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Symmetries between life lived and left in finite stationary populations

Francisco Villavicencio1

Tim Riffe2

Abstract

BACKGROUND
The Brouard-Carey equality describes the symmetries between the distribution of life
lived and life left in stationary populations. This result was formally proved for pop-
ulations of infinite size and continuous time, and a subsequent attempt to prove it for
populations of finite size is invalid.

OBJECTIVE
We attempt to provide a formal mathematical proof of the Brouard-Carey equality for
finite stationary populations.

CONCLUSIONS
The symmetries between life lived and life left in finite stationary populations can only be
proved if time is explicitly discretized. The proof is more complex than in a continuous-
time framework, but it conforms with the kinds of data usually available to researchers.

CONTRIBUTION
The main contribution of this paper is to offer a complete and formal proof of the sym-
metries between life lived and life left for finite stationary populations in a discrete-time
framework. This result is a useful tool for the study of human and non-human popula-
tions when the assumption of stationarity is acceptable, especially when subject ages are
unknown, but individuals are followed-up until death.
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2 Max Planck Institute for Demographic Research, Rostock, Germany.
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1. Introduction

The symmetries between life lived and life left in stationary populations have drawn the
attention of several scholars in past years. Examples are found in the fields of demog-
raphy and population biology (Goldstein 2009, 2012; Kim and Aron 1989; Müller et al.
2004, 2007; Riffe 2015; Vaupel 2009), and reliability engineering (Cha and Finkelstein
2016; Finkelstein and Vaupel 2015). One of the main results that has recently emerged
is “Carey’s equality,” as first coined by Vaupel (2009), which establishes that the age
composition equals the distribution of remaining lifetimes in stationary populations. To
our knowledge, this relationship was first described by Brouard (1989), and was later and
independently noticed by James Carey in the study of the survival patterns of captive and
follow-up cohorts of med-flies (Müller et al. 2004, 2007). Hence, we choose to refer to
this relationship as the ‘Brouard-Carey equality.’3

Vaupel (2009) proved that in stationary populations of infinite size and continuous
time, the probability that a randomly selected individual is age x equals the probability
that the individual has exactly x time left until death. Formally,

(1) c(x) = g(y) for x = y ,

where the probability density function c(x) describes the age composition of the popu-
lation, and the probability density function g(y) gives the distribution of remaining life-
times. This result has several applications in the study of human and non-human popula-
tions with unknown ages. For instance, in capture-recapture studies in which individuals
are captured and then followed until death, assuming strict and deterministic stationarity
and the absence of other biases, it can be inferred that the unobserved distribution of ages
at capture is equal to the observed distribution of the follow-up durations.

Rao and Carey (2015) claim to have an alternative and innovative proof of the
Brouard-Carey equality that “does not depend on any of the classical works on renewal
equation and renewal theory,” and that is inspired by experimental observations of cap-
tive individuals (Rao and Carey 2015: 587–588). Hence, their approach is an attempt to
prove the Brouard-Carey equality for empirical and finite stationary populations, rather
than theoretical infinite populations, as is the case in Vaupel (2009). However, the use of
continuous time in finite populations represents a subtle flaw in Rao and Carey’s work:
In order to validate the Brouard-Carey equality for finite stationary populations, time
measures need to be explicitly discretized.

In the following section we analyze Theorem 1 by Rao and Carey (2015). Next, we
discuss why the symmetries between life lived and life left in finite stationary populations
3 The relationship was mentioned in Brouard (1986), with a citation to a 1985 version of the 1989 manuscript.

We have not been able to locate the 1985 version.
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are not valid under continuous time, and that the adoption of a discrete-time framework is
imperative. Finally, we suggest a reformulation of the Brouard-Carey equality for finite
stationary populations.

2. Rao and Carey’s Theorem 1

The motivation underlying Rao and Carey’s approach to prove the Brouard-Carey equal-
ity is the observation of survival patterns in captive med-flies. As stated by the authors,
their “theory and method of proof uses sequentially arranged data of captive individu-
als” (Rao and Carey 2015: 588), which implies empirical – and consequently finite –
stationary populations.

