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Research Article

D-splines: Estimating rate schedules using high-dimensional splines
with empirical demographic penalties

Carl Schmertmann1

Abstract

BACKGROUND
High-dimensional parametric models with penalized likelihood functions strike a good
balance between bias and variance for estimating continuous age schedules from large
samples. The penalized spline (P-spline) approach is particularly useful for these pur-
poses, but it in small samples it can often produce implausible age schedule estimates.

OBJECTIVE
I propose and evaluate a new type of P-spline model for estimating demographic rate
schedules. These estimators, which I call D-splines, regularize and smooth high-
dimensional splines by using demographic patterns rather than generic mathematical
rules.

METHODS
I compare P-spline estimates of age-specific mortality rates to three alternative D-spline
estimators, over a large number of simulated small populations with known rates. The
penalties for the D-spline estimators are derived from patterns in the Human Mortality
Database.

RESULTS
For mortality estimates in small populations, D-spline estimators generally have lower
errors than standard P-splines.

CONCLUSIONS
Using penalties based on demographic information about patterns and variability in rate
schedules improves P-spline estimators for small populations.

CONTRIBUTION
This paper expands demographers’ toolkit by developing a new category of P-spline esti-
mators that are more reliable for estimating mortality in small populations.

1 Florida State University and the Center for Demography and Population Health, Florida, United States.
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1. Introduction

1.1 Spline smoothing

A spline is a function s(x) over an interval x ∈ [L,H] that is constructed from piecewise
polynomials and constrained to be smooth in some particular way. In many applications
the polynomial pieces are cubic functions, and smoothness requires continuous levels
s(x), derivatives s′(x), and second derivatives s′′(x) at all x values between L and H .
Splines are valuable empirical tools for interpolation and regression problems because
they have the flexibility of high-order polynomial functions, without some of the attendant
risks of extreme and implausible fitted values between sample observations or outside of
the sample.

There are many ways to parametrize spline functions, but the most useful for the
purposes of this paper is the cubic B-spline system (Curry and Schoenberg 1947; de Boor
1976, 2001). With this parametrization the spline may be written as a weighted sum of
basis functions

s(x) = θ1B1(x) + θ2B2(x) + · · ·+ θKBK(x), (1)

where θ ∈ RK and each Bj(x) is a piecewise cubic function that is non-negative for all
x and positive over only part of [L,H]. The number of parameters K is the dimension
of the spline, which is often much larger than the number of parameters in a typical
demographic model.

Figure 1 shows an example. Panel A contains K = 36 B-spline functions Bj(x).2

When weighted with any θ1 . . . θ36 as in Equation (1), their sum will be a spline with
piecewise cubic sections over intervals [0, 3], [3, 6], . . . [96, 99] and continuous levels,
first derivatives, and second derivatives. Panel B of Figure 1 shows single-year age-
specific mortality rates for Portuguese females over 1970–1979 from the Human Mor-
tality Database (HMD) (University of California, Berkeley, and Max Planck Institute for
Demographic Research, Germany 2014), and Panel C illustrates the best least-squares fit
s∗(x) = Bθ∗ to the Portuguese log mortality rates using the specification in Equation
(1). The fit in Panel C is constructed from 33 separate cubic polynomials – the first of
which is used to determine the spline’s value over x ∈ [0, 3], the second for values over
x ∈ [3, 6], and so forth. Panel D of Figure 1 zooms in to show the first four of these
piecewise cubic sections – i.e., those that determine the spline’s value over ages 0 to 12.

From Panel D of Figure 1 it might seem that assembling a smooth function from

2This particular set of cubic B-spline basis functions uses 32 interior knots at x = 3, 6, . . . , 96
and boundary knots at x = 0, 99. It can be constructed in R with the command splines::bs(0:99,
knots=seq(from=3,to=96,by=3), degree=3,intercept=TRUE). I use this basis throughout the paper – except
in the comparative experiments reported in Section 4, where I use slightly different basis functions in order to
maintain complete consistency with P-spline estimators in the MortalitySmooth R package.

1086 http://www.demographic-research.org
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pieces of polynomial curves is complex, but using a B-spline basis makes fitting and
interpreting a spline curve fairly simple. Because each basis function has a value of zero
over most of the range of x, any one coefficient θj affects the spline values over only
a limited range. These localized effects help to make numerical estimation stable and
interpretable.

The extreme flexibility of spline functions permits excellent approximations to com-
plex empirical functions, like mortality age schedules, that have no simple mathematical
form. Such flexibility is valuable in cases like Figure 1C, for large national data sets with
low sampling variability. It can become a liability in small-population settings, however,
as discussed in Section 2.

Figure 1: A high-dimensional spline as an approximation to a national
mortality schedule
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Note: Panel A: Cubic B-spline basis functions B1(x) . . . B36(x). Panel B: Portugal 1970–1979 female log
mortality rates. Panel C: Spline approximation with knots at x = 0, 3, 6, . . . 99. Panel D: Log mortality rates and
first four cubic polynomials used in the spline in Panel C, zoomed in for ages x ∈ [0, 12].
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1.2 Splines in applied demographic research

More than forty years ago, McNeill, Trussell, and Turner (1977) introduced splines to a
demographic audience, by demonstrating how to interpolate detailed age-specific fertility
rates from age-grouped data. They showed how fitting a piecewise quintic spline to cumu-
lative fertility at ages 15, 20, ... 50 and then differentiating produces a set of single-year
rates that exactly match the five-year input data, are smooth over age, and have desirable
end-point properties at ages 15 and 50. They also illustrated the advantages of such a
procedure over fitting a single high-order polynomial to the same data.

Fitting smooth rate schedules to vital rate data is still the major use of splines in
demographic research. Very much in the spirit of McNeill, Trussell, and Turner (1977),
for example, the methods protocols for both the Human Mortality Database (Wilmoth et
al. 2007) and the Human Fertility Database (Jasilioniene et al. 2012) use spline functions
to disaggregate and smooth data and fitted rate schedules by age.

