
DEMOGRAPHIC RESEARCH
A peer-reviewed, open-access journal of population sciences 

DEMOGRAPHIC RESEARCH

VOLUME 44, ARTICLE 15, PAGES 363–378
PUBLISHED 16 FEBRUARY 2021
http://www.demographic-research.org/Volumes/Vol44/15/
DOI:10.4054/DemRes.2021.44.15

Formal Relationships 32

How do populations aggregate?

Dennis M. Feehan

Elizabeth Wrigley-Field

This article is part of the Special Collection on “Formal Relationships”.
Guest Editors are Joshua R. Goldstein and James W. Vaupel.

c© 2021 Dennis M. Feehan & Elizabeth Wrigley-Field.

This open-access work is published under the terms of the Creative
Commons Attribution 3.0 Germany (CC BY 3.0 DE), which permits use,
reproduction, and distribution in any medium, provided the original
author(s) and source are given credit.
See https://creativecommons.org/licenses/by/3.0/de/legalcode

http://www.demographic-research.org/Volumes/Vol44/15/
https://creativecommons.org/licenses/by/3.0/de/legalcode


Contents

1 Relationship 364

2 Proof 365

3 Related relationships 365
3.1 Discrete version 365
3.2 Length-biased sampling 365
3.3 Two ways of aggregating rates 367

4 History 368

5 Application 369

6 Acknowledgements 372

References 373

Appendix 374



Demographic Research: Volume 44, Article 15

Formal Relationships 32

How do populations aggregate?

Dennis M. Feehan1

Elizabeth Wrigley-Field2

Abstract

BACKGROUND
Understanding the relationship between populations at different scales plays an important
role in many demographic analyses.

OBJECTIVE
We show that when a population can be partitioned into subgroups, the death rate for the
entire population can be written as the weighted harmonic mean of the death rates in each
subgroup, where the weights are given by the numbers of deaths in each subgroup. This
decomposition can be generalized to other types of occurrence-exposure rates. Using
different weights, the death rate for the entire population can also be expressed as an
arithmetic mean of the death rates in each subgroup.

CONCLUSIONS
We use these relationships as a starting point for investigating how demographers can cor-
rectly aggregate rates across non-overlapping subgroups. Our analysis reveals conceptual
links between classic demographic models and length-biased sampling. To illustrate how
the harmonic mean can suggest new interpretations of demographic relationships, we
present as an application a new expression for the frailty of the dying, given a standard
demographic frailty model.

1 University of California, Berkeley, USA. Email: feehan@berkeley.edu.
2 University of Minnesota Twin Cities, Minnesota, USA.
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1. Relationship

Given a population and a partition of the population into subgroups, what is the rela-
tionship between the death rate in the subgroups and the death rate for the aggregate
population? We show that occurrence-exposure rates can be understood to aggregate
across scales according to an elegant and well-understood mathematical relationship: the
weighted harmonic mean, which is the inverse of a weighted integral or sum of inverses.

Definition: Let f : [α,β] → R be a continuous, positive function f(x) > 0 and let
w : [α,β] → R be a continuous non-negative function w(x) ≥ 0. Then the Weighted
Harmonic Mean of f with weights given by w is

(1) AH [f(x);w(x)] =

∫ β
α
w(x)dx∫ β

α
w(x)
f(x) dx

=

(∫ β
α
w(x)(f(x))−1dx∫ β
α
w(x)dx

)−1
.

Result: Suppose that a population is a mixture of people with different values of some
continuous trait u ∈ [α,β]. Let d(a,u) be the number of deaths at exact age a to people
with mixing trait value u, and let µ(a,u) be the hazard faced at exact age a by people
with trait value u. Assume d(a,u) and µ(a,u) are positive and continuous when viewed
as functions of u. Then the aggregate hazard at age a, µ̄(a), is the weighted harmonic
mean of µ(a,u), with weights given by the number of deaths, d(a,u):

(2) µ̄(a) = AH [µ(a,u); d(a,u)] =

∫ β
α
d(a,u)du∫ β

α
d(a,u)
µ(a,u)du

=

(∫ β
α
d(a,u)(µ(a,u))−1du∫ β

α
d(a,u)du

)−1
.

