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Analyzing hyperstable population models

Robert Schoen1

Abstract

OBJECTIVE
Few methods are available for analyzing populations with changing rates. Here
hyperstable models are presented and substantially extended to facilitate such analyses.

METHODS
Hyperstable models, where a known birth trajectory yields a consistent set of age-specific
birth rates, are set out in both discrete and continuous form. Mathematical analysis is used
to find new relationships between model functions for a range of birth trajectories.

RESULTS
Hyperstable population projection matrices can create bridges that project any given
initial population to any given ending population. New, explicit relationships are found
between period and cohort births for exponential, polynomial, and sinusoidal birth
trajectories. In quadratic and cubic models, the number of cohort births equals the number
of period births a generation later, with a modest adjustment. In sinusoidal models, cohort
births equal the number of period births a generation later, modified by a factor related
to cycle length.

CONTRIBUTION
Because of their adaptability, structure, and internal relationships, hyperstable birth
models afford a valuable platform for analyzing populations with changing fertility. The
new relationships found provide insight into dynamic models and period–cohort
connections and offer useful applications to analysts.
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1. Introduction

Hyperstable birth models expand the stable population concept by allowing births to vary
freely over time, and they offer a valuable framework for demographic analysis. The
flexibility in their structure also leads to useful relationships and applications, especially
with regard to cyclical models and to period–cohort translations.

1.1 Introducing the hyperstable birth model

Hyperstable models are derived from a known birth trajectory – that is, a time series of
total population births – and yield a consistent set of underlying age-specific birth rates.
To begin with the model’s discrete formulation, let Gt be an N x N diagonal matrix whose
jth diagonal element is gt+1−j , where gt  is the number of births (persons in the first age
group) at time t. Let F be a time-invariant N x N Leslie-form matrix whose subdiagonal
elements are all 1. Thus the model ignores mortality below the highest age of
reproduction: age group N. Eliminating mortality simplifies the description of the model
with little loss, as mortality effects can be added later. Half of the births are assumed
female and half male.

The first-row elements, fj, are the fertility values or, more precisely, give the number
of persons in the first age group at the end of the interval per person in the jth age group
at the beginning of the interval. The fj are scaled to sum to 1. Now let gt be an N x 1–
column vector whose jth element is gjt, the number of persons in the jth age group at time
t. In the absence of mortality, those persons are the births gt+1−j. These definitions yield
the basic hyperstable projection relationship

gt = Gt F Gt−1−1 gt−1 (1)

The hyperstable population projection matrix (PPM) that takes the population from
time t−1 to time t, At, is then given by

At = Gt F Gt−1−1 (2)

Note that diagonal matrices Gt and Gt−1 have a substantial overlap in their elements.
The jth diagonal element (1 ≤ j < N) of Gt−1 is the (j+1)st diagonal element of Gt. With
the elements of G and F known, Equation (2) gives the age-specific fertility rates at every
time point. Each fertility rate in At has the form fj gt / gt−j and thus represents a fixed
fertility fraction adjusted by a ratio of current to past births.

An illustrative example may be helpful. With N = 3 and f1 + f2 + f3 = 1, we can write
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 ┌ ┐
 │ gt  0 0 │

Gt  =  │ │
 │ 0 gt−1 0 │ (3)
 │ │
 │ 0 0        gt−2 │
 └ ┘

 ┌ ┐
 │ f1  f2 f3 │

F  =   │ │ and (4)
  │ 1 0 0 │

 │ │
 │ 0 1          0 │
 └ ┘

 ┌ ┐
 │ f1 gt / gt−1 f2 gt / gt−2 f3 gt / gt−3 │

At  =  │ │ (5)
  │ 1 0 0 │

 │ │
 │ 0 1 0 │
 └ ┘

When At multiplies gt−1, the (1,1) element of the product is gt, the (2,1) element is
gt−1, and the (3,1) element is gt−2, accomplishing the projection. The age-specific fertility
values in At are the constant fertility fractions fj adjusted by a ratio of beginning and
ending populations (current and past births). The fraction of births arising from the jth
age group is always simply fj.