Spline functions have also been proposed as flexible parametric models for fertility
schedules, starting with investigations by Hoem et al. (1981). Schmertmann (2003) de-
veloped a quadratic spline system in which three ages (of menarche, maximum fertility,
and half of maximum fertility) uniquely determine a continuous age-specific schedule.
Using methods similar to those in this paper, Schmertmann (2014) proposed interpolat-
ing age-specific fertility rates from grouped data by using high-dimensional cubic splines
that compromise between matching input data and matching empirical age patterns in the
Human Fertility Database and other sources.

The TOPALS model for mortality and fertility projection and forecasting by de Beer
(2012) is based on linear splines (i.e., sequences of connected straight lines, which are
a particularly simple type of piecewise polynomial). TOPALS combines fixed fertility
or mortality schedules with changing linear spline offsets to produce forecasts of future
rate schedules. TOPALS has also been used as a regression model to fit small-area mor-
tality schedules to sparse data in both frequentist and Bayesian models (Gonzaga and
Schmertmann 2016, 2018; Rau and Schmertmann 2020).

Several efforts to produce coherent time series for mortality rates have used B-
splines as estimators. These include the “B3” model for under-five mortality that has been
adopted by the United Nations Inter-Agency Group for Mortality Estimation (Alkema and
New 2014), and Alexander and Alkema’s (2018) model for neonatal mortality trajecto-
ries.

Most importantly for the analysis in this paper, splines – and in particular the penal-
ized B-splines described later in Section 2.3.1 – are a central component of recent meth-
ods for describing age patterns of mortality rates. These include the models estimated by
the MortalitySmooth package in R (Camarda 2012), models that build mortality schedules
from multiple overlapping splines (Camarda, Eilers, and Gampe 2016), the mortality pro-
jection models of de Jong and Tickle (2006) and Hilton et al. (2019) that generalize the ax
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and bx vectors of the Lee–Carter (1992) forecasting approach with spline functions, and
the presmoothing of rates before singular value decompositions in the forecasting model
of Hyndman and Ullah (2007).

1.3 Purpose and organization of this paper

Here I evaluate a new type of penalized spline model for estimating demographic rate
schedules, with a particular interest in applications to sparse data from small areas or
small subpopulations. Using mortality data as an example throughout, I first describe
the P-spline approach (Eilers and Marx 1996) used in many of the studies cited above.
I then propose a variant of this approach that I call D-splines. D-splines regularize and
smooth high-dimensional splines by using demographic knowledge derived from large
demographic databases, rather than generic arithmetical rules.

The rest of the paper reports comparative results from tests of several alternative D-
spline estimators on simulated small-area mortality data. These results are promising: D-
spline estimators appear to have low errors and to produce schedules that reliably reflect
known properties of human mortality schedules.

2. Likelihood and penalties

2.1 Notation: Spline function for a demographic schedule

A generic spline function for a demographic rate schedule over A single-year ages x =
0 . . . (A− 1) is

s = Bθ =

 B1(0) · · · BK(0)
...

. . .
...

B1(A− 1) · · · BK(A− 1)

 θ =


b′0 θ
b′1 θ

...
b′A−1 θ

 ,

whereB is a A×K matrix in which each of the K columns is a B-spline basis function
(de Boor 2001) evaluated at ages x ∈ 0 . . . (A−1) and knots are closely-spaced, θ ∈ RK
is a vector of parameters, and b′x is the 1 ×K row vector of spline constants that affect
the schedule’s value at age x.

In principal the schedule s = Bθ could represent any kind of age-specific rates.
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Throughout the rest of this paper I assume that s is a mortality schedule for A = 100
ages x = 0 . . . 99, and I use the basis functions shown in Figure 1A. In all examples there
are thus K = 36 B-spline basis functions constructed using interior knots at 32 ages
3, 6, . . . , 96, andB is a 100× 36 matrix of known constants.

2.2 Data and likelihood

Suppose that we observe single-year age-specific death counts (D0 . . . DA−1) for a small
population, that person-years of exposure by age (N0 . . . NA−1) are known, and that the
schedule s = Bθ represents age-specific log mortality rates. If deaths at each age have
independent Poisson distributions, Dx ∼ Poisson(Nx exp(sx)), then the log likelihood
for the parameter vector θ is

L(θ) = c−
∑
x

Nx exp(b′xθ) +
∑
x

Dx (b′xθ)

= c−
∑
x

D̂x(θ) +
∑
x

Dx (b′xθ),
(2)

where c is a scaling constant and D̂x = Nx exp(b′xθ) is the expected number of deaths at
age x.

2.3 Penalized log likelihood

As an estimator, a high-dimensional spline function s = Bθ with many parameters is
often quite vulnerable to sampling noise. For example, Figure 2 displays the maximum
likelihood fit for θ ∈ R36 using the 100 × 36 B matrix described above, with randomly
generated age-specific data for female exposure and deaths in a population of 100,000
females that has the age structure and mortality rates of Portugal 1970–1979 from Figure
1B. In this simulated dataset, intended to represent a moderately large “small population”
over the course of one year, there were 1016 deaths to 100,000 women.

It is evident from Figure 2 that a spline with 36 parameters overfits mortality rates,
in the sense that the true schedule does not have erratic fluctuations over small age ranges
like those in the fitted model. The roller-coaster pattern in estimated mortality rates over
ages 10–50 is the most obvious example: adjusting the function up and down over this
local age range matches the sample data well because there are small clusters of ages with
zero deaths, but the spline produces inaccurate estimates of the mortality risks at those
ages. This illustrates a classic bias-variance tradeoff: a high-dimensional spline function
is flexible enough to represent small-scale features in the true rate schedule accurately
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(low bias), but that same flexibility means that in a small-sample setting it may overin-
terpret coincidental features of sample data (high variance). A spline model correctly
estimates the broad pattern of sharply decreasing mortality at young child ages followed
by increases in adolescence and adulthood, but when compared to high-quality mortality
schedules derived from large populations the spline has implausibly high curvature and
non-monotonicity over some age ranges.