If the Brouard-Carey equality were true for finite stationary populations, one would
expect the number of individuals of any age x to equal the number of individuals with x
life left in the same population at any time point. Rao and Carey (2015) adopt a slightly
different approach, suggesting the existence of a graphical symmetry between the sets of
capture ages and follow-up durations of a finite stationary population.4 The following is
the statement of Theorem 1 by Rao and Carey (2015: 584–585):

Theorem 1 (Rao and Carey). Suppose (X ,Y ,Z) is a triplet of column vectors, where X =
[x1,x2, ...,xk]

T , Y = [y1,y2, ...,yk]
T , Z = [z1,z2, ...,zk]

T representing capture ages, follow-up
durations, and lengths of lives for k-subjects, respectively. Suppose, F(Z), the distribution
function of Z is known and follows a stationary population. Let G1 be the graph connect-
ing the co-ordinates of SY , the survival function whose domain is N(k) = {1,2,3, ...,k}
i.e. the set of first k positive integers and SY ( j) = y j for j = 1,2, ...,k. Let G2 be the graph
connecting the co-ordinates of CX , the function of capture ages whose domain is N(k)
and CX ( j) = x j for all j = 1,2, ...,k. Suppose C∗X (− j) = x j for all j = 1,2, ...,k. Let H
be the family of graphs constructed using the co-ordinates of C∗X consisting of each of the
k! permutations of graphs. Then one of the members of H (say, Hg) is a vertical mirror
image of G1.

From our reading, Theorem 1 claims that if X = (x1, ...,xk) are the capture ages of
a stationary population of k individuals, and Y = (y1, ...,yk) the corresponding follow-up
durations, then the elements of X and Y can somehow be reordered such that the graph
G1 connecting the coordinates {( j,y j) : y j ∈ Y} and the graph Hg connecting the coordi-

4 We consider the terms ‘age,’ ‘life lived,’ and ‘capture age’ as synonyms, and the same applies to ‘remaining
lifetime,’ ‘life left,’ and ‘follow-up duration.’ For instance, in capture-recapture studies, the terms ‘capture ages’
and ‘follow-up durations’ may be more appropriate. The terms ‘time to death,’ ‘remaining lifespan,’ or ‘residual
life’ are also frequently used to refer to life left.

http://www.demographic-research.org 383

http://www.demographic-research.org


Villavicencio & Riffe: Symmetries between life lived and left in finite stationary populations

nates {(− j,x j) : x j ∈ X} are vertical mirrors of each other. Figure 1 shows an example of
graphs G1 and Hg as defined by Rao and Carey (2015), for a population of ten individuals.

Figure 1: Diagram of the graphs G1 and Hg as defined by Rao and Carey
(2015) for a population of ten individuals
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Note: The right curve in the first quadrant corresponds to G1, and it is a decreasing graph representing follow-
up durations. The left curve in the second quadrant corresponds to Hg, and it is an increasing graph
representing capture ages. G1 and Hg are vertical mirrors of each other with respect to the y-axis.

Unfortunately, Theorem 1 as stated is invalid at this time. The main conceptual
flaw of Rao and Carey’s approach is that they do not explicitly account for discrete-time
measures, which we discuss in depth in Section 3. Moreover, their paper does not provide
a complete proof of the theorem because the existence of a graph Hg symmetrical to G1
is assumed, but not proved.

In the last lines of the proof of Theorem 1, the following can be read (Rao and Carey
2015: 586–587):

Thus, by previous arguments, a family of graphs H is constructed. One of
these combinations, for example, the gth combination, is used to construct a
graph which we denote with Hg, which satisfies the following equalities:

|t1−|−1|(g)|= 0 and |yt1 − x(g)1 |= 0
|t2−|−2|(g)|= 0 and |yt2 − x(g)2 |= 0
...
|tk−|− k|(g)|= 0 and |ytk − x(g)k |= 0

384 http://www.demographic-research.org
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here {(|−1|(g),x(g)1 ),(|−2|(g),x(g)2 ), ...,(|− k|(g),x(g)k )} are the gth combina-
tion of cells such that Hg is a vertical mirror image of G1. Image of G1 is
visualized as if it is seen from the mirror kept on y-axis. Note that we have
generated k! graphs by our construction, and one of such graphs, which we
called as Hg is shown to have a vertical mirror image of G1.