The relationship holds whenever a population can be partitioned into subgroups –
i.e., when the population can be divided into a set of mutually exclusive and collectively
exhaustive subgroups. There are many potentially interesting ways that populations can
be understood to be continuous mixtures of non-overlapping subpopulations: for exam-
ple, at any moment, a population is a mixture of people with different blood pressure,
cholesterol, BMI, height, and so forth. The decomposition does not depend upon any par-
ticular feature of death rates; it will also hold for any other type of occurrence-exposure
rate.
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2. Proof

Proof: Let `(a,u) be the number of survivors to exact age a with trait u, where the values
of u partition the population. Then,

(3) µ̄(a) =

∫ β
α
d(a,u)du∫ β

α
`(a,u)du

=

∫ β
α
d(a,u)du∫ β

α
µ(a,u)`(a,u)
µ(a,u) du

=

∫ β
α
d(a,u)du∫ β

α
d(a,u)
µ(a,u)du

.

3. Related relationships

3.1 Discrete version

A harmonic mean can also be defined for discrete quantities, which leads to an analogous
result for a population that has been partitioned into a discrete set of subgroups. Suppose
that a population has been partitioned into a countable set of subgroups, indexed by i, and
let the death count, exposure, and death rate in subgroup i between ages a and a + n be
denoted nD

i
a, nLia, and nM

i
a = nD

i
a

nLi
a
> 0, respectively. Then

(4) nMa =

∑
i nD

i
a∑

i nL
i
a

=

∑
i nD

i
a∑

i
nLi

anMi
a

nMi
a

=

∑
i nD

i
a∑

i
nDi

a

nMi
a

,

where nMa is the aggregate death rate between ages a and a+n. In words, the aggregate
death rate is the discrete harmonic mean of the subgroup death rates, with weights given
by the number of deaths in each subgroup.

3.2 Length-biased sampling

The harmonic mean often arises in applications of length-biased sampling (see, e.g.,
de Carvalho (2016) and Patil (2014) for reviews). Under length-biased sampling, the
probability of observing a characteristic is proportional to the value of that characteristic.

Formally, suppose that the population-level distribution of some characteristic x > 0
is given by a probability density function f(x). (We use x to denote the general case
of any single characteristic, as opposed to the earlier example of a population stratified
simultaneously by age a and some non-age trait u). Now consider y > 0, a length-biased
observation from f . Then the probability density function describing the distribution of
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the length-biased observation y is given by f∗(y):

(5) f∗(y) =
yf(y)

Ef [x]
,

where Ef [x] =
∫∞
0
xf(x)dx is the usual arithmetic mean of x taken with respect to the

non-length biased distribution f . From this observation mechanism, de Carvalho (2016)
shows that

(6)

Ef∗

(
1

y

)
=

∫ ∞
0

1

u
× uf(u)

Ef [x]
du

=
1

Ef [x]

∫ ∞
0

f(u)du

=
1

Ef [x]
,

where Ef∗ is the expectation taken with respect to the length-biased distribution f?.
Thus, Equation 6 shows that Ef [x] = 1

Ef∗ [1/y]
. Since the harmonic mean of the length-

biased distribution is AH [y, f?] =
∫∞
0
f?(u)du∫∞

0
1
u f

?(u)du
= 1

Ef∗ [1/y]
, the relationship in Equation

6 says that the arithmetic mean of the non length-biased distribution is equal to the har-
monic mean of the length-biased distribution, Ef [x] = 1

Ef∗ [1/y]
. Thus, the harmonic

mean recovers the population average from length-biased samples.
What happens if, instead, we take the arithmetic mean of length-biased samples?