Figure 2: Unpenalized spline s = Bθ with 36 degrees of freedom: maximum
likelihood fit for a simulated small-area sample with known
mortality rates. True mortality rates, in grey, are HMD rates for
Portuguese females 1970–1979
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Note: Points correspond to simulated death/exposure ratios in a population of 100,000 females with Portugal’s
1970–1979 age distribution. Tick marks along the horizontal axis represent 16 single-year ages with no deaths. The
erratic curve is the unpenalized spline fit that maximizes the sample likelihood.
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2.3.1 P-spline penalties on parameters

A P-spline approach to estimation Eilers and Marx (1996) addresses the bias-variance
problems evident in Figure 2 by including a penalty term in the log likelihood and then
maximizing the penalized function.3 For the purposes of this paper, the key feature of
these penalties is that they apply to the vector of B-spline coefficients θ ∈ RK rather than
to the estimated demographic schedule s = Bθ.

In a P-spline approach we maximize a penalized log likelihood function

f(θ |λ) = L (θ)− λ

2
· θ′∆′p∆pθ, (3)

where λ is a scalar penalty multiplier and ∆p is a (K − p)×K matrix of constants such
that ∆pθ is the vector of pth differences in spline coefficients (Eilers and Marx 1996). If
p = 1, for example, then ∆1θ = (θ2−θ1, θ3−θ2, . . . , θK−θK−1)′ represents the vector
of differences between successive B-spline coefficients and the penalty is proportional to
the sum of the squared differences

∑K
j=2 (θj − θj−1)

2
.

With equally-spaced knots for the spline basis functions in the columns of B the
penalized log likelihood function (Equation 3) has higher values for demographic func-
tions that fit the data and which approximate pth-order polynomials. Maximizing the
penalized function therefore requires a tradeoff between fitting the data and simplifying
the fitted curve, where “simplifying” means choosing a smoother curve that looks more
like a pth-order polynomial. P-splines represent an elegant approach to the bias-variance
tradeoffs for spline models illustrated in Figure 2. Importantly, they are the foundation of
the MortalitySmooth package in R Camarda (2012).

A critical decision in the P-spline approach is the choice of the penalty multiplier
λ > 0, which determines the tradeoff between fit and smoothness: higher values of λ
increase the relative importance of smoothness when calculating the spline coefficients
θ∗(λ) that maximize the penalized log likelihood. Following recommendations from
Currie, Durban, and Eilers (2004), the default settings in many applications (and in the
MortalitySmooth package) choose λ by searching sequentially over a discrete grid of
possible values, finding the θ∗(λ) that maximizes Equation (3) for each candidate λ,
and then selecting the λ value that minimizes the Bayesian Information Criterion (BIC,
Schwarz 1978). For Poisson-distributed deaths in our example,

BIC(λ) = 2

A−1∑
x=0

Dx ln

(
Dx

D̂x [θ∗(λ)]

)
+ df(λ) · ln(A),

3This process is known in statistics and machine learning as regularization (Neumaier, 1998).
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where df(λ) is a measure of the effective degrees of freedom of the fitted curve (see Eilers
and Marx 1996; and this paper’s Appendix). BIC is a scalar index that defines a specific
tradeoff between model fit and parsimony: a simpler, smoother model (with higher λ and
fewer degrees of freedom) produces a better BIC score only if the model’s fit to observed
mortality data does not worsen too much.

Figure 3 illustrates how penalized P-splines improve estimated mortality schedules
for small populations. The top three panels contain the same data as in Figure 2, for
a simulated population of n = 100,000 Portuguese females. Bottom panels represent a
simulated dataset for a smaller population of n = 10,000 with the same age structure
and mortality rates. In Figure 3 the middle panel in each row contains the estimated fit
at the minimum-BIC value of the penalty multiplier λ, while the left and right columns
correspond to lower and higher than optimal values of λ, respectively.

The preferred P-spline fit in the top row, center column of Figure 3 represents a
significant improvement over the unpenalized maximum likelihood fit to the same data in
Figure 2: fitted rates vary much more smoothly, are more nearly linear over older adult
ages, and are monotonically increasing over older ages. These are common features in
mortality schedules estimated from large populations, and the P-spline model finds good
tradeoffs between fitting the small-sample data and smoothing the schedule.

However, there is also evidence in Figure 3 that P-spline fits for mortality schedules
in small populations could be improved. In particular, the typical pattern in age-specific
mortality schedules over ages 0–25, with a very steep decline in mortality risk over ages
0–10, followed by a more gradual rise over 10–25, is sometimes not well approximated
by local cubic functions with a global penalty λ that affects smoothness at all ages.

For populations in the size range covered in Figure 3 (i.e., tens or hundreds of thou-
sands of residents of one sex), minimum-BIC smoothing by P-splines tends to produce
estimated functions are too symmetric over child and young adult ages – in the sense that
the estimated decline in mortality risks over the youngest ages is too similar to the in-
crease over late childhood and early adulthood. The leftmost panels in Figure 3 suggest,
for example, that fitting the rapid decline in mortality risks at the youngest ages often
requires a lower-than-optimal global penalty λ. With this lower penalty, the rest of the
estimated schedule has implausible rises and falls, has a trough in adolescent and young
adult ages that is too deep and wide, or both. In other words, reducing bias to improve
fit at the youngest ages may cause undesirable variance and bias at other ages. Going in
the other direction, increasing the global λ penalty (rightmost panels) in order to lower
variance can cause undesirable bias at almost all ages. These problems of balancing bias
and variance are more severe in smaller samples (bottom panels).
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Figure 3: P-spline fits for two simulated small-area samples, using three
alternative penalties
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Note: Population size is 100,000 in the top panels (which contain data identical to Figure 2), and 10,000 in bottom
panels (same structure but 1/10th as many females in the simulated small area). Middle column illustrates the
penalized fits that minimize the Bayesian Information Criterion. Left and right columns show fits with alternative λ
values that lead to approximately twice and half as many effective degrees of freedom, respectively, as the BIC-
minimizing value in the center column.

2.3.2 An alternative: D-spline penalties on the fitted schedule

The fundamental difficulty illustrated in Figure 3 is that demographic schedules do not al-
ways have mathematically convenient shapes. Even a very flexible, well-tuned parametric
model can have trouble matching the nuances of real age patterns.