In the construction of H several graphs are generated, but the authors do not prove
the existence of a graph Hg ∈H that satisfies all the equalities. Though it is not explicitly
mentioned, Rao and Carey assume that for all yi ∈Y there exists x j ∈ X , such that x j = yi.
In other words, they assume that each of the values of follow-up durations is identical to
exactly one of the values of capture ages. Without this assumption it is not obvious that
even for a single element, let’s say yti , there exist xi and g such that |yti − x(g)i | = 0 (see
counterexample in Section 3.1). However, from Figure 1 it is clear that having a set of
follow-up durations, each equal to exactly one capture age, is a necessary and sufficient
condition for symmetry between Hg and G1. Statements of set equality and symmetry
between sorted sets are equivalent, and the assumption of one cannot be used to prove
the other. Hence, the existence of Hg is assumed but not proved, and the demonstration is
therefore incomplete.

3. Invalidity of the Brouard-Carey equality for finite stationary
populations under continuous time

To demonstrate the invalidity of the Brouard-Carey equality for finite stationary popula-
tions under continuous time, we concoct a trivial and reproducible counterexample. We
show that under continuous time it is not true that resorting the captures ages and the
follow-up durations of a finite stationary population yields two symmetrical graphs, G1
and Hg. Therefore, Hg as constructed by Rao and Carey (2015) does not necessarily exist.

3.1 Counterexample to Rao and Carey’s Theorem 1

Imagine a long series of identical birth cohorts, each with ten individuals. Every year,
exact clones of the same ten individuals are born in the same order, in equal and uniform
intervals throughout the year. Individuals within cohorts have varying lifespans, but the
exact same pairing of lifespans with individuals is repeated in each year. The order of
birth, birth time, and lifespan of cohort members for this example are given in Table 1.

http://www.demographic-research.org 385
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Table 1: Description of ten individuals in the repeated birth cohort. Birth
times are expressed as proportions of a year. Each individual
lifespan is identical to an exact age at death

Individual 1 2 3 4 5 6 7 8 9 10
Birth time 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
Lifespan 0.30 8.10 6.20 7.40 5.20 3.60 0.60 6.70 1.10 3.10

Figure 2 depicts a long series of birth cohorts composed as in Table 1. We refer
to the beginning of a year or time-period as the ‘exact time t,’ whereas the year itself
would be the ‘time-period [t, t + 1).’ From Figure 2 we note that the population would
achieve a stationary size of 43 at exact time t, with ten births and ten deaths within every
subsequent year or time-period [t, t+1), [t+1, t+2), etc. If we take a census (a complete
capture) in the stationary part of the series at exact times t, t + 1, etc. (dashed vertical
lines in Figure 2), it is possible to record the exact life lived and life left of each of the
43 individuals in the population. One can easily verify from Table 2 that at exact time t,
while there is an individual with age 7.85, there are no individuals in the population with
7.85 years of life left. Analogously, there is an individual ‘captured’ at age 6.85, but no
individuals with 6.85 years of life left, and other similar cases can be found. Therefore,
in this example – which abides by the conditions set out in Theorem 1 by Rao and Carey
(2015) and is even more generous since there is no stochasticity in births and deaths – it
is not the case that for each individual with a follow-up duration (life left) of yi there is an
individual j whose capture age (life lived) is exactly x j = yi. Consequently, Theorem 1
by Rao and Carey (2015) is invalid, because without this assumption the graphs of G1
and Hg would never be symmetrical, irrespective of the sorting process of the vectors of
capture ages (X) and follow-up durations (Y ).
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Figure 2: Lexis diagram of a long series of birth cohorts composed as in
Table 1
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Note: At exact time t the population would achieve a stationary size of 43, with ten births and ten deaths within
every subsequent time-period. The dashed vertical lines represent population censuses.