Recall that, when y > 0,

(7)

Ef∗ [y] =

∫ ∞
0

u× uf(u)

Ef [x]
du

=
1

Ef [x]

∫ ∞
0

u2f(u)du

=
Ef [x2]

Ef [x]
.

Equation 7 is the second moment of the non-length biased distribution, Ef [x2],
divided by the first moment of the non-length biased distribution, Ef [x]. We can use
the definition of variance to help make Equation 7 more interpretable: by definition,
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varf [x] = Ef [x2]−Ef [x]2; so, rearranging, we have Ef [x2] = varf [x] +Ef [x]2. Plug-
ging this relationship in Equation 7, we obtain

(8)
Ef∗ [y] =

1

Ef [x]

[
Ef [x]2 + varf [x]

]
= Ef [x]

[
1 + cvf

2 [x]
]
,

where cv2
f [x] =

varf [x]
E2

f [x]
is the squared coefficient of variation of x taken with respect to

the distribution f (Sen 1987). In words, Equation 8 shows that the arithmetic mean of
length-biased samples will differ from the underlying population mean by a factor that
increases in the squared coefficient of variation of samples from the non-length biased
distribution.

In the case of death rates, Equation 7 can be used to show that the arithmetic mean
of subpopulation mortality weighted by the number of deaths is affected by length bias:

(9)

Ed(x)[µ(x)] =

∫∞
0
µ(x)d(x)dx∫∞
0
d(x)dx

=

∫∞
0
µ(x)2`(x)dx∫∞

0
µ(x)`(x)dx

=
E`(x)[µ(x)2]

E`(x)[µ(x)]
,

whereEd(x) is the expectation taken with respect to the distribution of deaths at each age,
d(x), and E`(x) is the expectation taken with respect to the distribution of survivors at
each age, `(x).

Equation 9 has the form of the arithmetic mean of length-biased samples (Equation
7). We illustrate these relationships in the appendix with an example based on aggregating
subnational life tables. We also show a different example of how this length-biasing
relationship arises in demography in Section 5.

3.3 Two ways of aggregating rates

Closer inspection of Equation 4 reveals that the arithmetic mean can also be used to
aggregate across subgroups, now using the exposure as the weights, rather than the deaths.
So, using AA[X;W ] to refer to the arithmetic mean of X with weights given by W , we
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have AH [M ;D] = AA[M ;L], or

(10) nDa

nLa︸ ︷︷ ︸
Aggregate death rate

=

∑
i nD

i
a∑

i
nDi

a

nMi
a︸ ︷︷ ︸

Harmonic mean
weighted by

deaths

=

∑
i nM

i
a nL

i
a∑

i nL
i
a︸ ︷︷ ︸

Arithmetic mean
weighted by

exposure

.

The two decompositions in Equation 10 distinguish between weighting subgroup
death rates by exposure (arithmetic mean) or by the number of deaths (harmonic mean).
The conceptual key is that the harmonic mean is a natural average to use for quantities
whose reciprocals aggregate according to the usual (arithmetic) mean. This explains why
the harmonic mean is relevant in length-biased sampling: Equation 6 shows how taking
the reciprocal ‘adjusts’ for the length bias, because 1

uuf(u) = f(u). (We discuss this in
greater detail in below).

For death rates, the arithmetic mean decomposition in Equation 10 says that, fixing
exposure, deaths will be observed in direct proportion to the subgroups’ death rates. For
example, suppose that subgroup 1 has twice the death rate of subgroup 2, (i.e., M1 =
2M2), and that we observe a fixed amount of exposure, say L, from each subgroup.
Then subgroup 1 will be expected to contribute twice as many deaths to the aggregate as
subgroup 2 (i.e., D1 = M1 L = 2M2L = 2D2). Thus, when weighted by exposure, the
death rates aggregate arithmetically.