The P-spline approach to function smoothing has proven to be very valuable, but it
is not specifically designed for fitting demographic rate schedules. In particular, it relies
on polynomial functions as a kind of gold standard for functional shapes. That reliance
makes good sense for a generic curve-fitting tool, but it may not be optimal for fitting
specific types of curves for which demographers already have specialized models and
considerable prior knowledge.

Here I investigate an alternative approach that I call D-splines. D-splines also use
penalized, high-dimensional spline functions, but penalties are based on deviations from
demographic, rather than arithmetic, standards. The essential idea is to penalize features
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of the fitted schedule s = Bθ directly, using demographic prior knowledge. D-splines are
variants of standard P-splines. They are similar to the shape penalties discussed by Eilers
(2017: Section 3.3), with the important difference (described more thoroughly below)
that penalties are precalibrated from outside data, rather than chosen by hand or selected
with a data-dependent index such as BIC.

D-splines use a large collection of demographic rates to define squared-error penal-
ties for schedules that deviate from typical age patterns. Schedules have low penalties
if they are similar to those in a high-quality empirical database, and variation within the
database helps to calibrate the definition of “similar.” In this sense the D-spline penal-
ties developed here for mortality are very similar to the cohort shape penalties developed
from the Human Fertility Database at the Max Planck Institute for Demographic Research
and Vienna Institute of Demography by Schmertmann et al. (2014) for forecasting fertil-
ity schedules. The penalties investigated here are especially similar to the spline-based
procedure for fertility rate interpolation proposed in Schmertmann (2014).

I propose several alternative D-spline penalties in Section 3, all constructed as
follows

• define a residual vector ε ∈ RG whose elements should all be close to zero for
“good” schedules s = Bθ

• calculate empirical residuals ε1 . . . ε222 across the set of all 222 1x10 (single-year
age by ten-year period) observed life tables in the Human Mortality Database for
periods beginning in 1970 or later at the University of California and Max Planck
Institute for Demographic Research (2014).

• use theG×G empirical covariance matrix V̂HMD = 1
222

∑
i (εiε

′
i) as an estimate

for the expected covariance of residuals
• replace the P-spline penalty on parameters θ with a “D-spline” penalty based on

the residuals for fitted functionsBθ

The result is a penalized likelihood function

f(θ) = L(θ)− 1

2
ε′(θ)

[
V̂ −1HMD

]
ε(θ) (4)

for which the maximization tradeoff is “fit versus fidelity to patterns in demographic
schedules,” rather than “fit versus local smoothness.”4 The absence of the unknown
smoothing constant λ is an important benefit: unlike P-splines, in the D-spline ap-

4The 1
2

constant in the penalized log likelihood arises from an assumption that residuals are approximately
normally distributed over demographic schedules. Informal examination of empirical HMD residuals for the
penalties used in this paper suggests that normality is quite reasonable: residual distributions are close to sym-
metric, with very thin tails.
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proach there is no λ to be estimated by grid search in an outer loop. Instead the penalty
term/tolerance for deviations is calibrated empirically to mimic residual patterns found
in high-quality demographic data. The researcher only has to estimate the model once.
Another potentially important difference stems from penalizing the fitted function value
s = Bθ (as in D-splines) rather than the parameters θ (as in P-splines). Unlike P-splines,
D-splines do not require a specific class of basis functions.5

In all the specific examples that follow, residual vectors are linear functions of the
spline coefficients θ, with the form

ε(θ) = ABθ − c ∈ RG, (5)

where A ∈ RG×G and c ∈ RG are predefined constants, as described in next section.
With residuals as in Equation (5), the D-spline penalized likelihood is

f(θ) = L(θ)− 1

2
(ABθ − c)′

[
V̂ −1HMD

]
(ABθ − c) , (6)

and the θ vector the maximizes the function can be found by an iterative Newton-Raphson
algorithm. Details for that algorithm, and for calculation of effective degrees of freedom,
are in the Appendix.

3. Experimental D-spline penalties for mortality schedules

3.1 Slope penalties: D–1

Log mortality schedules for human populations have characteristic shapes that can be
described in terms of slopes (or equivalently, first-differences over single years of age).
One possible approach to characterizing “good” spline schedules is therefore to measure
the difference between the slopes in a proposed spline function s = Bθ and the average
slopes in HMD schedules at the same ages.

For example, the average value of (lnµ1 − lnµ0) across 222 1x10 HMD schedules
is –2.432, with a standard deviation of 0.292. This suggests that steep negative slopes are
likely between age 0 and age 1 in “good” schedules, but that we should be fairly tolerant
about the exact slope value because of the large standard deviation. In contrast, between
integer ages 75 and 76 the average value and standard deviation of (lnµ76 − lnµ75)
across HMD schedules are +0.117 and 0.024, respectively, which suggests that between

5More precisely, D-splines will produce the same fits for any set of basis functions that have the same column
space.
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these ages almost all “good” schedules have slopes within a narrow range of small positive
values.

Applying this approach simultaneously to all G = 99 first-differences for intervals
starting with ages 0...98, the HMD slopes have mean vectorm1 and covariance matrixV1.
Defining ∆1 as the standard 99× 100 first-differencing matrix, this produces a penalized
log likelihood for the spline scheduleBθ:

f1(θ) = L(θ)− 1

2
(∆1Bθ −m1)

′
V −11 (∆1Bθ −m1) . (7)

The value θ∗1 that maximizes this function produces a fitted schedule Bθ∗1 for mortality,
denoted from here on as the D–1 estimator.

3.2 Curvature penalties: D–2

A slightly less demanding criterion than that in Section 3.1 might penalize curvature (sec-
ond differences) in the fitted spline schedule that failed to match HMD empirical patterns.
Defining ∆2 as the standard 98 × 100 second-differencing matrix and defining m2 and
V2 as above (but now using theG = 98 second differences in each HMD schedule) yields
an analogous penalized log likelihood with different constants:

f2(θ) = L(θ)− 1

2
(∆2Bθ −m2)

′
V −12 (∆2Bθ −m2) , (8)

a different optimal value θ∗2 , and a different D-spline fitBθ∗2 . Call this estimator D–2.