Table 2: Life lived (xj) and life left (yj) data from any census carried out in
the stationary part of the series at exact times t, t+1, etc., of the
stationary population described in Table 1 and Figure 2

Individual 1 2 3 4 5 6 7 8 9 10 11
xj 7.85 6.85 5.85 4.85 3.85 2.85 1.85 0.85 5.75 4.75 3.75
yj 0.25 1.25 2.25 3.25 4.25 5.25 6.25 7.25 0.45 1.45 2.45

Individual 12 13 14 15 16 17 18 19 20 21 22
xj 2.75 1.75 0.75 6.65 5.65 4.65 3.65 2.65 1.65 0.65 4.55
yj 3.45 4.45 5.45 0.75 1.75 2.75 3.75 4.75 5.75 6.75 0.65

Individual 23 24 25 26 27 28 29 30 31 32 33
xj 3.55 2.55 1.55 0.55 3.45 2.45 1.45 0.45 0.35 6.25 5.25
yj 1.65 2.65 3.65 4.65 0.15 1.15 2.15 3.15 0.25 0.45 1.45

Individual 34 35 36 37 38 39 40 41 42 43
xj 4.25 3.25 2.25 1.25 0.25 0.15 3.05 2.05 1.05 0.05
yj 2.45 3.45 4.45 5.45 6.45 0.95 0.05 1.05 2.05 3.05
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3.2 The discrete-time framework

In a theoretical population model, one can assume time to be continuous regardless of
whether the population is finite or infinite. Hence, it may be possible to compute vital
rates and the instantaneous, though theoretical, amount of births and deaths at any time
t. If the population is assumed to be stationary with constant size, then the instantaneous
amount of births and deaths are also constant over time. On the contrary, in an empirical
and finite population in which individuals are indivisible, the instantaneous amount of
births and deaths can possibly be zero, and one would rather compute the number of
births and deaths in a time-interval between observations.

These remarks have an important effect on how stationarity is defined in empirical
populations. Let’s consider the previous example from Section 3.1. If a census is carried
out in the middle of a year, let’s say at time t+0.3, one would observe that four individuals
died since time t (individuals 1, 27, 31, and 40 from Table 2) but only three were born over
the same interval (see Table 1). Hence, the population size has not remained invariant.
This shows that in an empirical set-up as the one suggested by Rao and Carey (2015),
rigorous stationarity can only be detected if the population is observed at regular time
points, because the population size may undulate between observations. Therefore, time
measures need to be explicitly discretized.

Instead of referring to age and time as continuous variables, let’s consider age and
time intervals or categories, all of the same width. For instance, all individuals with ages
between 0 and 1 are assigned to the age group [0,1), individuals with ages between 1 and
2 are assigned to the age group [1,2), etc.5 Analogously, individuals with life left between
0 and 1 are assigned to the [0,1) life left group, and so on. If we proceed this way with
the life lived and life left values of Table 2 we observe that the same eight categories are
used for age and life left: from [0,1) to [7,8). Moreover, as shown in Table 3, the number
of individuals in each age group equals the number of individuals in the corresponding
life left group. Certainly, the same values from Table 3 would be obtained in any census
carried out in the stationary part of the series at exact times t, t +1, etc.

Table 3: Age and life left data from Table 2 grouped in categories

Age / life left category [0,1) [1,2) [2,3) [3,4) [4,5) [5,6) [6,7) [7,8)
No. individuals in age 9 7 7 7 5 4 3 1
No. individuals in life left 9 7 7 7 5 4 3 1

These observations lead to the following conclusion: If a finite stationary population
is observed at regular time-intervals, and age and life left are grouped at intervals of
5 The same approach is used in matrix population models, in which one also considers an age-classified popu-

lation, and defines the projection matrix (‘Leslie matrix’) from exact time t to exact time t+1 for each age class
(Caswell 2001; Leslie 1945)
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the same width, then the Brouard-Carey equality may hold. A more formal statement is
presented in the following section.

4. The Brouard-Carey equality in finite stationary populations

In keeping with our treatment, we present a reformulation of the Brouard-Carey equal-
ity for finite stationary populations in a discrete-time framework that can be understood
as complementary to Brouard’s and Vaupel’s approach to the Brouard-Carey equality
(Brouard 1989; Vaupel 2009). However, it must be clearly stated that this result only
generalizes to empirical populations in the form of an expectation, even if the underlying
birth and death rates are invariant over time. In general, the exact symmetry of theoretical
stationary populations does not hold for captured populations, where both the finite wild
population and the captured subset of it (the sample) are subject to stochastic variation.

