparked many 

studies – including Congdon (1994), Hougaard (1984), Manton, Stallard, and Vaupel 

(1981; 1986) and Vaupel and Yashin (1985) – these are mostly concerned with life 

tables for heterogeneous populations.
3
 This research does show that, as predicted by 

statistical theory, the positive age-mortality gradient is steeper once unobserved 

heterogeneity is taken into account. Studies in other disciplines, including economics 

and medicine, have also acknowledged the potential importance of controlling for 

unobserved heterogeneity when investigating, for example, the duration dependence of 

a hazard rate in such varied topics as birth timing, unemployment episodes, and clinical 

trials (see Heckman and Singer 1982; Lancaster 1979; Newman and McCulloch 1984; 

Shepard and Zeckhauser 1980; Turnbull, Jiang, and Clark 1997). 

Yet despite the importance of the income-mortality gradient for policymakers, and 

considering the clear statistical predictions on the consequences of ignoring unobserved 

heterogeneity in a mortality risk model, little empirical evidence is available on the size 

of the attenuation bias in the income-mortality gradient when failing to control for 

unobserved heterogeneity.
4
 In particular, failing to control for unobserved heterogeneity 

results in an attenuation of the impact of income on mortality toward zero and 

policymakers may therefore underestimate its association with mortality. To my 

knowledge, only a handful of empirical papers provide some insight into this issue. 

Among these, Congdon (1994), using data from London boroughs, shows that allowing 

for unobserved heterogeneity does not markedly affect the association between 

mortality and a measure of deprivation. Likewise, Frijters, Shields, and Haisken-

DeNew (2011), drawing on German data, identify only a less-than-half standard error 

difference in estimates of the household income-mortality link between models that do 

and do not control for unobserved heterogeneity. More recently, Kalwij, Alessie, and 

Knoef (2013) show a relatively small impact of not controlling for unobserved 

heterogeneity on the estimated associations between individual and spousal income and 

mortality risk in the Netherlands. These findings echo Omariba, Beaujot, and Rajulton’s 

(2007) conclusion that failure to control for unobserved heterogeneity barely affects the 

impact of household income (among other factors) on infant and child mortality in 

                                                           
3 These and the many related studies often investigate the flattening of mortality risk at older ages or mortality 

among the oldest old. Allied to this research are correlated and shared frailty models (not discussed here) that 

often use data on twins to examine the role of genes in longevity (Yashin, Iachine, and Harris 1999). 
4 A related issue, one beyond the scope of this paper, is that of a causal effect (as opposed to an association or 

a correlation) of income on mortality (Lindahl 2005; Snyder and Evans 2006).  
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Kenya. In sum, although unobserved heterogeneity is significantly present in all four 

studies, not one suggests that failing to model unobserved heterogeneity yields a large 

attenuation bias in the estimated income-mortality gradient.  

These studies, however, share a common methodological shortcoming: they do not 

take into account the left-truncation of life durations that is inherent to using a stock 

sample with information on remaining life durations for those who have survived up to 

the survey year (i.e. a non-random sample). In fact, both Congdon (1994) and Omariba, 

Beaujot, and Rajulton (2007) ignore it, while Frijters, Shields, and Haisken-DeNew 

(2011) and Kalwij, Alessie, and Knoef (2013) take it to some extent into account in a 

heuristic way by adding to their models, respectively, health status and interactions 

between the covariates and age in the year of first observation. Yet not accounting for 

left truncation yields inconsistent estimates in mortality risk models in which 

unobserved heterogeneity is present (Lancaster 1990; Ridder 1984) and may influence 

comparisons of estimated income-mortality gradients between models that have and do 

not have controlled for unobserved heterogeneity. 

The contribution of this paper to the empirical literature is twofold. First, I take 

into account the left truncation of life durations in a mortality risk model with 

unobserved heterogeneity that is used to estimate the income-mortality gradient. 