However, the harmonic mean decomposition in Equation 10 says that, fixing deaths,
exposure will be not be observed in proportion to subgroups’ death rates; instead, expo-
sure will be inversely proportional to subgroups’ death rates. For example, suppose again
that subgroup 1 has twice the death rate of subgroup 2, (i.e., M1 = 2M2), but we now
observe a fixed number of deaths, say D, in each subgroup. If subgroup 1 has twice the
death rate of subgroup 2, then we expect that subgroup 1 will contribute half as much
exposure as subgroup 2 to the aggregate (i.e., L1 = D

M1 = D
2M2 = 1

2L
2). Thus, each

subgroup’s contribution to the aggregate exposure is proportional to the reciprocal of its
death rate, and the death rates aggregate according to the harmonic mean. (Note that this
also implies that the expected waiting time to each death – i.e., the reciprocal of the death
rate – aggregates in the usual way, according to the arithmetic mean).

4. History

There is statistical literature on the properties and uses of the harmonic mean (e.g., de Car-
valho 2016; Sen 1987). Demographers originally discussed the harmonic mean explicitly
in the context of selection problems and heterogeneity in fertility (Sheps 1964; Sheps,
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Menken, and Radick 1973) and mortality (Keyfitz and Littman 1979), or implicitly in the
context of understanding family size, viewed from the perspective of mothers and chil-
dren (Preston 1976). However, after these papers, demographers have made relatively
little use of the harmonic mean, in spite of the field’s focus on aggregate rates and their
relationship to underlying individual rates. (An exception is Schoen 2013, who investi-
gated the harmonic mean as it relates to two-sex population models).

5. Application

Aggregation is a central focus of the literature on heterogeneity in mortality (e.g., Vaupel,
Manton, and Stallard 1979; Vaupel and Missov 2014). We illustrate the harmonic mean
by applying it to derive a new formula for a classic result in that literature.

In what Vaupel and Missov (2014) calls the ‘relative risks and fixed frailty’ model,
heterogeneity in death rates is captured by associating each individual in the population
with a frailty parameter z > 0. People with frailty parameter z face hazards that are
related to a baseline via

(11) µ(a, z) = zµs(a),

where µs(a) ≡ µ(a, 1) is the hazard faced by a ‘standard individual’, with frailty z = 1,
at age a3. Note that this model describes a situation in which our result applies: the
population can be understood to be a continuous mixture of people who have different
frailty parameters.

We will now see that, at age a, the frailties of people who die are length-biased
samples of the frailties of people who are alive. Following Vaupel and Missov (2014:
663), let s(a, z) be the survivorship to age a among those with frailty parameter z and
let s̄(a) be the aggregate survivorship to age a. Let π(a, z) be the density of people
with frailty parameter z among survivors to age a, and let z̄(a) be the average frailty of
survivors at age a. Finally, let d(a, z) be the density of deaths at age a to people with
frailty parameter z and let d(a) be the density of deaths at age a. Then the probability
that a death aged a has frailty z is given by:

3 To be consistent, we refer to the age variable as a here; note that Vaupel and Missov (2014) use x for age in
their paper.
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(12)

d(a, z)

d(a)
=

µ(a, z)s(a, z)π(0, z)∫∞
0
µ(a, z)s(a, z)π(0, z)dz

=
µ(a, z)π(a, z)s̄(a)∫∞

0
µ(a, z)π(a, z)s̄(a)dz

=
µ(a, z)π(a, z)∫∞

0
µ(a, z)π(a, z)dz

=
zµs(a)π(a, z)∫∞

0
zµs(a)π(a, z)dz

=
z π(a, z)∫∞

0
z π(a, z)dz

=
z π(a, z)

z̄(a)
,

where the second line uses the fact that s(a, z)π(0, z) = π(a, z)s̄(a) (Vaupel and Missov
2014: 663). Equation 12 shows that the probability that a death aged a has frailty z is
proportional to z times the density of frailties among survivors aged a, divided by the
average frailty among survivors aged a. Thus, Equation 12 has exactly the same form
as a length-biased sampling density (Equation 5). In words, the frailty of someone who
dies at age a can be understood as a length-biased sample from the distribution of frailties
among people who survive to age a.