The hyperstable model is also expressible in continuous form. The (known) number
of births at each exact time t, g(t), leads to age-specific fertility rates of the form

φ(x,t) = [f(x) g(t) / g(t−x)] (6)

where f(x) is the constant fraction of births at exact age x. Summing those rates over all
reproductive ages gives the total fertility rate (TFR) at time t, TFR(t), as

TFR(t) = ∫ f(x) g(t) / [.5 g(t−x)] dx (7)

as half of the population is female.
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1.2 Background literature

The hyperstable model was introduced in Schoen and Kim (1994), which described its
basic features and overall dynamics. Considering a range of birth trajectories, Schoen and
Kim (1994) showed that hyperstable models had quite reasonable patterns of age-specific
birth rates.

Other dynamic models – that is, models with changing vital rates – have been
examined over the past half century. The pioneering work of Coale (1972) examined
various patterns of fertility change and their implications for growth, while Lee (1974)
considered the implications of some constrained patterns of fertility. Kim (1987) found a
general algebraic expression linking fertility rates to births, but in most cases it is too
complex to yield closed form equations. Schoen and Kim (1994), Kim and Schoen
(1996), and especially Schoen and Jonsson (2003) explored the metastable model, where
fertility rates that changed exponentially over age and time produced quadratic
exponential growth. The metastable model stands out, as it provides a closed form
relationship for the birth sequence generated by a specified dynamic fertility sequence,
though it is restricted to monotonic changes in fertility rates over time.

Cyclical models have been of special interest. Skellam (1967) introduced cyclically
stable populations, which were further examined in Namboodiri (1969), Coale (1972),
Tuljapurkar (1985, 1990), and Schoen and Kim (1994). Going beyond fixed vital rates,
Coale (1972: Chapter 6) and Tuljapurkar (1985) used Fourier series to relate sinusoidal
fertility to birth trajectories. While those two analyses were advances, both needed to
assume small oscillations and consider only the first harmonic of the Fourier series, and
neither presented closed form relationships between sinusoidal fertility trajectories and
their resultant birth trajectories.

Going from fertility rates to births, the usual approach in past work, has the
advantage of going from behavior to its consequences. Still, going from births to an
underlying schedule of fertility rates is also of analytical value. Doing so, Kim and
Schoen (1996) examined a sinusoidal birth function with constant proportional fertility
rates and showed it yielded a closed form expression for the TFR trajectory when the
age-specific rates followed a normal curve. That work provided a detailed examination,
over a wide range of cycle lengths, of the relationship between births and TFRs, showing
phase differences and relative amplifications. Because fertility rates were proportional
over age, that model was not hyperstable.

In a distinct line of fertility research, analysts have examined the connections
between period and cohort fertility. The initial “translation” paper by Ryder (1964)
developed a linear relationship between the cohort total fertility rate (CFR) for the cohort
born at time t and the period TFR a generation later. That approach was modified and
elaborated by Keilman (2001), Bongaarts and Feeney (1998), and Zeng and Land (2002).
An alternative approach, assuming constant proportional age-specific fertility, was
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presented in Schoen (2022). That analysis showed that even when the period TFR
followed a cubic trajectory, the TFR values reproduced the CFR for the cohort born a
generation earlier, with a modest adjustment. Up to now, period–cohort relationships
have not been examined in the context of hyperstable models.

The present objective is to consider hyperstable models with a broad range of birth
trajectories to present new and potentially useful relationships in those models and to
indicate some possible applications. Distinctive aspects of the mathematical structure of
hyperstable birth models are discussed, new period–cohort relationships are developed,
and further regularities in cyclical models are explored. We begin with a closer
examination of the basic model.

2. The basic hyperstable birth model

The basic model of Equations (1) through (6) produces a set of age-specific birth rates
consistent with any given birth trajectory gt. The age pattern of those birth rates has been
found to be reasonable over a range of birth trajectories (Schoen and Kim 1994). Under
hyperstability, there must be a fixed proportion of births by age of mother, hence a
constant period mean age of childbearing.

2.1 The mathematical structure of hyperstable models

Over time, the product of the projection matrices, At, simplifies. Consider the product of
successive PPMs that project the population from time t−1 to time t+m. From
Equation (2), that product matrix, Mt−1,m, is given by

Mt−1,m = At+m At+m−1 … At

= (Gt+m F Gt+m−1−1 ) (Gt+m−1 F Gt+m−2−1 ) … (Gt+1 F Gt−1 ) ( Gt F Gt−1−1 )

= Gt+m F (m+1) Gt−1−1 (8)

As successive terms “telescope,” Leslie-form matrix F is raised to increasingly
higher powers over time, and the latent or eigenstructure of F becomes manifest. That
eigenstructure has a fixed and relatively simple structure, which is described in Appendix
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A. When F can be expressed solely in terms of its constant dominant left and right
eigenvectors, the model can be seen as having converged to hyperstability.