Second, I not only quantify the attenuation bias in the income-mortality gradient that is 

generated by ignoring unobserved heterogeneity, but also test its significance, a step not 

taken in previous studies. For reasons of identification (explicated below), I restrict 

most of the analysis to one model widely used in the related empirical literature: a 

Gompertz model in which unobserved heterogeneity has a gamma distribution. The 

empirical analysis is carried out using individual-level administrative data from the 

Netherlands over the period 1996–2012. 

The remainder of the paper is organized as follows: section 2 outlines the 

statistical model, section 3 introduces the data and reports the estimation results, and 

section 4 summarizes the main findings, concludes and discusses the limitations of the 

paper. 
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2. Individual mortality risk model 

In line with most of the studies cited above, I assume that individual mortality risk at 

age T= t conditional on observed covariates x and unobserved heterogeneity θ is given 

by 

 

 ( |       )     (   ) (   ) with     (1) 

 

where α is a vector determining the age pattern of individual mortality risk and β is a 

parameter vector determining the relation between the covariates and individual 

mortality risk. Unobserved heterogeneity θ is an unobserved time-constant individual 

characteristic,  ( |       ) is a hazard rate, and the covariates are modeled in the 

multiplicative manner often termed a proportional hazard specification (Cox 1972). 

As in most previous studies, the estimation of the parameter vectors α and β is 

based on a stock sample containing information on the calendar time at which the 

individual entered the current state (birth date), the age when entering the sample, and 

either the life duration (age of death) or the duration until the end of the observation 

period (a right-censored observation). Because the probability of being in the sample 

(i.e., remaining alive until the sample start date) is inversely related to mortality risk, 

the stock sample is a non-random sample. Estimation is thus based on a conditional 

likelihood that takes into account the left-truncation of life durations in the sample. The 

truncated density function of a completed duration t conditional on entering the sample 

at age t0 (and on x) is given by equation (2) (see Online Supplementary Appendix A): 

 

 ̃ ( |          )  
∫  ( |       )   (   )  
 

 

∫  (  |       )   (   )  
 

 

 (2) 

 

where  ( |       ) is the probability density function of a life duration,  ( |       ) 
is the survivor function (i.e., the probability of being alive at a certain age), and  (   ) 

is the probability density function of unobserved heterogeneity with parameter vector γ. 

The left-truncated distribution function of an incomplete life duration t (i.e., a right-

censored observation) conditional on entering the sample at age t0 is given by 

 

 ̃ ( |          )    
∫  ( |       )   (   )  
 

 

∫  (  |       )   (   )  
 

 

 (3) 

 

Once the functional forms of the hazard rate function  ( |       ) and the 

unobserved heterogeneity distribution  (   ) are chosen, the conditional maximum 
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likelihood estimator (CMLE) based on a stock sample of N individuals is given as 

follows (see Online Supplementary Appendix A): 

 

      
     

∑    ( ̃ (  |            ))

 

   

 (    )   (   ̃ (  |            )) 

(4) 

 

Here, the variable mi is equal to one if individual i’s duration is complete (dead) and to 

zero if incomplete (alive; right censored). 

 

 

2.1 Model identification and assumptions 

Elbers and Ridder (1982) prove the nonparametric identification of both a hazard rate’s 

duration dependence and the unobserved heterogeneity distribution when assuming the 

multiplicative specification formalized in equation (1).
5
 Such identification is, however, 

impossible using a left-truncated sample and an assumption is needed concerning the 

distribution of unobserved heterogeneity.
6
 

Following Vaupel, Manton, and Stallard (1979), the demographic literature on 

mortality risk often assumes a gamma distribution and, moreover, Abbring and Van den 

Berg (2007) and Missov and Finkelstein (2011) provide a theoretical justification for 

using this distribution. I therefore assume that unobserved heterogeneity has a gamma 

distribution. Nevertheless, in the empirical analysis I also use, as a sensitivity analysis, 

a log-normal and an inverse Gaussian distribution for unobserved heterogeneity.  