As a length-biased sample, two results follow immediately. First, Equation 8 showed
(as is well-known) that the arithmetic mean of length-biased samples can be written in
terms of the mean and squared coefficient of variation in the non-length-biased popu-
lation distribution; in the relative risks and fixed frailty model, Equation 8 provides an
expression for z†(a), the average frailty of the dead:

(13) z†(a) = z̄(a)
[
1 + cvz

2(a)
]
,

where cvz
2(a) is the coefficient of variation in the frailty parameter of people at age a.

Equation 13 has been previously derived by Vaupel, Manton, and Stallard (1979: 442); a
proof is also briefly discussed in Vaupel and Missov (2014: 667–668).

Second, Equation 6 showed that the harmonic mean of length-biased samples will
recover the population (non-length-biased) mean. In the relative risks and fixed frailty
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model, Equation 6 provides an expression for the average frailty of people who survive
to age a, in terms of the frailties of people who die at age a:

(14)

AH [z, d(a, z)] =

∫∞
0
d(a, z)dz∫∞

0
d(a,z)
z dz

=

∫∞
0
µ(a, z)π(a, z)dz∫∞

0
µ(a,z)π(a,z)

z dz

=

∫∞
0
zµs(a)π(a, z)dz∫∞

0
zµs(a)π(a,z)

z dz

=

∫∞
0
z π(a, z)dz∫∞

0
π(a, z)dz

=

∫ ∞
0

z π(a, z)dz

= z̄(a).

Equation 14 reveals that, under the relative risks and fixed frailty model, the average
frailty of people who survive to age a is equal to the harmonic mean of the frailties of
people who die at age a. So, if the relative risks and fixed frailty model held in a real
population, and z could be measured or estimated only from a sample of deaths at age a,
then Equation 14 says that we could still recover the population average frailty by taking
the harmonic mean of the frailties among the deaths. (Similarly, any way of estimating
the frailty of the individuals alive at some moment would also produce an estimate of the
frailty of those dying at the same moment).

Finally, we note that the relationship between the harmonic mean and reciprocals
suggests a new interpretation of the frailty parameter, z, by focusing attention on the
reciprocal of frailty, 1

z . This frailty reciprocal, 1
z , represents the number of deaths to

’standard individuals’ that are expected before a death to a single individual of frailty z
occurs. As such, it can be conceptualized as a form of waiting time, or exposure, needed
to produce a death at frailty z, expressed in a relative scale.

As this example illustrates, bringing harmonic means more widely into demographic
analysis can create analogies and conceptual linkages between demographic quantities
that are not otherwise obvious. This is particularly true for questions of aggregation, in
which a length-biased selection process is often at play. More generally, the harmonic and

http://www.demographic-research.org 371

http://www.demographic-research.org


Feehan & Wrigley-Field: How do populations aggregate?

arithmetic mean relationships discussed above illustrate how demographers can correctly
aggregate rates across non-overlapping subgroups.

6. Acknowledgements

The authors gratefully acknowledge support from the Berkeley Population Center (P2C
HD 073964) and the Minnesota Population Center, which is funded by the Eunice
Kennedy Shriver National Institute of Child Health and Human Development (P2C
HD041023), and the Fesler-Lampert Chair in Aging Studies at the University of Min-
nesota. We also thank Josh Goldstein and Emma Zang who provided helpful comments
on an early draft of this manuscript.

372 http://www.demographic-research.org

http://www.demographic-research.org


Demographic Research: Volume 44, Article 15

References

de Carvalho, M. (2016). Mean, what do you mean? The American Statistician 70(3):
270–274. doi:10.1080/00031305.2016.1148632.