2.2 Hyperstable projection matrices as bridges

The telescoping of projection matrices shown in Equation (8) has an important
implication. Each PPM can serve as a bridge from an interval’s initial population to its
ending population. Under hyperstability, each PPM’s rates are adjusted so that the
composition of the initial population is accommodated to yield the ending population (see
Schoen 2006: 153–154). Perturbations in birth trajectories are immediately incorporated
into the fertility rates because there is a fixed proportion of births by age of mother.
Barring an extreme fluctuation in the number of births, the age pattern of fertility remains
plausible.

Analysts seeking to find a PPM that takes a given initial population to a given ending
population can thus use a hyperstable form projection matrix, with fj values appropriate
to the circumstances. More generally, if the fj can be chosen by the investigator, any such
PPM can be written in hyperstable form. To show that, assume that the gt trajectory is
known. Let 3 x 3 PPM At take the population from time t−1 to time t, with the first row
elements of At being any known values a, b, and c. From the projection relationship,

gt = a gt−1 + b gt−2 + cgt−3 (9)

To put PPM At in hyperstable form with f1 + f2 + f3 = 1, we can write

a = f1 gt /gt−1 ; b = f2 gt /gt−2 ; c = f3 gt /gt−3

or, rearranging,

f1 = a gt-1 /gt ;    f2 = b gt−2 /gt ;  f3 = c gt−3 /gt (10)

From Equations (9) and (10), we can verify that the sum of the f values is 1; Equation
(2) then applies. An analytical example can be seen in the discussion after Equations (3)–
(5), and an application to a stable/stationary transition is provided in Section 6.1. The
approach in Equations (9) and (10) holds for PPMs of any size and demonstrates that
hyperstable relationships are implicit in population projections.
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3. Hyperstable models with exponential birth trajectories

Birth trajectory g(t) is often exponential in analytical population models. Here we
consider three different types of exponential trajectories.

3.1 Models with simple exponential birth trajectories

Let g(t) be the simple exponential ert, the growth rate that is characteristic of stable
populations. From Equation (6), the fertility rate at age x and time t, φ(x,t), has the form

φ(x,t) = f(x) g(t) / g(t−x) =  f(x) ert / er(t−x)  = f(x) erx (11)

Consistent with fixed rate stable population assumptions, hyperstable age-specific
fertility is constant over time. In other words, the stable population is a hyperstable
population with a simple exponential birth trajectory.

3.2 Models with quadratic and higher exponential birth trajectories

Let the exponentially quadratic hyperstable birth trajectory be

g(t) = exp[st + ht2] (12)

Then, simplifying the g(t)/g(t−x) ratio,

φ(x,t) = f(x) exp[sx + h(2xt−x2)] (13)

The quadratic exponential hyperstable birth trajectory is the same as the metastable
birth trajectory, but the two models have different age-specific birth rates (Schoen and
Jonsson 2003).

The approach used in Equation (13) can produce age-specific birth rates for
exponentially cubic and higher-order hyperstable birth trajectories, though such higher-
order models are not frequently seen in demographic work.
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3.3 Models with declining exponential birth trajectories

Hyperstable models can capture an exponential decline in fertility to stationarity. For b >
0, let

g(t) = a + d exp[−bt] (14)

When a ≠ 0, the age-specific rates vary over time. Though different schedules of
birth rates can produce that birth sequence, we focus on hyperstable values. Then the age-
specific birth rates can be found as above, though those expressions do not simplify.

In the hyperstable scenario, new relationships can be found between period and
cohort birth trajectories. Indeed, hyperstable models lend themselves to cohort
relationships. Specifically, the number of births to the cohort born in year τ can be written
as

C(τ) = ∫ [f(x) g(τ+x)] dx (15)

Unless stated otherwise, integrals range over all reproductive ages, here taken to be
ages 15 to 45. The cohort TFR is then given by CFR(τ) = C(τ) /[.5 g(τ)].

To evaluate the integral in Equation (15), we need to specify age-specific fertility
density function f(x). A simple but convenient and quite reasonable assumption is the
quadratic function

f(x) = −3/20 + x /75 – x2 /4500 = (x−15)(45−x)/4500 (16)

The derivation of Equation (16) is shown in Appendix B. The value of f(x) is 0 at
ages 15 and 45 and reaches a maximum of 0.05 at age 30. The area under the symmetric
f(x) curve is 1, with mean 30, variance 45, standard deviation 6.71, and 0 skew.