In modeling the age-mortality relationship, I assume a Gompertz specification and 

allow the inclusion of only time-constant observed covariates, thereby enabling explicit 

modeling of the left-truncation, i.e. survival up to the age of sample entry (see Online 

Supplementary Appendix A).
7
 This modeling is based on predicted mortality risks at 

                                                           
5 Elbers and Ridder (1982) prove that, in this case, the densities of duration (conditional on unobserved 

heterogeneity) and unobserved heterogeneity are separately and non-parametrically identified from observed 

individuals’ (incomplete) durations when the risk model contains at least one continuous covariate and an 

assumption concerning either the first moment (needs to be finite) or the tail behavior of the mixing 

distribution. A semi-parametric estimator is provided in Horowitz (1999). 
6 Using the Kuhn-Tucker approach of Baker and Melino (2000), it can be shown that applying a Non-

Parametric MLE estimator (Heckman and Singer 1984) to a left-truncated sample of durations causes a non-

identification of the probability distribution function of unobserved heterogeneity. 
7 For further discussion of the (need for) functional form assumptions when modeling mortality risk, see 

Hougaard (1984) and Manton, Stallard, and Vaupel (1981; 1986). 
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younger ages, which requires the functional form assumption of a Gompertz 

specification for the age-dependency of mortality risk. I return to this in section 3.3.  

 

 

2.2 Assumption of no unobserved heterogeneity  

An assumption of no unobserved heterogeneity simplifies model estimation and 

eliminates the need to make the identifying assumptions discussed in section 2.1. In this 

case, the CMLE is given by (see Online Supplementary Appendix C) 

 

      
   

∑    ( (  |      ))

 

   

 ∫  ( |      )  
  

   

 (5) 

 

where  ( |        )   (   ) (    ). Admittedly, this assumption of no unobserved 

heterogeneity is inconsistent with a mortality risk model’s inherent feature: that with 

age, the sample of survivors is an endogenously selected sample on both observed and 

unobserved characteristics. Nevertheless, in empirical studies on whether a 

characteristic is positively or negatively correlated with mortality risk – in which a 

statistical test would produce a bias toward not rejecting the null hypothesis of no effect 

(Lancaster 1990, Chap. 4) – this assumption might be preferable to those outlined in 

section 2.1. A study that ignores unobserved heterogeneity in a proportional hazard rate 

model and rejects the null-hypothesis of no association between a characteristic and 

mortality risk, would also reject the null-hypothesis once unobserved heterogeneity is 

controlled for.
8
  

 

 

  

                                                           
8 However, if one is interested in the alternative hypothesis such as, for instance, a side effect of a treatment, 

one may need to control for unobserved heterogeneity in order not to underestimate the side effect. 
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2.3 Assumption of a gamma distribution for unobserved heterogeneity 

As explained above, I assume for the most part of the analysis that the unobserved 

heterogeneity distribution  (   ) is a gamma distribution. Online Supplementary 

Appendix C derives the necessary likelihood contributions, which yield the following 

CMLE: 

 

      
      

∑    (
 (    ) (    )

     (    ) (    )
)

 

   

   ((
     (    ) (    )

     (     ) (    )
)

    

) 

(6) 

 

where  (    )  ∫  (   )  
  
 

 and    is the variance of unobserved heterogeneity. 

 

 

3. Empirical analysis 

3.1 The data  

The data are drawn from the 1996–2010 Income Panel Study of the Netherlands (IPO, 

Inkomens Panel Onderzoek, CBS 2012a) and the 1997–2012 Causes of Death Registry 

(DO, Doodsoorzaken, CBS 2012b), both gathered by Statistics Netherlands. The IPO, a 

representative sample of the Dutch population, consists of an administrative panel 

dataset of about 95,000 selected individuals (per year on average) who are followed 

longitudinally. Sampling is based on each individual’s national security number, and 

the selected individuals are followed for as long as they are residing in the Netherlands 

on December 31 of the sample year. Individuals only exit the panel on death or 

emigration from the Netherlands.
9
  

The IPO contains data on gender, year and birth month, and household income, all 

obtained from official institutions such as the population registry, tax office, and 

agencies that pay out (insurance) benefits. The DO, on the other hand, provides the date 

of death for all residents deceased during the 1997–2012 period, taken from records 

provided by medical examiners, who are legally obliged to submit them to Statistics 

Netherlands. The DO dataset also assigns a personal identifier, which allows 

determination of whether an individual in the IPO has died and, if so, when.  