3.3 Lee-Carter penalties: D–LC

One can also define “good” spline schedules according to their fidelity to existing mod-
els. In this approach residuals might represent features of a schedule that cannot be
represented within a specified model family. For example, in the most commonly used
mortality modelling framework, Lee and Carter (1992), schedules are modeled as

lnµx = ax + k · bx,

where a and b are A × 1 vectors of predetermined constants that represent a baseline
schedule and typical deviations from that schedule, as estimated from a singular value
decomposition on reference data.
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In the Lee-Carter model the scalar parameter k determines the level of deviation
from the baseline, so that (with A = 100 ages) the vector

 lnµ0 − a0
...

lnµ99 − a99

 = k ·

 b0
...
b99


must lie in the column space of vector b ∈ R100. This suggest another way to define
D-spline penalties using the HMD. Specifically, we can estimate the Lee-Carter a and b
vectors from the HMD and then define the G = 100 residuals for any schedule {lnµ} ∈
R100 as the part of {lnµ}−a that lies outside of the column space of b. In matrix notation
this vector of residuals is

ε =
[
I − b(b′b)−1b′

]
[{lnµ} − a] = Mb [{lnµ} − a] .

After calculating the Lee-Carter residuals’ covariance (VLC) across HMD schedules, the
corresponding penalized log likelihood for D-spline estimation is

fLC(θ) = L(θ)− 1

2
(Mb (Bθ − a))

′
V −1LC (Mb (Bθ − a)) . (9)

Call θ∗LC that maximizes Equation (9) the D–LC estimator.
It is important to notice that maximizing Equation (9) does not exactly reproduce a

Lee-Carter fit. Instead, it requires that any deviations from Lee-Carter schedule shapes
in the fitted spline s = Bθ must be compensated by better fits to observed mortality. In
other words, Equation (9) rewards, but does not insist on, Lee-Carter-like schedules when
attempting to fit data.

3.4 A preliminary comparison

Figure 4 shows the spline functions that maximize the four alternative criteria when us-
ing the simulated small-area data used earlier in Figures 2 and 3. It also illustrates the
estimated uncertainty of those estimates as bands representing 95% confidence intervals
for the spline function value at each age. The Appendix contains details about estimation
and approximation of uncertainty.

For these particular data sets, all three D-spline methods appear to fit the true sched-
ule of rates better than the minimum-BIC fit using standard P-splines. They also appear
to have lower uncertainty. The improvement in fit over P-splines is especially pronounced

1098 http://www.demographic-research.org

http://www.demographic-research.org


Demographic Research: Volume 44, Article 45

when the population at risk is smaller, as in the bottom panels. It also appears that the
D–1 and D–LC estimators fit the overall shape of the mortality schedule better than the
D-spline fit with curvature penalties (D–2). Figure 4 contains only two simulated mortal-
ity datasets, however. In order to examine whether the patterns in this figure generalize,
in the next section I perform a large experiment with HMD data over many thousands of
samples.

Figure 4: Alternative fits to simulated small-population mortality data from
Figure 3. P-spline fits are minimum-BIC curves
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Note: D–1 and D–2 fits penalize first-difference (slope) and second-difference (curvature) residuals for the schedule
of log mortality rates, respectively. D–LC fit penalizes deviations from a Lee-Carter model. Tick marks along the
horizontal axes represent single-year ages with no deaths. Thin dark lines represent true HMD rates from which data
is simulated, and are identical in each panel. Thicker lines represent estimated schedules for each method. Shaded
bands represent 95% confidence intervals for the spline estimates, calculated using the covariance formulas derived
in Appendix A.5.
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4. Comparative study

4.1 D-spline constants and test samples

I use 222 single-year age by ten-year period (“1×10”) female mortality schedules in the
HMD as the foundation for small-population experiments. These schedules come from
49 different countries, over decades spanning the 1970s to the 2010s. For each of the pro-
posed D-spline criteria and each of the 49 countries in the selected HMD data, I calculated
the G× 1 mean residual vector over all schedules that did not belong to that country, and
the G × G covariance matrix V of the residuals across the same schedules. These cal-
culations provide country-specific constants for the D-spline objective functions, which
in all cases are estimated data from other countries. For example, no data from Portugal
influenced the D-spline constants used in Figure 4. Similarly, Australian data is excluded
when calculating constants for Australia; Austrian data is excluded for Austria; and so on
for all 49 countries in the selected HMD dataset.

I then used the HMD 1×10 exposure data associated with each mortality schedule to
create simulated (deaths,exposure) samples, as follows. For each schedule i = 1 . . . 222
I rescaled observed age-specific exposures (Nix) to represent a small population with
the same age structure: N∗ix = P ∗ · Nix∑

xNix
, where the small population P ∗ is either

10,000 or 100,000. For each of the 222×2=444 simulated small populations, I drew 100
independent samples of simulated deaths at ages x = 0 . . . 99 using the true log mortality
rates from the corresponding HMD schedule:

Dsim
ix ∼ Poisson(N∗ix · µix) x ∈ 0 . . . 99 [repeated 100 times].

4.2 Experimental design

For each of the 222×2×100 = 44,400 (HMD schedule, population size, simulation) com-
binations, I estimated the optimal schedule Bθ separately for each the three D-spline
penalty functions6. D-spline calculations used a standard Newton-Raphson algorithm as
in Equation (A-1). For each (HMD schedule, population size, simulation) combination I
also estimated a P-spline function Bθ with the same basis B, using the Mort1Dsmooth
function from the MortalitySmooth package in R Camarda (2012), with all settings other
than the interior knots set at default values.