Using Equation (16), Equations (14) and (15) give

C(τ) = ∫ (−3/20 + x /75 – x2 /4500) (a + d exp[−b(τ+x)]) dx (17)

The integration in Equation (17) can be performed explicitly, as shown in Appendix
C. The result is

C(τ) = a + d exp[−b(τ+30)] J(b) (18)

where moderating factor J(b) is solely a function of rate of decline b and is given by

J(b) = { exp[15b] (15b−1) + exp[−15b] (15b+1)} / (2250 b3 ) (19)
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Factor J(b) varies nonlinearly with rate of decline b and can become unstable when
b < 0.00001. When b is in the more realistic range from 0.001 to 0.5, J(b) increases
approximately exponentially with b (see Table 1), going from about 1.000 to 41.786.

Table 1: Period and cohort births and values of moderating factor J(b),
hyperstable models with exponentially declining birth trajectories

Rate of Factor Cohort Period
decline (b) J(b) births (C(0)) births (g(30))

0.001 .9999 1.9703 1.9704
0.0025 1.0001 1.9279 1.9277
0.005 1.0006 1.8612 1.8607
0.01 1.0023 1.7425 1.7408
0.025 1.0141 1.4790 1.4724
0.05 1.0574 1.2359 1.2231
0.1 1.2439 1.0619 1.0498
0.25 3.3293 1.0018 1.0006
0.5 41.7859 1.0000 1.0000

Note: Calculations are based on Equations (14), (18), and (19). Parameters are a = 1 and d = 1. At time 0, g(0) = a+d = 2. As the rate
of decline increases, J(b) increases and the number of births goes to a = 1.

Equation (18) indicates that the number of cohort births at time τ lags period births
by a generation (30 years), with the declining exponential term in g(τ+30) moderated by
J(b). For 0.001 < b < 0.045, adjustment factor J(b) is small, less than 1.05. The results in
Table 1, for a wide range of rates of fertility decline, show that cohort births closely
approximate the number of period births 30 years later.

4. Hyperstable models with polynomial birth trajectories

Here we examine linear, quadratic, and cubic birth trajectories, focusing on the
connection between the period g(t) and cohort C(τ) birth functions. The evaluation of the
integrals involved is shown in Appendix D.

4.1 Hyperstable models with linear birth trajectories

Let the birth trajectory have the linear form

g(t) = R + at (20)
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Then the cohort born in year τ has total births numbering

C(τ) = ∫ [R+a(τ+x)] f(x) dx (21)

where f(x) is the quadratic density function of Equation (16). Carrying out the integration
yields

C(τ) = [R + a(τ+30)] = g(τ+30) (22)

The cohort born in year τ has exactly the number of births over its lifetime as occur
during year τ+30 – that is, the births of a generation later.

4.2 Hyperstable models with quadratic birth trajectories

Let the birth trajectory be

g(t) = R + at + bt2 (23)

With C(τ) = ∫ [R+a(τ+x)+b(τ+x)2] f(x) dx and f(x) as in Equation (16), the number
of cohort births is

C(τ) = g(τ+30) + 45b (24)

Equation (24) shows that with a quadratic birth trajectory, the number of cohort
births is the number of period births 30 years later plus the product of the variance of f(x)
times quadratic parameter b. That additive adjustment is constant over time and reflects
the interaction between the nonlinearity of the birth sequence and the variability in the
underlying birth density distribution. Here, as elsewhere, once the period births to cohort
births relationship is established, it can be used to go from cohort births to period births.
Thus if the known C(τ) is given by Equation (24) or the cohort TFR is given by C(τ)/g(τ),
then the birth sequence is given by Equation (23).

4.3 Hyperstable models with cubic birth trajectories

Let the birth trajectory be

g(t) = R + at + bt2  + dt3 (25)
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With C(τ) = ∫ [R+a(τ+x)+b(τ+x)2 +d(τ+x)3 ] f(x) dx and f(x) given by Equation (16),
the number of births to the cohort is

C(τ) = g(τ+30) + 45 [ b + 3d (τ+30) ] (26)

With a cubic birth trajectory, the number of cohort births is the number of period
births 30 years later plus additive adjustments for the variance of f(x) and the quadratic
and cubic parameters (see Appendix D). Note that if d = 0 in Equation (25), Equation
(23) arises, and if b = 0 in Equation (23), Equation (21) arises. With all three polynomials,
the results parallel the relationships between period and cohort TFRs found by Schoen
(2022).