                                                           
9 Likewise, immigrants to the Netherlands may enter the panel in the year of their arrival. 
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I select individuals from the IPO sample who are aged 65 or older on December 31 

in one of the years in the 1996–2010 period (about 14 percent of the sample) and follow 

them from the age of sample entry until either death or the end of the sample period, 

whichever comes first.
10

 I choose 65 as a minimum age because in the Netherlands it is 

the statutory retirement age at which labor contracts are terminated and unemployment, 

disability, and assistance benefits cease. After age 65, all individuals receive a public 

pension benefit (independent of past earnings) and an occupational pension that 

depends on earnings history (Nelissen 1999). Because this retirement income consists 

primarily of pension income – and is thus closely related to earnings history – it serves 

as a good proxy for the socioeconomic status dimension, lifetime income. Because of 

missing income information, I remove 1.1 percent of the observations, leaving a final 

sample of 5,193 men and 7,681 women. 

The dependent variable in the analysis is life duration measured in months. As 

shown in table 1, during the observation period, 3,809 men and 5,114 women die, at an 

average age of 82 years for men and 86 years for women. On average, men enter the 

sample at age 74 and women at age 76. The only covariate used in this analysis is 

standardized household income (referred to as “income”), measured in the year of 

sample entry, and is defined as disposable household income – that is, net of taxes and 

social insurance contributions – measured in 2010 euros using the consumer price index 

and divided by the equivalence scale provided by Statistics Netherlands (Siermann, van 

Teeffelen, and Urlings 2004). 

 

Table 1: Sample statistics 

 Men Women 

Number of individuals 5193 7681 

Average income (in euros) 19967 18174 

Income, 25th percentile (in euros) 13159 12372 

Income, 50th percentile (in euros) 16614 15129 

Income, 75th percentile (in euros) 23543 21595 

Average age at entry (into the sample) 74 76 

Number of deaths 3809 5114 

Average age at death (for those who have died) 82 86 

 

 

                                                           
10 Or until the age of exiting the panel for those who emigrate from the Netherlands. 
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3.2 Empirical model 

In his seminal article Gompertz (1825) characterizes the way that mortality risk changes 

with age (Gompertz law of mortality) and I formalize this concept in my proportional 

hazard specification (equation (1)) as an exponential increase in mortality risk with age. 

I further assume that the logarithm of income proportionally affects mortality risk (i.e. a 

constant income elasticity of mortality risk) and include calendar time (measured in 

months) to control for mortality trends. I thus specify individual mortality risk as 

 

 ( |       )      (                    (      )) (7) 

 

I estimate this mortality model using five different empirical specifications. The 

first, a Cox model (Cox 1972) using partial maximum likelihood (model 1), is semi-

parametric in that it does not make a functional form assumption about the age-

mortality gradient. However, it identifies the parameters β1 and β2 of equation (7) under 

the assumption of no unobserved heterogeneity (i.e., that θ is equal to 1 for all 

individuals). This model is widely used, in particular in the epidemiological literature, 

and given it’s flexible age-mortality relation, a comparison of the estimated income-

mortality gradient with the one from a Gompertz model will show if the restrictive 

specification of the age-mortality relation in a Gompertz model affects the income-

mortality gradient. The other four models are Gompertz models. Model 2 does not 

control for unobserved heterogeneity (see section 2.2) and model 3 includes gamma 

distributed unobserved heterogeneity (see section 2.3). I investigate the sensitivity of 

the estimated income-mortality gradient with respect to the choice of the unobserved 

heterogeneity distribution by using as well a log-normal and an inverse Gaussian 

distribution (models 4 and 5).
11

 

 

 