The experiment therefore comprises 44,400×4 methods = 176,600 estimated

6As noted earlier, in order to enhance comparability with the P-spline estimator, reported D-spline results for
the Monte Carlo experiments used the B matrix as implemented in the MortalitySmooth package (Camarda
2012). The specific command to generate the 100×36 matrix is MortSmooth bbase(x = 0:99, xl = –0.99, xr =
99.99, ndx = 33, deg = 3). Results are not sensitive to this choice: errors for D-spline estimators are virtually
identical if the basis matrix is replaced with the D-spline default defined earlier and illustrated in Figure 1A.
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mortality schedules, each with a known true schedule from the HMD.7 For each schedule
estimate I examined three error measures:

1. errors in age-specific log mortality rates (estimated ln µ̂x − true lnµx )
2. errors in life expectancy at birth: ê0 − true e0
3. errors in working-age mortality per 1000: 1000 (45q̂20 − true45q20)

The next section reports tabular and graphical summaries of these error measures over
fitting methods and sample sizes.

4.3 Evaluation of fitting errors

4.3.1 Overall shape: errors in estimating age-specific mortality rates

Table 1 reports summary data comparing minimum-BIC P-spline fits with the three al-
ternative D-spline estimators. As in the figures presented earlier, the top rows contain
information for simulated small populations of 100,000 women, bottom rows for smaller
populations of 10,000.

Summaries over many simulated populations and true mortality schedules in Table
1 confirm the intuition from the single example in Figure 4. Namely, in small populations
D-spline estimators tend to have much smaller fitting errors than standard P-splines. The
mean absolute error of estimated mortality rates is more than two times larger for P-
splines than for any of the D-spline variants in the tests with samples of 100,000 woman-
years; it is also notably higher in samples of 10,000 woman-years. In the smaller samples
represented in the bottom block in Table 1, there is a notable negative bias in P-spline
estimated rates, and mean absolute errors are several times larger for P-splines than for
the D–1 and D–LC estimators.

For any one of the 222×100 = 22,200 samples of a given sample size there are four
alternative estimated schedules, one for each method. The rows labeled Lowest BIC and
Lowest Mean Abs Error in Table 2 show the percentage of those 22,200 samples in which
each estimator was the best-performing. For example, in samples of size 100,000 the
standard P-spline estimator had the lowest BIC of the four alternatives in 0.9% of samples
and the lowest mean absolute error in 0.2%. In contrast, for those same samples the D–LC
estimator had the lowest BIC in 54% and the lowest mean absolute error in 38%. Thus in
direct within-sample comparisons P-spline estimation performs much more poorly than
D-spline alternatives – especially the LC variant.

7The D–2 estimator did not converge in 33 of 22,200 samples of size 10,000, and in 31 of the 22,200 samples
of size N = 100,000. Calculations and plots in this section omit those 64 cases.
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Table 1: Summaries of fitting errors by sample size and estimation method.
For each of 222 HMD mortality schedules, each method was
applied 100 times to independent samples representing 100,000 or
10,000 woman-years

Population Error Measure P-spline D–1 D–2 D–LC

100,000 Mean Abs Err 0.25 0.11 0.12 0.10
Mean Error 0.07 0.01 0.00 0.01

Median df 7.2 3.5 4.4 3.3
Median BIC 143.7 113.6 116.5 112.4

10,000 Mean Abs Err 0.48 0.17 0.31 0.16
Mean Error –0.13 0.02 –0.08 0.01

Median df 2.5 1.6 3.2 1.4
Median BIC 88.4 79.9 85.8 79.5

Percent of 222 × 100 = 22,200 samples of a given size in which
estimation method has...

100,000 Lowest BIC 0.9% 42% 3% 54%
Lowest Mean Abs Err 0.2% 30% 32% 38%

10,000 Lowest BIC 8% 37% 0.4% 55%
Lowest Mean Abs Err 0.4% 29% 15% 56%

Note: Error at age x for sample s is
(
ln µ̂xs − lnµtrue

x
)
. Results in the tables are for all ages 0 . . . 99 combined.

BIC = Bayesian Information Criterion, df = effective degrees of freedom, calculated as described in Appendix.

As suggested by the preliminary examples in Figure 4, P-spline fitting errors are
particularly large at the youngest ages. In many test samples, especially with smaller
populations, the minimum-BIC P-spline curve has less curvature than the true schedule
(as in the bottom left panel of Figure 4), and consequently produces estimated rates that
tend to be too low for infants and very young children, and then too high for older chil-
dren and young adults. Figure 5 confirms this pattern, by showing the mean difference
(estimated log rate-true log rate) by age for each method and sample size. In small pop-
ulations standard P-spline estimators clearly have difficulty fitting mortality schedules
accurately at ages below 20. As discussed earlier, that difficulty arises from the asym-
metric, not-particularly-cubic shape of human mortality schedules at those young ages.
D-spline variants, which penalize deviations from the shape of known mortality schedules
rather than from global polynomials, perform better.
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Figure 5: Median errors and 10–90% intervals by age, population size, and
fitting method. Each plotted point is the average error
ln µ̂x − lnµtruex over 22,200 estimates (100 independent samples
from each of 222 HMD mortality schedules)
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Note: Shaded bands show the intervals from the 10th to 90th percentile of errors. Top panels correspond to
populations with 100,000 women, bottom panels to 10,000 women. Vertical scale differs in top and bottom panels.

The evidence from the simulation study suggests a clear ranking of estimators in
terms of fitting age-specific rates. D–LC performs best and standard P-splines perform
worst. Among the other two variants, D–1 estimators outperform D–2, mainly because
of lower bias at very young ages. D–1 and D–LC estimators do not differ much on the
performance metrics in Table 1, but for all summary error measures the Lee-Carter variant
is slightly better.

4.3.2 Overall level: e0

Perhaps the most important metric for success of a small-population method is accuracy
in estimating life expectancy at birth. This is the most commonly reported mortality
summary, so a good method should have low errors for e0. Because e0 is a summary
measure of the overall level of mortality, it is possible that a method that does not fit
individual age-specific rates well will still produce good estimates of life expectancy.
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This would happen if overestimates of mortality rates in some age groups tended to be
offset by underestimates in other age groups.