In sum, under linear, quadratic, and cubic birth trajectories, the number of births to
a cohort is the number of period births a generation later with adjustments for the
nonlinearity of the birth trajectory. For most populations, the quadratic and cubic
parameters are small, so the additive adjustment is modest.

5. The cyclical hyperstable model

Cyclical models have long been of interest to demographers. Under cyclical
hyperstability, the birth trajectory repeats itself every K intervals, and in each successive
cycle, the number of births at every stage of the cycle is λ times the number at that stage
in the preceding cycle. The fertility values in each PPM of every cycle follow from the
hyperstable (fj gt /gt−j) relationships of Equation (6). Hence the population at every stage
and the rate of growth from cycle to cycle follow from the specified cyclically stable birth
trajectory, with the PPMs determined accordingly.

The flexibility of the hyperstable model allows any within-cycle birth trajectory and
inter-cycle rate of growth. Within a cycle, the births can be skewed, follow a sawtooth
pattern, or take on any specified shape. The fixed fraction of births by age of mother is
still determined by the fj, and age-specific birth rates at every stage in a cycle are repeated
at that stage in the next cycle.

5.1 The cycle population projection matrix

The cycle PPM (or CPM) is the product of K consecutive PPMs that take the population
from a given stage in one cycle to the same stage in the next cycle. Hence CPMj is the
product of the (j+1)st PPM in a cycle through the following jth PPM of the next cycle.
For example, CPM1 is the product (λA1 AK AK−1 … A3 A2) and projects the population at
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the first stage in one cycle to the first stage of the next. Given the telescoping nature of
the PPMs, we can use Equations (2) and (8) to write

CPM1  = λG1 FK G1−1 (27)

Analogous relationships exist for every stage in the cycle. Equation (27) shows that
the CPM has Sykes form (Sykes 1973), meaning that it is the product of (1) a constant
parameter, (2) a diagonal matrix, (3) a row stochastic matrix, and (4) the inverse of the
diagonal matrix. In Sykes form, λ is the dominant eigenvalue of CPM1, and the diagonal
of G1 contains the dominant right eigenvector of CPM1. While Tuljapurkar (1985: 4)
noted that a CPM is generally a complicated object that resists analysis, in cyclical
hyperstable models, the dominant eigenstructure is quite accessible.

5.2 Relationships under cyclical hyperstationarity

When λ = 1, the model is cyclically hyperstationary and does not grow from cycle to
cycle. Cyclical hyperstationary models have not previously been examined and contain a
number of noteworthy relationships, including those between period and cohort birth
trajectories. More broadly, cyclically stationary models can be useful analytically as they
provide a framework for examining long-term zero-growth populations that have short-
term fluctuations in fertility and are thus more flexible than stationary population models.

Within a cycle, the birth trajectory can take any shape. Here we focus on the
sinusoidal hyperstationary model

g(t) = a + b sin ωt (28)

where cycle frequency ω = 2π/T and T is the length of a complete cycle. The number of
births to the cohort born in year τ can then be written

C(τ) = ∫  [a + b sin ω(τ+x)] f(x) dx (29)

Carrying out the integration with f(x) as in Equation (16), as shown in Appendix E,
yields the result

C(τ) = a + b sin ω(τ+30) H(ω) (30)

where moderating factor H(ω) is given by
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H(ω) = [sin 15ω − 15ω cos 15ω] / (1125 ω3 ) (31)

Equations (30) and (31) are new and indicate that when the birth trajectory varies
sinusoidally, cohort births also vary sinusoidally with the same cycle length. There is a
constant phase difference of 30 years (the mean of the f(x)) between the period and cohort
birth curves. The relative amplitude of those curves around the base level set by parameter
a is determined by factors b and H(ω). Thus the phase difference and relative amplitude
are separable, with the relative amplitude depending only on parameter b and the cycle
length.