4.1 Relationship

Suppose there is a finite stationary population that is observed at regular time points.
Assume age, life left, and time are discretely measured, and the same time unit is used
for all of them. Let’s define,

Nx(t): number of individuals in age [x,x+1) at exact time t, and
Ωy(t): number of individuals with [y,y+1) life left at exact time t.

Then,

(2) Nx(t) = Ωy(t) for x = y and ∀t.

Equation (2) is the Brouard-Carey equality for finite stationary populations.

4.2 Proof

The assumption of perfect stationarity implies that the population is closed to migration,
and that the population size, the observed age-specific death rates, and the number of
newborns within every time-interval (B) are constant over time (Preston, Heuveline, and
Guillot 2001, Chap. 3). Let’s introduce the following terms that are commonly used in
demographic analysis, especially when working with the Lexis diagram:

• Bx(t): number of xth birthdays in the time-interval [t, t + 1). This is analogous to
the survival function of the continuous case;

http://www.demographic-research.org 389
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• LDx(t): number of deaths in age [x,x+1) in the time-interval [t, t+1) to individuals
who reached age x in the same interval. This is usually referred to in the literature
as the ‘lower Lexis triangle’;
• U Dx(t): number of deaths in age [x,x+1) in the time-interval [t, t +1) to individ-

uals who reached age x in the previous interval. This is usually referred to in the
literature as the ‘upper Lexis triangle’; and
• qx: probability of dying between ages x and x+1 given survival to exact age x.

Death probabilities are given by

(3) qx = 1− Bx+1(t +1)
Bx(t)

=
LDx(t)+U Dx(t +1)

Bx(t)
∀x≥ 0 and ∀t,

and refer to the age-cohort Lexis parallelogram.6 The conversion from death rates to death
probabilities only depends on the age-specific average number of person-years lived in
the interval by those dying in the interval, which are usually denoted by ax (Chiang 1984;
Preston, Heuveline, and Guillot 2001). It is generally accepted in stationary population
and life table models that the ax values are constant over time, in addition to the age-
specific death rates. Therefore, the age-specific death probabilities qx can also be assumed
to be independent of time.7

Since B0(t) = B for all t because the birth flow is constant over time,

(4) Bx+1(t +1) = Bx(t)
(
1−qx

)
= B

x

∏
n=0

(1−qn) ∀x≥ 0 and ∀t,

and therefore the Bx(t) values do not depend on time either, and can be simply denoted
by Bx. Using this result and (3), one finds that for all x and at any time t,

qx = 1− Bx+1(t +1)
Bx(t)

= 1− Bx+1(t)
Bx(t)

=⇒ LDx(t)+U Dx(t +1)
Bx(t)

=
LDx(t)+U Dx(t)

Bx(t)
=⇒ U Dx(t +1) = U Dx(t)(5)
=⇒ LDx(t +1) = LDx(t).(6)

6 This line of thought is in accordance with the general acceptance that in the discrete case, the probabilities
of death in the interval of discretization are used instead of death rates. Here, we follow the same approach
suggested by Preston, Heuveline, and Guillot (2001) in the definition of qx, which is identical to the one used
by the Human Mortality Database for cohort life tables (Wilmoth et al. 2007). However, in matrix population
models, death probabilities – or the analogous survival probabilities – usually refer to the period-cohort Lexis
parallelogram, instead of the age-cohort parallelogram. For instance, the elements of the sub-diagonal of the
Leslie matrix are the probabilities that an individual with age [x,x+1) at exact time t will be alive in age group
[x+1,x+2) at exact time t +1 (Caswell 2001; Leslie 1945).
7 For time-intervals of length n = 1, the conversion from death rates mx to death probabilities is given by

qx = mx/(1− (1−ax) ·mx), assuming mx is represented by a step function. Thus, if mx and ax are constant over
time (usually ax is assumed to be a half time-interval, except for the first age group), so are the qx values. See
Preston, Heuveline, and Guillot (2001) or Wilmoth et al. (2007) for a more detailed discussion.
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Equations (5) and (6) imply that the number of deaths in each age-specific lower and
upper Lexis triangle are independent of time, and one can simply write LDx and U Dx.8

The Lexis diagram in Figure 3 may help visualize all these concepts.