Keyfitz, N. and Littman, G. (1979). Mortality in a heterogeneous population. Population
Studies 33(2): 333–342. doi:10.2307/2173538.

Patil, G.P. (2014). Weighted distributions. Wiley StatsRef: Statistics Reference Online.
doi:10.1002/9781118445112.stat07359.

Preston, S.H. (1976). Family sizes of children and family sizes of women. Demography
13(1): 105–114. doi:10.2307/2060423.

Schoen, R. (2013). Modeling multigroup populations. Boston: Springer Science and
Business Media.

Sen, P.K. (1987). What do the arithmetic, geometric and harmonic means tell us in length-
biased sampling? Statistics and Probability Letters 5(2): 95–98. doi:10.1016/0167-
7152(87)90062-9.

Sheps, M.C. (1964). On the time required for conception. Population Studies 18(1):
85–97. doi:10.1080/00324728.1964.10405511.

Sheps, M.C., Menken, J., and Radick, A.P. (1973). Mathematical models of conception
and birth. Chicago: University of Chicago Press.

Vaupel, J.W., Manton, K.G., and Stallard, E. (1979). The impact of heterogeneity
in individual frailty on the dynamics of mortality. Demography 16(3): 439–454.
doi:10.2307/2061224.

Vaupel, J.W. and Missov, T.I. (2014). Unobserved population heterogeneity:
A review of formal relationships. Demographic Research 31(2): 659–686.
doi:10.4054/DemRes.2014.31.22.

http://www.demographic-research.org 373

https://doi.org/10.1080/00031305.2016.1148632
https://doi.org/10.2307/2173538
https://doi.org/10.1002/9781118445112.stat07359
https://doi.org/10.2307/2060423
https://doi.org/10.1016/0167-7152(87)90062-9
https://doi.org/10.1016/0167-7152(87)90062-9
https://doi.org/10.1080/00324728.1964.10405511
https://doi.org/10.2307/2061224
https://doi.org/10.4054/DemRes.2014.31.22
http://www.demographic-research.org


Feehan & Wrigley-Field: How do populations aggregate?

Appendix: An empirical example

In this appendix, we use the example of combining subnational life tables to show that
appreciable errors can arise when death rates are not aggregated correctly. To do so, we
create a pseudo-population based on the lifetables found in the US Mortality database.4

The US Mortality database has life tables for each US State and for Washington, D.C.
We treat these life tables as cohorts, each of which is initially the same size. We then
compare three strategies for aggregating death rates for each single year of age, for each
sex, and for both sexes combined.5

The aggregate death rate across these pseudo-cohorts is equal to

(A-1) nMa =

∑
i nD

i
a∑

i nL
i
a

,

where i indexes the pseudo-cohorts. In the main text, we show that this true aggregate is
equal to AH [M ,D] or, alternatively, AA[M ,L].

In order to illustrate how much variation there is between the death rates across the
sub-populations, we calculate the coefficient of variation:

(A-2) cvL(nM
i
a) =

sdL(nM
i
a)

nMa
,

where sdL(nM
i
a) is the standard deviation across the exposure-weighted state life table

death rates. The coefficient of variation quantifies the amount of spread in death rates
across the subnational units, when compared to the true aggregate death rate.

Figure A-1 shows the aggregated age-specific death rates for the pseudo-population
created from the 51 state lifetables (Panel A); and the coefficient of variation across the
51 state lifetables (Panel B).