3.3 Empirical results  

As Table 2 shows, for both men and women, the estimates of the time and income 

effects are virtually identical in models 1 and 2, suggesting that in research focused on 

the income-mortality gradient, the results are likely not to be influenced by using a 

Gompertz age-mortality gradient specification in a proportional hazard rate model. As 

predicted by statistical theory, controlling for gamma-distributed, unobserved 

heterogeneity results in stronger estimated age-mortality and income-mortality 

gradients for both men and women (model 3 vs. model 2). When using an inverse 

Gaussian distribution for unobserved heterogeneity (model 5) the results are rather 

                                                           
11 Version 13 of the statistical software program STATA is used for estimation. 
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similar to those achieved when using a gamma distribution. When using the log-normal 

distribution (model 4) no significant unobserved heterogeneity is identified for men. 

Models 4 and 5 perform worse than model 3 in terms of fitting the data based on an 

Akaike Information Criterion (AIC). This result fits with the theoretical studies 

discussed in section 2.1 and in the remainder of this paper I consider only the gamma 

distribution for unobserved heterogeneity. Finally, the table shows that for all models 

the income-mortality gradient is about the same for men and women, and the decrease 

in mortality with calendar time is stronger for men than for women.  

In model 3, the estimated variance of unobserved heterogeneity is equal to 0.068 

for men and 0.1 for women, which is, by and large, in the range found in previous 

studies on adult mortality, even those that use different methodologies and fail to 

(properly) account for left-truncation. Congdon (1994), for instance, reports variances 

ranging from insignificantly different from zero, up to 0.13 (on average 0.043), 

Bissonnette (2012) finds a variance of 0.082 for U.S. men, and Kalwij, Alessie, and 

Knoef (2013) report a variance of 0.13 for men and 0.05 for women in the Netherlands.  

I next examine whether the underestimation in the income-mortality gradient when 

unobserved heterogeneity is not controlled for – about 15 percent for both men and 

women (model 2 vs. model 3) – leads to statistically significant differences in this 

gradient. To this end, table 3 reports life expectancies at the 25
th

, 50
th

, and 75
th
 

percentiles of the income and unobserved heterogeneity distributions and, more 

important, the differences in life expectancies for individuals with different levels of 

income and unobserved heterogeneity. As discussed in section 2.1, for the computation 

of life expectancy at birth I rely on the Gompertz specification, as it requires predictions 

of mortality risks at ages below 65 (out of sample). As regards the income-mortality 

gradient, in model 3, men with an income at the 25
th

 percentile of the distribution have 

a 1.36 years shorter life expectancy than men with an income at the 75
th

 percentile, a 

difference that is slightly lower (1.05 years) for women. Nevertheless, even though 

comparing these differences with those in model 2 shows that not controlling for 

unobserved heterogeneity yields smaller figures (1.28 years for men and 1 year for 

women), the attenuation biases are not only rather small (0.08 years for men and 0.05 

years for women in model 2) but are insignificantly different from zero.  

Although this finding of a small and insignificant attenuation bias in the income-

mortality gradient could be taken as a sign that unobserved heterogeneity is of little 

empirical importance for mortality risk such is not the case. Rather, as shown at the 

bottom of table 3, the difference in life expectancy between men (women) at the 25
th

 

and 75
th

 percentile of the unobserved heterogeneity distribution is both large and 

significant at 2.97 (3.33) years. 
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Table 2: Estimation results 

 

Note: UH= Unobserved Heterogeneity. 

a) UH is Gamma distributed in model 3, log-normally distributed in model 4 and inverse-Gaussian distributed in model 5. The 

expectation of UH is normalized to one. 

b) A Likelihood-Ratio test. Model 2 is the null-hypothesis (H0: no UH), against models 3, 4 or 5. 

c) Akaike Information Criterion (AIC=2k-2xlog-likelihood; k=number of parameters; Akaike 1974).  For the AIC calculations I 

use unrounded log-likelihood values.  
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Table 3: Life expectancies in 1996 based on the estimation results of models 2 

and 3 of Table 2 

 

Men 

  