Table 2 examines the nature and effects of moderating factor H(ω). While observed
population cycles typically are some 30 to 60 years long, with American fertility having
cycles of around 40 years, Table 2 casts a broader net and shows values of H(ω), g(30)
and C(0), and g(40) and C(10) for cycle lengths from 15 to 1,000 years. Some short cycle
lengths have negative H(ω) values, with H(ω) equal to 0 when T = 20.9747 years. At that
cycle length, period births vary over time, but the number of cohort births remains
constant. As shown in Figure 1, the value of H(ω) then increases steadily with T and
approaches 1 for large T. While period and cohort births fluctuate with the same cycle
length, C(τ) is always closer to base value a = 2 than is g(τ+30).

Table 2: Period and cohort births and values of moderating factor H(ω),
hyperstationary models with sinusoidal birth trajectories

Cycle Factor Period Cohort Period Cohort
length (T) H(ω) births g(30) births C(0) births g(40) births C(10)

15 −0.0760 2.0000 2.0000 1.6536 2.0263
20 −0.0287 2.0000 2.0000 2.0000 2.0000
20.9747 0.0000 2.1696 2.0000 1.7795 2.0000
24 0.1025 2.4000 2.0410 1.6536 1.9645
30 0.3040 2.0000 2.0000 2.3464 2.1053
40 0.5443 1.6000 1.7823 2.0000 2.0000
50 0.6869 1.7649 1.8385 1.6196 1.7387
60 0.7740 2.0000 2.0000 1.6536 1.7319
70 0.8301 2.1736 2.1441 1.8264 1.8559
80 0.8679 2.2828 2.2455 2.0000 2.0000
90 0.8945 2.3464 2.3099 2.1368 2.1224
100 0.9139 2.3804 2.3479 2.2351 2.2149
200 0.9780 2.3236 2.3165 2.3804 2.3720
1000 0.9991 2.0750 2.0749 2.0995 2.0994

Note: Period birth trajectory given by g(t) = a + b sin ωt, with T = 2π/ω, a = 2, and b = 0.4.
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Figure 1: Moderating factor H(ω) in cyclically stationary hyperstable models,
by cycle length T from 5 to 100 years

Figure 2 shows the time trajectories of births for periods, g(t+30), and cohorts, C(t).
Cycle lengths of 20, 40, 60, and 80 years are shown, with a = 2 and b = 0.4. The g(t+30)
curve always goes from a peak of 2.4 births to a trough of 1.6 births. The curves for
g(t+30) and C(t) are always in phase, with crossovers when sinω(t+30) is 0 – that is,
midway between the minimum and maximum values of g(t+30). When T = 20, crossovers
occur at time 10 and multiples of 10 (T/2), and the fluctuations in C(t) are small and
opposite in direction to those of g(t+30). For longer cycle lengths, the C(t) curve comes
progressively closer to the g(t+30) curve.

To confirm Equations (30) and (31), calculations were done using hypothetical data
with T = 24, a = 2, and b = 0.3. It follows that H = 0.1025. Single years of age and time
were used. Fertility follows the quadratic in Equation (16), but f(x) is evaluated at mid-
interval – that is, at ages 15.5 through 44.5. The array of births was then calculated for
every age and for times 0 through 52. The 53-year time span was needed, as the cohorts
born in years (−15) through (+8) had to be followed through age 44. The total number of
cohort births for each year was found by summing the diagonals of the age-specific birth
array. That yielded data for 24 periods and 24 cohorts, a complete cycle. Details of the
calculation, and the elements of the age-time birth array, are provided in Appendix F.
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Figure 2: Time trajectories of period (time t+30) and cohort (born time t)
births in sinusoidal hyperstationary models where a = 2 and b = 0.4,
with cycle lengths of 20, 40, 60, and 80 years

Cycle length (T) is 20 years Cycle length (T) is 40 years

Cycle length (T) is 60 years Cycle length (T) is 80 years

Table 3 compares the number of cohort births found from Equations (30) and (31)
with those calculated from the age-time birth array. Discrepancies are to be expected
when comparing the results of a continuous-time equation with those of a discrete-time
calculation, but here they are quite small. The Equation (30) cohort birth figures track the
discrete figures very closely. The average error is about one-quarter of a percent
(0.00256), and the magnitude of the largest error is 0.004. Table 3 thus confirms the
relationship between period and cohort births given by Equations (30) and (31).
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Table 3: Numerical comparison of cohort births calculated from Equation
(30) with births calculated from a birth array based on hypothetical
data

(1) (2) (3) (4) (5)
Cohort Period Cohort Cohort births Proportional
year of births births from age-time error
birth (τ) g(τ+15) from Eq(30) birth array [(3)−(4)]/(3)