4 https://usa.mortality.org/
5 For each age and sex, we restrict our sample to the states that have at least one death; this is typically all 51

states, but some small states have no deaths at low-mortality ages – Vermont, for example, has no deaths at age
two in the 2015 USMD life table. The harmonic mean is undefined when the outcome includes values of zero,
since the reciprocal of the outcome appears in the denominator of the harmonic mean.
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Figure A-1: Aggregate death rates across sub-national psuedo-units (Panel A)
and relative variation in death rates across sub-national
pseudo-units (Panel B)
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For each age-sex group, we compare the true aggregate death rate to two alter-
nate strategies for aggregating death rates. The first alternate strategy is the simple (un-
weighted) arithmetic mean of the state death rates:

(A-3) nM
I
a =

1

N

∑
i

nM
i
a,

where N is the number of states.
The second alternate strategy is the arithmetic mean weighted by the number of

deaths, rather than the exposure:

(A-4) nM
II
a =

∑
i nM

i
anD

i
a∑

i nD
i
a

.
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Figure A-2 shows the relative errors, re(nM
I
a ) = nMa−nM

I
a

nMa
and re(nM

II
a ) =

nMa−nM
II
a

nMa
, that result from aggregating death rates under each strategy. The figure re-

veals that relative errors can be of considerable magnitude – up to 10% or more in some
scenarios.

Figure A-2: Relative errors in aggregating using the unweighted arithmetic
mean (Panel A) or in using the incorrectly weighted arithmetic
mean (Panel B)
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For the death-weighted arithmetic mean, comparing Panel B of Figure A-2 to Panel
B of Figure A-1 illustrates how relative errors in nM

II
a are greater when there is greater

variation in the 51 underlying subpopulation death rates. To better understand this re-
lationship between the relative errors in nM

II
a and the variation in the death rates, note

that nM II
a , weights by deaths but incorrectly uses the arithmetic mean, instead of the

harmonic mean. When weighting by the number of deaths, the arithmetic mean will be
affected by length bias (Equation 9). To see this, note that the main text shows that the
true aggregate death rate can be written as AA[M ,L], or:
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(A-5) nMa =

∑
i nM

i
anL

i
a∑

i nL
i
a

=
∑
i

nM
i
a ×

(
nL

i
a

nLa

)
,

where nLa =
∑
i nL

i
a is the aggregate exposure, and the term in parenthesis is the correct

weight to use with the arithmetic mean. As we saw in the main text, taking the arithmetic
mean of a length-biased sample would mean using weights that have the form f?(y) =
y · f(y) · (1/Ef [x]). In this case, these length-biased weights are

(A-6) nM
i
a ·

nL
i
a

nLa
· 1

nMa
=

nM
i
a nL

i
a

nLa nMa
=

nD
i
a

nDa
.

Thus, nM II
a , the death-weighted arithmetic mean of the subpopulation death rates, is a

length-based average. In this case, Equation 8 shows that we should expect larger errors
from nM

II
a when there is more variation in the death rates across the sub-populations. In

fact, Equation 8 can be used to derive an exact expression for its relative error. In the main
text, Equation 8 revealed that Ef? [y] = Ef [x]

[
1 + cv2f [x]

]
. In our empirical setting, this

relationship implies that nM II
a = nMa

[
1 + cv2L(nM

i
a)
]
. So, we have

(A-7)

re(nM
II
a ) =

nM
II
a − nMa

nMa

=
nMa

[
1 + cv2L(nM

i
a)
]
− nMa

nMa

= cv2
L(nM

i
a).

Thus, the relative error in a length-biased aggregation of subpopulation death rates,
nM

II
a , is exactly equal to cv2L(nM

i
a), the square of the coefficient of variation (Equa-

tion A-2). Figure A-3 shows this directly, confirming that in our empirical example the
relative errors in nM II

a (Figure A-2, Panel B) are exactly equal to the squared coefficients
of variation in the subpopulation death rates (Figure A-1, Panel B).
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Figure A-3: The relative errors resulting from incorrectly aggregating using
the death-weighted arithmetic mean are exactly equal to the
squared coecient of variation in the subpopulation death rates
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Note: All points lie on the diagonal y = x line, confirming that these two quantities are equal.
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