 Women 

  

 

Model 2 Model 3 

 

 Model 2 Model 3 

 

Life expectancy (in years)
 a
 

No control for 

unobserved 

heterogeneity 

Control for 

unobserved 

heterogeneity 

Δ
b
 

 No control for 

unobserved 

heterogeneity 

Control for 

unobserved 

heterogeneity 

Δ
b
 

Income, 25
th
 percentile

 c
 73.61 74.17 0.56  81.23 81.52 0.29 

(p-value) 

  

(0.00)  

  

(0.00) 

Income, 50
th
 percentile

 c
 74.12 74.71 0.59  81.59 81.89 0.30 

(p-value) 

  

(0.00)  

  

(0.00) 

Income, 75
th
 percentile

 c
 74.89 75.53 0.64  82.23 82.57 0.34 

(p-value) 

  

(0.00)  

  

(0.00) 

    
 

   
Difference: 75

th
 versus 25

th
 percentile 1.28 1.36 0.08  1.00 1.05 0.05 

 (p-value) (0.00) (0.00) (0.90)  (0.00) (0.00) (0.34) 

    
 

   
Unobserved heterogeneity, 25

th
 percentile 

 

76.42 

 

 

 

83.63 

 Unobserved heterogeneity, 50
th
 percentile 

 

74.71 

 

 

 

81.89 

 Unobserved heterogeneity, 75
th
 percentile 

 

73.45 

 

 

 

80.30 

 Difference: 75
th
 versus 25

th
 percentile 

 

-2.97 

 

 

 

-3.33 

 (p-value) 

 

(0.00)      (0.00)   

 
a
 Only for a rough comparison: the Human Mortality Database (2008) reports a 1996 life expectancy of 74.65 for men and 80.33 for 

women. 
b 
Δ is the difference in outcome between the model with and the model without controlling for unobserved heterogeneity. 

c
 Table 1 reports the 25

th
, 50

th
, and 75

th
 percentiles of the income distribution. 

 

 

4. Conclusions 

My primary analytical concern in this paper is the extent to which the estimated 

income-mortality gradient is attenuated toward zero, when a Gompertz mortality risk 

model fails to control for unobserved heterogeneity. I do in fact identify a strong and 

significant presence of unobserved heterogeneity for both men and women, and find 

that, as statistical theory predicts, failing to control for unobserved heterogeneity 

attenuates the income-mortality gradient toward zero. Nevertheless, this attenuation 

bias is small and insignificantly different from zero, which is positive news for the large 

body of research on the income-mortality gradient that ignores unobserved 

heterogeneity. 

Of course, additional empirical evidence is needed before more general 

conclusions can be drawn, as there are several limitations to this study that could be 

addressed in future research. The main data-limitations are the relatively short 

observation period of 16 years and the left-truncation at age 65. The former may affect 

the identification of the distribution of unobserved heterogeneity as it requires a long 

period of time, and the latter may affect the estimation of the age gradient and the 

computation of life expectancy, as these involve (out of sample) predicted mortality 
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risks at younger ages. In addition, the main finding is conditional on the Gompertz 

model with gamma-distributed unobserved heterogeneity. I have shown the robustness 

of my results when using different specifications, and more model selection tests and 

sensitivity analyses along these lines could be carried out. A potential limitation 

concerning the empirical specification is the constant income-mortality risk elasticity, 

and one may investigate a more flexible relationship between income and mortality risk 

(see, e.g., Belloni et al. 2013). Finally, future research might, for example, examine the 

importance of unobserved heterogeneity in the relationship between mortality and 

socioeconomic and behavioral risk variables, such as education and smoking 

behavior.
12

 

 

                                                           
12 Zarulli et al. (2013), for instance, examines this issue for Italy. A formal statistical test is, however, missing. 
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Online supplementary appendix 

This online supplementary appendix provides a derivation of all elements needed to 

estimate a Gompertz mortality model with gamma distributed unobserved 

heterogeneity, using a stock sample. It gathers the necessary ingredients spread over 

several studies such as D’Addio and Rosholm (2002), Lancaster (1990) and Ridder 

(1984), and may therefore be useful to other researchers. 