Table 2 reports errors for e0, and provides evidence that standard P-splines perform
much better for life expectancy than for age-specific mortality risks. Table 2 shows that
all four estimators have average errors of about one-third of a year in populations of size
100,000 and about one year in populations of size 10,000. Bias is low for all estimators
except for P-spline estimators in populations of 10,000 (for which bias = +0.22 years).
The main source of error at both population sizes is sampling variance. Life expectancy
estimates for the P-spline and D–2 variants are only slightly more variable than those for
the other two methods.

There is not a clear “winner” among the four methods on this metric, but overall D–1
slightly outperforms other estimators in estimating e0, as indicated by the higher proba-
bility that it has the lowest mean error. Although the differences are much smaller than
those for age-specific rates in Table 1, it is interesting to note that for e0 the bias-variance
tradeoffs seem to be similar: less flexible methods (i.e., those with lower effective degrees
of freedom) do a bit better at estimating e0 from small samples.

Table 2: Errors in estimated life expectancy at birth (e0)

Population Error Measure P-spline D–1 D–2 D–LC

100,000 Mean Abs Err 0.36 0.34 0.35 0.33
Mean Error 0.04 –0.01 0.00 0.00

10,000 Mean Abs Err 1.10 0.96 1.11 0.94
Mean Error 0.22 0.02 0.05 0.08

Percent of 222 × 100 = 22,200 samples of a given size in which
estimation method has...

100,000 Lowest Mean Abs Err 26% 31% 22% 22%
10,000 Lowest Mean Abs Err 22% 33% 19% 26%

4.3.3 Working-age mortality: 1000× 45q20

As a final comparison I examine estimated working-age mortality over the small popu-
lations in the test samples, measured as deaths per 1000 over the age range from 20–65,
i.e., 1000 45q20. Table 3 shows estimation errors for this index across samples. Like life
expectancy, this mortality measure covers a range of ages. As a consequence, it is possi-
ble that bias and variance in estimated rates at single-year ages may tend to “wash out”
in the summary measure. That is the case with estimated working-age mortality. As with
e0, errors are much more similar across methods than they are for age-specific rates.

For working-age mortality, D–LC estimators again have the lowest mean absolute
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error. P-spline estimators are slightly more likely than the other methods produce the low-
est errors in samples of size 100,000 and D–LC is the most likely to produce the smallest
error in samples of 10,000. But, as they were for life expectancy, these differences in per-
formance are very small. The main conclusion from comparing estimation errors for this
mortality index is that all four methods perform reasonably well: biases are small for all
methods, and there are not large differences in the chances of a method being the “win-
ner” in one of the 22,200 samples of a given size. However, as with other metrics, there
is an advantage (here very slight) for the “stiffer” methods with fewer effective degrees
of freedom.

Table 3: Errors in estimated deaths per 1000 over working ages
(1000×45 q20)

Population Error Measure P-spline D–1 D–2 D–LC

100,000 Mean Abs Err 6.8 6.4 6.4 6.3
Mean Error –0.7 +0.4 +0.4 –0.6

Mean Abs Pct Error 5.8 5.3 5.6 5.2

10,000 Mean Abs Err 20.6 14.0 18.3 13.9
Mean Error 4.2 1.5 +0.0 –2.0

Mean Abs Pct Error 17.7 11.7 15.8 11.2

Percent of 222 × 100 = 22,200 samples of a given size in which
estimation method has...

100,000 Lowest Mean Abs Err 28% 27% 24% 22%
10,000 Lowest Mean Abs Err 19% 29% 21% 31%

5. Discussion

The simulation study in Section 4 demonstrates that demographically penalized splines
(D-splines) outperform standard P-splines for fitting mortality schedules in small popu-
lations. The advantages of D-splines are especially notable at young ages and in smaller
populations. Although D-spline estimation requires calculating a large number of con-
stants in advance, easy access to large demographic datasets makes this a simple task.8

After constants have been calculated once, D-spline estimators are “precalibrated” and
do not require a separate process to select an optimal global penalty constant λ.

8In the examples in this paper D-spline penalties use 100 means and 5050 unique variances and covariances,
which can be calculated on a standard laptop computer in less than a few seconds. Inverting a 100 × 100 co-
variance matrix in which many elements are very small could in principle lead to serious numerical instabilities.
In practice such instabilities do not appear to be a problem. In the cross-validated simulation exercise 147 such
matrices (one matrix per method for each of 49 countries) were inverted using R’s generalized inverse function
(ginv in the MASS library) without any notable numerical problems in the fitted D-spline schedules.
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Demographic analyses have many objectives. Although D-splines produce notably
better fits for age-specific mortality rates, their advantages are less important for estimat-
ing indices like e0 or 45q20 that span wide age groups. For these indices the standard
P-spline approach and D-spline estimators all tend to perform well, because all do a good
job at estimating the average mortality rate over an age interval, even when do not get the
individual age-specific rates right.

The D-spline approach clearly depends on observed regularities – and observed vari-
ability – in demographic schedules. Simulation tests in this paper are cross-validated, in
the sense that data from a country is not used to build the D-spline constants used when
estimating that country’s mortality schedule. However, cross-validation occurs within
“HMD-type countries” only, which leave unanswered questions about generalizability to
mortality schedules from other times, other places, and other epidemiological environ-
ments.