−15 100 97.83 98.14 −0.0032
−14 107.76 97.34 97.57 −0.0024
−13 115 97.03 97.17 −0.0015
−12 121.21 96.92 96.96 −0.0004
−11 125.98 97.03 96.96 0.0007
−10 128.98 97.34 97.17 0.0017
−9 130 97.83 97.57 0.0026
−8 128.98 98.46 98.14 0.0033
−7 125.98 99.20 98.93 0.0038
−6 121.21 100 99.60 0.0040
−5 115 100.80 100.40 0.0039
−4 107.76 101.54 101.17 0.0036
−3 100 102.17 101.86 0.0030
−2 92.24 102.66 102.43 0.0023
−1 85 102.97 102.83 0.0014

0 78.79 103.08 103.04 0.0004
1 74.02 102.97 103.04 −0.0006
2 71.02 102.66 102.83 −0.0016
3 70 102.17 102.43 −0.0025
4 71.02 101.54 101.86 −0.0032
5 74.02 100.80 101.17 −0.0037
6 78.79 100 100.40 −0.0040
7 85 99.20 99.60 −0.0040
8 92.24 98.46 98.83 −0.0037
9 100 97.83 98.14 −0.0032

Notes: Birth trajectory g(t) = a + b sin ωt. Equation (30) parameters are a=100, b=30, and T=2π/ω=24. Factor H(ω) = 0.1025. Average
absolute error over a cycle is 0.00256.
Source: See text and Appendix F.

5.3 Some relevant model comparisons

The present period–cohort birth results can be compared with the findings of Kim and
Schoen (1996), which analyzed the same sinusoidal g(t) function but assumed constant,
normal curve-based fertility proportions by age and focused on the relationship between
the birth and period net reproduction (NRR) curves. Kim and Schoen (1996) found that
the g(t) and NRR curves had the same cycle length but that the NRR curve was not
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sinusoidal. Moreover, both the relative amplitude and phase difference between the
curves varied nonlinearly with the ratio of the cycle length to the mean age of net
maternity. Thus between the g(t) and NRR curves, Kim and Schoen (1996) did not find
the simple relationship that characterizes hyperstable period and cohort birth trajectories.

The period–cohort birth relationship for polynomials has a direct parallel in the
relationship between period and cohort TFRs found in Schoen (2022). Extending that
earlier approach to sine curves, we assume constant proportional age-specific fertility
over time and denote the time t TFR by R(t). Then the TFR for the cohort born in year τ
can be written

CFR(τ) = ∫ R(τ+x) f(x) dx (32)

where the integral ranges over ages 15 to 45 and f(x) is the quadratic density of Equation
(16). With

R(t) = a + b sin ωt (33)

the integral in Equation (32) has the same form as the integral in Equation (29).
Integrating, per Appendix E, yields the new result

CFR(τ) = a + b sin ω (τ+30) H(ω) (34)

As in Equation (30), H(ω) is given by Equation (31). Thus, with sinusoidal change,
constant proportional fertility gives a simple relationship between TFRs and CFRs, while
hyperstability gives a simple relationship between the number of period and cohort births.

6. Applications of the hyperstable model

Core features of hyperstable models are the connection between births and birth rates, the
fixed proportion of births by age of mother, and the relationship between the number of
period and cohort births. These features lead to a number of useful applications, three of
which are presented in this section.

6.1 Transitioning from a stable to a stationary population

Hyperstable models can specify transition matrices that bridge from one fertility regime
to another. Consider a stable population growing at rate r. For simplicity and without loss
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of generality, assume there are only three reproductive age groups and that at time t we
want to transition to a stationary population by fixing the number of births (persons in
the first age group) at the time t level – that is, ert. Then the hyperstable projection matrix
that takes the population from time t to time t+1 can be written using Equations (1) and
(2), with PPM At+1 given by

 ┌ ┐
 │ f1 f2 er f3 e2r │

At+1  =  │ │ (35)
 │ 1 0 0 │
 │ │
 │ 0 1 0 │
 └ ┘

where the jth exponent in the first row reflects the gt+1/gt+1−j ratio with gt+1 = gt. The time
t+1 population, gt+1, thus has elements ert, ert, and er(t−1). Projecting over the next time
interval with first-row elements f1, f2, and f3er yields a time t+2 population with ert persons
in each age group. That stationary population can be further projected using the F matrix
of Equation (4), and this approach can be used with any set of fertility values that sum to
1.