Figure 3: A Lexis diagram depicting the quantities Nx(t), Bx(t), LDx(t), and
U Dx(t)
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Note: Nx(t) refers to vertical segments in the diagram, as of a population census. Bx(t) refers to horizontal popula-
tion segments, representing birthdays, which are typically only directly observed for the birth series. LDx(t)
refers to the lower Lexis triangle of deaths for a given age, and U Dx(t) to the upper Lexis triangle. The abdc
parallelogram depicts the deaths of individuals born in [t, t + 1) that die in [t + 1, t + 2) (period-cohort Lexis
shape). The cde triangle depicts the deaths in [t, t +1) of individuals born in that same time-period.

From Figure 3, note that Nx(t) = Bx(t− 1)− LDx(t−1) for all x ≥ 0 and for all t.
Since all these terms do not depend on time, one finds that

(7) Nx(t) = Bx− LDx ∀x≥ 0 and ∀t.

Thus, if we were able to prove that

(8) Ωy(t) = By− LDy ∀y≥ 0 and ∀t ,

that would demonstrate the Brouard-Carey equality in (2). To do so we proceed by math-
ematical induction, which is a common proof technique that requires of two steps: 1)
8 As shown later in the proof, having constant values of LDx and U Dx is a necessary condition for validating the

Brouard-Carey equality for finite stationary populations. In this case, this is achieved by assuming that the mx
and ax values are constant over time, but one could have obtained the same result by using other assumptions.
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prove that (8) holds for the base case (y = 0), and 2) prove that if (8) holds for y (induc-
tive hypothesis), then it also holds for y+1.

1. It is clear from (7) that the number of individuals in age [0,1) at exact time t is
N0(t) = B− LD0, that is, the difference between the births occurred in the time-
period [t − 1, t) and the newborns who were born and died in that time-period.
On the other hand, the number of individuals with [0,1) life left at exact time t is
Ω0(t) = D(t)−κ0(t), where D(t) are all the deaths of individuals of all ages that
will occur in the time-interval [t, t+1), and κ0(t) represents the new individuals that
will join the population in [t, t+1) and die before t +1, and hence are not observed
at exact time t. As long as the population size is constant, D(t) = B0(t) = B, and
since the population is closed, new individuals can only come from births. There-
fore, κ0(t) = LD0(t) = LD0, that is, newborns from [t, t +1) that die in [t, t +1). As
a result,

(9) Ω0(t) = D(t)−κ0(t) = B− LD0 = N0(t) ∀t.

2. Second, let’s assume that (8) holds for y. It needs to be proved that it also holds for
y+1.
The individuals with [y+1,y+2) life left at exact time t will have [y,y+1) life left
at exact time t+1. Therefore, Ωy(t+1) =Ωy+1(t)+κy+1(t), where κy+1(t) are the
individuals that join the population in [t, t +1) and at exact time t+1 have [y,y+1)
life left. Hence, those individuals later die in the time-interval [t + y+1, t + y+2).
As new individuals can only enter the population via birth flow, analogous to the
previous case,

(10) κy+1(t) = U Dy(t + y+1)+ LDy+1(t + y+1) = U Dy + LDy+1 ,

i.e., newborns from [t, t +1) that die in [t + y+1, t + y+2) before reaching exact
age y+ 1 (U Dy), or after reaching exact age y+ 1 (LDy+1). In general, κy(t) is
equal to the period-cohort Lexis parallelogram of deaths of the birth cohort born in
[t, t +1) and dying in [t + y, t + y+1). Figure 4 shows a life-left diagram that may
provide some intuition to all these concepts.
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Figure 4: A life-left diagram, depicting two complete calendar time-periods
on the x-axis and the final two remaining-lifetime periods on the
y-axis
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Note: Diagonal lines delineating death cohorts descend downward. Interval segments on the x-axis represent
the death flow, which in this case is equal to the birth flow. Vertical segments represent discrete values of
Ωy. The increment that accrues to a death cohort passing from Ω1(t) to Ω0(t + 1), κ1(t), is marked by the
parallelogram abdc (equivalent to the parallelogram abdc in Figure 3), while the increment that accrues in
the final time-period of life, κ0(t +1), is marked by the triangle cde.