We can safely conclude from the comparative study presented here that
demographically-penalized spline estimators outperform standard penalized spline ap-
proaches in small samples from populations with mortality risks similar to those in con-
temporary rich countries with high-quality data. For many purposes – such as small-
area estimates for contemporary US counties, German Kreise, or Korean townships –
results show that flexible estimators with demographic penalties derived from the HMD
are likely to produce much better estimates than standard P-splines. For other purposes –
such as estimates for historical or disadvantaged populations – the jury is still out, but the
D-spline framework provides a structure in which demographers can evaluate the costs
and benefits of alternative penalties derived from other sources.
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Appendix A: Notes on estimating D-splines

A-1 Newton-Raphson

In a penalized likelihood maximization problem, the objective function has the form

f(θ) = L(θ)− P (θ),

where θ ∈ RK is a vector of parameters and L and P are the likelihood and penalty
functions, respectively. In order to maximize we need to set the derivative of L(θ)−P (θ)
equal to a zero vector in RK . In other words

Lθ(θ) = Pθ(θ),

This is a nonlinear system ofK equations inK parameters θ, which can be approximated
by the linear system in the neighborhood of an arbitrary θt as

Lθ(θt) +Lθθ′(θt) (θ − θt) = Pθ(θt) + Pθθ′(θt) (θ − θt),

where Lθθ′ and Pθθ′ are K ×K Hessian matrices of second derivatives.
The optimal θ for this local linearized system solves

[Lθθ′(θt)− Pθθ′(θt)] (θ − θt) = −[Lθ(θt)− Pθ(θt) ]

[Lθθ′(θt)− Pθθ′(θt)] θ = [Lθθ′(θt)− Pθθ′(θt)] θt − [Lθ(θt)− Pθ(θt) ]

Ht θ = Ht θt − gt,
(A-1)

whereHt ∈ RK×K and gt ∈ RK are the Hessian matrix and the gradient vector of f(θ),
evaluated at θt. Newton-Raphson iteratively solves for θ, updatesH and g using that new
θ, re-solves for θ, and so on to convergence (Amemiya 1985: 137–139).
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A-2 Poisson likelihood

The Poisson log likelihood is

L(θ) = constant−
∑
x

Nx exp(sx) +
∑
x

Dxsx,

where B ∈ RA×K is the B-spline basis, θ ∈ RK are the spline parameters, bx ∈ RK is
the row of B that corresponds to age x, and sx = b′x θ is the spline approximation to the
log mortality rate at age x. In terms of expected deaths, the likelihood is

L(θ) = constant−
∑
x

D̂x +
∑
x

Dxsx.

The gradient of L is

Lθ(θ) = −
∑
x

∂D̂x

∂θ
+
∑
x

Dx
∂sx
∂θ

= −
∑
x

D̂xbx +
∑
x

Dxbx

= B′ (D − D̂),

where D, D̂ ∈ RA. The Hessian of L is

Lθθ′(θ) = −B′ [diag(D̂)]B.

A-3 D-spline penalty function

The penalty term is

P (θ) = 1
2 ε
′(θ)V −1 ε(θ),

where the residuals ε ∈ RG are

ε(θ) = ABθ − c
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for some constantsA,V −1 ∈ RG×G and c ∈ RG.
The gradient of P is

Pθ(θ) = B′A′V −1 (ABθ − c)

and the Hessian of P is

Pθθ′(θ) = B′A′V −1AB.

A-4 Iterative optimization

In order to maximize the penalized log likelihood we need to set the derivative of L(θ)−
P (θ) equal to a zero vector in RK . In this case

B′ (D − D̂) = B′A′V −1 (ABθ − c) . (A-2)

Newton-Rapshon iteratation repeatedly finds θt+1 that solves Htθt+1 = Htθt − gt via
least squares regression. In this case

[
−B′ [diag(D̂t)]B −B′A′V −1AB

]
θt+1 =

[
−B′ [diag(D̂t)]B −B′A′V −1AB

]
θt

−
[
B′ (D − D̂)−B′A′V −1 (ABθ − c)

]

A-5 Approximate uncertainty

The Newton-Raphson algorithm uses a quadratic approximation to f(θ) at each iteration.
This implies that the covariance of θ estimates is approximately the inverse of the negative
Hessian, evaluated at the final estimate θ∗:

Σθ ≈
[
B′ diag(D̂∗)B + B′A′V −1AB

]−1
(A-3)

where D̂∗ ∈ RA is the vector of predicted deaths by age, evaluated at θ = θ∗. Thus
the covariance of the estimated age-specific log mortality rates from the spline function
s = Bθ∗ is the A×A matrix

Σs ≈ BΣθB
′ = B

[
B′ diag(D̂∗)B + B′A′V −1AB

]−1
B′ (A-4)

1112 http://www.demographic-research.org

http://www.demographic-research.org


Demographic Research: Volume 44, Article 45

A-6 Effective degrees of freedom

Following Ye (1998), we can estimate the effective degrees of freedom of a model as∑
i
∂ŷi
∂yi

, which in the Poisson mortality case would be
∑
x
∂D̂x

∂Dx
. In other words, the more

flexible the model, the more sensitive the predicted number of deaths at age x is to the
observed number of deaths at x.
Start with the maximizing condition in Equation (A-2), and think of it as telling us how to
select parameters θ ∈ RK given observed deaths D ∈ RA. We have to pick θ to balance
the two sides of the equation.

B′ (D − D̂(θ)) = B′A′V −1 (ABθ − c) .

Rearranging to emphasize the new interpretation produces

B′D = B′D̂(θ) + B′A′V −1 (ABθ − c) .

So for small changes in deaths ∆D ∈ RA and parameters ∆θ ∈ RK , maximization
requires

B′∆D ≈
[
B′diag(D̂)B

]
∆θ +

[
B′A′V −1AB

]
∆θ

or

∆θ ≈
[
B′diag(D̂)B + BA′V −1AB

]−1
B′∆D

≈ Q̂−1B′∆D,

where Q̂ =
[
B′diag(D̂)B + B′A′V −1AB

]
∈ RK×K . The change in θ required

to balance a small change in D therefore implies that predicted deaths D̂ must change as

∆D̂ ≈
[
diag(D̂)B

]
∆θ

≈
[
diag(D̂)B

]
Q̂−1B′∆D.

Thus the “hat matrix” is
[
diag(D̂)B

]
Q̂−1B′ and the effective degrees of freedom in

a D-spline model is the sum of its diagonal elements
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df = tr
( [
diag(D̂)B

]
Q̂−1B′

)
= tr

(
Q̂−1B′diag(D̂)B

)
= tr

([
B′diag(D̂)B + B′A′V −1AB

]−1
B′diag(D̂)B

)
.

This is identical in structure to the matrix derived in Eilers and Marx (1996) (Equations
20 and 26); here the Hessian of the D-spline penalty replaces the Hessian of the penalty
for squared differences between consecutive parameters.
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