 

 

Appendix A: Derivations and stock sampling 

Individual mortality risk at age T=t conditional on observed covariates x and 

unobserved heterogeneity θ is given by 

 

 ( |       )     (   ) (   ) with     (A1) 

 

where α is a parameter vector determining the age pattern of individual mortality risk 

and β is a parameter vector determining the associations between the covariates (x) and 

individual mortality risk. The initial assumption, therefore, is a proportional hazard 

specification (Cox 1972). 

Given equation (A1), the probability density function of life duration conditional 

on θ and x is (see Appendix B) 
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As discussed in section 2, the estimation of parameter vectors α and β is based on a 

stock sample, meaning that the likelihood function for estimation must be based on the 

density function of life duration conditional on the individual being alive at the start of 

the observation period. The joint density function of being born at calendar time τ and a 

completed duration t is given by 

 

 (   |         )   ( |     )   ( |       )  (A4) 
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where  ( |     ) is the entry rate at calendar time τ and ξ is a parameter vector 

determining how the entry rate is affected by x and θ. For the moment, I abstract from 

the possibility of a right-censored observation but consider it when constructing the 

likelihood function. I also abstract from the covariates’ distribution function using a 

partial likelihood argument and doing so does not affect the derivations. Because 

unobserved heterogeneity is by definition unobservable, there is no empirical 

counterpart to equation (A4). Hence, the estimation is based on the expected value of 

the above joint density function with respect to unobserved heterogeneity: 

 

 (   |       )    [ (   |         )], 

 (   |       )  ∫  ( |     )  
  

 
  ( |       ) ( )  . 

 
(A5) 

 

This calculation is often referred to in the literature as “integrating out” 

unobserved heterogeneity and equation (A5) is a marginal distribution function. It 

should be noted that unobserved heterogeneity cannot take on negative values. 

One feature of a stock sample is that it is left-truncated with respect to life 

duration; that is, an individual only enters the sample after being alive for some time. 

Such a sampling scheme thus yields observations with relatively long durations. 

Maximum likelihood estimation, therefore, has to be based on the left truncated 

distribution function of life durations. For this I define I(τ) as a discrete random variable 

equal to one if the individual is in the sample at calendar time τ and zero otherwise. I set 

calendar time at entry equal to zero (τ = 0) and use t0 to denote the age at which the 

individual entered the sample. The calendar time at which the individual was born is 

thus τ=-t0, and the probability of being alive and in the (stock) sample at calendar time 

zero is as in equation (A6) (Lancaster 1990; D’Addio and Rosholm 2002): 
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According to this equation, the probability of being in the stock sample is 

proportional to the mean duration; that is, an individual with a high survival probability 

is more likely to be in the sample at calendar time     than an individual with a low 

survival probability. 

Each individual observation is characterized by a given age at entry into the 

sample (t0; calendar time zero), a date of birth (calendar time -t0), and an age at death 

equal to t (calendar time t–t0). The fact that not all individuals from the same birth 

cohort are observed at calendar time zero (i.e., they died earlier) leads to left truncation. 
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The truncated density function of duration up to sample entry t0 and life duration t in the 

stock sample is given by 
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Substituting equations (A5) and (A6) into equation (A7) yields the following 

marginal and conditional density functions: 
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and 
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When having a left-truncated sample, maximum likelihood estimation is based on 

the conditional density function and the resulting estimator is referred to as the 

conditional maximum likelihood estimator (CMLE). Using a CMLE instead of a MLE 

based on the truncated density function (equation (A7)) avoids the calculation of 

 ( ( )   |       ), which involves an integral that does not have, in general, a 

closed form solution. The proof for the correctness of using an estimator based only on 

the conditional density function is clearly expounded in Goto (1996). He also shows 

that the CMLE achieves the semi-parametric efficiency bound in left-censored duration 

models. 