Note that at any time t and for any y ≥ 0, By = By+1 +U Dy + LDy (see Figure 3).
Besides, the inductive hypothesis implies that Ωy(t +1) = By− LDy. Hence,

Ωy+1(t) = Ωy(t +1)−κy+1(t) = By− LDy−U Dy− LDy+1

= By+1 +U Dy + LDy− LDy−U Dy− LDy+1

= By+1− LDy+1 ,
(11)

which proves (8). Given that the right-hand terms of (11) do not depend on time,
this result stands for all time t.

Equations (7) and (8) imply that Nx(t) = Ωy(t) for all x = y and for all time t, thereby
proving (2). Q.E.D.
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5. Discussion

Rao and Carey (2015) introduce a novel approach to the Brouard-Carey equality for finite
stationary populations. As stated by the authors, their work does not depend on classi-
cal renewal theory, and it is inspired by experimental observations. Unfortunately, the
proof of their Theorem 1 stands invalid at this time, which jeopardizes results that depend
on that theorem. In Section 3 we have provided a counterexample that invalidates the
theorem as stated.

Our suggested reformulation of the Brouard-Carey equality is intuitively simpler,
and takes into consideration that stationarity in finite and empirical populations can only
be observed if time measures are explicitly discretized. Using discrete life table functions,
we have proved that in non-stochastic stationary populations and in a discrete-time frame-
work, at any time t the number of individuals in age interval [x,x+1) equals the number
of individuals in the life left interval [x,x+1). Note that this set-up allows for seasonality
of the distribution of births and deaths, as long as the death counts in each Lexis triangle
are constant over time. Thus, the Brouard-Carey equality in Eq. (2) applies both for pop-
ulations that experience reproductive periods at concentrated points in the time-interval
(birth pulses) – as is the case in many non-human populations – as well as populations
that do not have seasonal reproduction, and whose birth flow is approximately uniformly
distributed.

Brouard (1989) and Vaupel (2009) showed that in continuous time and with a sta-
tionary population of infinite size, the probability that a random individual is x years old
equals the probability the individual has x years of life left. In this sense, both results
– the continuous and the discrete cases – are complementary and prove the existence
of a symmetry between the age distribution and the distribution of remaining lifetimes
in stationary populations. Demographers often think of time as a continuous process,
which permits the use of differential calculus on demographic functions, and facilitates
the proof of demographic relationships among these functions. However, in daily work,
researchers usually deal with data collected at discrete-time points, such as surveys, cen-
suses, or capture-recapture data. Therefore, one of the main contributions of this paper
is to offer, under certain common assumptions, a clear and formal proof of the Brouard-
Carey equality for empirical populations in a discrete-time framework. The discretization
of time provides a more realistic reference, but makes the demonstration more complex
than in the continuous case.

Following Rao and Carey’s idea, our inspiration also comes from an empirical set-up
in which capture ages are unknown, but individuals are followed until death, which is a
common scenario in many studies on wild animals (Müller et al. 2004, 2007). However,
it also applies to human populations when the ages of individuals are unknown, as may be
the case in historical data or other kinds of incomplete demographic data. For instance, in
the Barcelona Historical Marriage Database – which collects information about marriage
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licenses of Barcelona (Spain) from the mid-15th century until the early 20th century –
individuals are first identified in their marriage record and then followed up, but no in-
formation is available about their birth date or their age at marriage (Villavicencio, Jordà,
and Pujadas-Mora 2015).

Perfect stationarity is rarely observed, but it is often a useful assumption if the error
implied is not overly distortive. The Brouard-Carey equality serves as a useful rule of
thumb when the assumption of stationarity is acceptable for the population universe, and
when the sampling of the population at large is unbiased with respect to age and lifespan.
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