The conditional density function still contains the unknown parameter vector ξ and 

an additional assumption on the entry rate function is needed. It is conventional to 

assume that the entry rate (in this case, the birth rate) is either independent of θ 

conditional on x, i.e.  (   |     )    (   |   ), or a constant, i.e.  (   |     )  
 . In these cases the entry rate in the numerator and denominator cancels out the 

conditional density function and equation (A9) simplifies to 

 

 ̃ ( |    ( )           )  
∫  ( |       )  ( )  
 
 

∫  (  |       )  ( )  
 
 

  (A10) 

 



Kalwij: Unobserved heterogeneity and the income-mortality gradient 

936 http://www.demographic-research.org 

where t and t0 are life duration and age at sample entry, respectively. Equation (A10) is 

equation (2) of the main text with the condition of being in the stock sample ( ( )   ) 

suppressed. It also excludes the parameter vector ξ, which does not enter the conditional 

distribution, but includes the variance parameter    of the density function of 

unobserved heterogeneity (see Appendix C). This slight change in notation also holds 

for equation (3) of the main text, which represents the cumulative conditional density 

function: 
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This approach outlined above is in line with Ridder (1984), who suggests  

explicitly modeling the probability that an individual enters the sample after t0 years. 

Because the conditional maximum likelihood estimator (CMLE) requires data from age 

zero onwards, only an assumption of a functional form for the age dependence of 

mortality risk (e.g., the Gompertz specification used in section 3 of the main text) can 

eliminate the need for additional data. This specification, however, being basically an 

assumption of the validity of extrapolating the age dependence estimated on, in this 

paper, a 65+ sample, to individual mortality risk from age zero onward, can only be 

implemented empirically if the covariates are time invariant (section 2.1 of the main 

text). 
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Appendix B: A hazard rate model 

Individual mortality risk at time t is defined as the instantaneous probability of dying 

conditional on survival up to age t, formalized as (Lancaster 1990) 
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From this, the law of conditional probability yields 
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The limit at the right side is, by definition, the probability density function 

 ( |       ), which corresponds to the probability distribution function  ( |       ) 

of the continuous random variable life duration (T). Using  ( |       )    
 ( |       ), I then obtain 
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Equation (B2) is a differential equation in t that, with the initial condition 

 ( |       )   , yields the solution  ( |       )     ( ∫  ( |       )  
 

 
) 

and the following probability density function: 
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A proportional hazard rate specification for mortality risk (equation (A1)) allows 

the probability density function to be written as 
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, (B4) 

 

which is equation (A2). The survivor function is the second term on the right side of 

equation (B4), which is equation (A3). 
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Appendix C: Unobserved heterogeneity distribution  

When unobserved heterogeneity is assumed to be gamma distributed, the conditional 

density function of equation (A10) can be written as 
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with   (   ), a parameter vector that determines the location and shape of the 

gamma distribution. A slight change of notation is that, compared to equation (A10), 

the condition  ( )    is suppressed and the parameter vector ξ is excluded. I then 

define the numerator on the right side of equation (C1) as  ( |       ) and rewrite it 

as follows: 
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where  ( |     )     ( ∫  ( |     )  
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integral on the right side of equation (C2) covers the entire support for the gamma 

distribution and is therefore equal to 1. Hence, 

 

 ( |       )  
 ( |     )

(    ( ( |     )))
    

 

 
     , (C3) 

 

The corresponding cumulative distribution,  ( |       ), can then be obtained 

using  ( |     )   
   ( ( |     ))

  
: 
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The hazard rate is 
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Equation (C5) makes clear that parameter   cannot be separately identified from a 

constant included in the (baseline) hazard. I thus apply normalization so that the mean 

is equal to one, 
 

 
  , and the variance to 

 

   
 

 
   . The conditional density 

function (i.e., equation (C1)) now becomes  
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Equation (C6) contains the elements of the likelihood function in equation (6) of 

the main text. In the special case of no unobserved heterogeneity,     , equation 

(C6) becomes 
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I use this density function to set up the likelihood function in equation (5) of the 

main text. 
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