Schoen (2020) advanced the Constant-α approach to bridge multistate populations
across an interval by pre- and post-multiplying by diagonal matrices. That approach
preserved the cross-product ratios of the base matrix and thus provided a maximum
likelihood solution. In a Leslie matrix, all cross-product ratios are 0, so it is not
meaningful to speak of preserving such ratios. However, hyperstability and Constant-α
are linked, as both transform a base matrix using pre- and post-multiplication by diagonal
matrices to take a given beginning-of-interval population to a specified end-of-interval
population. The Constant-α approach can thus be seen as hyperstability applied to a
multistate context.

6.2 Estimating cohort proportions childless from numbers of births

The relationships previously developed make it possible to estimate cohort ultimate
parity distributions from birth sequences. In this subsection, we show how to do so by
estimating cohort proportions childless.

Previous sections provided equations for translating numbers of period births to
numbers of cohort births when the period birth sequence is a declining exponential
[Eq(17)]; a linear, quadratic, or cubic polynomial [Eq(26)]; or a sinusoidal curve
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[Eq(30)]. Given cohort births at time t, C(t), the TFR for the cohort born at time t, CFR(t),
is simply

CFR(t) = C(t) /[.5 g(t)] (36)

Using the conventional, though implicit, assumption that age-specific fertility rates
are the same for women at all parities, the ultimate (here age 45) parity distribution
follows a Poisson distribution determined by the level of fertility (Krishnamoorthy 1979;
see Tuljapurkar et al. 2020 for an extended analysis). The number at ultimate parity j for
the cohort born year t is thus

Par(j) = exp[−CFR(t)] CFR(t)j /j! (37)

When j = 0, the proportion childless is simply

Par(0) =  exp[−CFR(t)] (38)

With a CFR of 2, Par(0) is 0.135, indicating that just under 1 in 7 women have no children.
Using Equation (37), the complete parity distribution for a birth cohort can readily be
determined for any of the birth sequences examined.

6.3 The variability of cohort fertility in cyclically stationary hyperstable models

We can now consider how the level of cohort fertility varies by location (or stage) within
each cycle of a cyclically stationary hyperstable model. Specifically, with the CFR given
by Equation (36), we can examine how the size of a cohort is related to the level of cohort
fertility and see whether large cohorts have higher or lower fertility than small cohorts.

To find the maximum and minimum number of period births, let birth sequence g(t)
be the sine function in Equation (28). Differentiating g(t) and setting the derivative equal
to 0 gives

g’(t) = b cos ωt / ω = 0        or simply    cos ωt = cos 2πt/T = 0 (39)

The cosine is 0 at π/2 radians and at 3π/2 radians, so the extrema for births, text, are
when

π/2 or 3π/2 = 2πtext /T
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which occur at times

text = T/4 and 3T/4 (40)

Equation (28) then yields the maximum and minimum number of births.
With cohort total fertility given by Equation (36), Equations (28), (30), and (31)

yield

CFR(t) = { a + b sin ω(t+30)[sin 15ω − 15ω cos 15ω]/(1125ω3) } / {.5[a + b sin ωt]}
(41)

Differentiating Equation (41), setting the derivative equal to 0 and rearranging, as
shown in Appendix G, yields the numerically tractable relationship

aH(ω) cos ω(t+30) – ab cos ωt = bH(ω) sin 30ω (42)

where H(ω) is given by Equation (31). For any given frequency or cycle length, Equation
(42) allows the cycle stage of the minimum and maximum values to be found, and from
them the minimum and maximum CFR values.

Figure 3 plots the g(t) and CFR(t) functions for cycle lengths 20, 40, 60, and 80
years. While the g(t) curve is a simple sine wave, the CFR(t) curve of Equation (41) is
not. It is asymmetrical with respect to variations around mean birth value 2, with respect
to the midpoint of the cycle, and with respect to the g(t) curve. Nonetheless, there is a
strong tendency for large birth cohorts to have small CFRs and vice versa.

Table 4 quantifies those impressions, showing the times of the birth and fertility
maxima and minima and their associated birth and CFR values. For cycle lengths 20 and
60, the maximum CFR aligns perfectly with the minimum g, and the minimum CFR with
the maximum g. For cycle lengths 40 and 80, the alignment is off by 7%–9%. For all
cycle lengths examined, the variability of the CFR exceeds that of the number of births,
which always ranges between 1.7 and 2.3. The greatest CFR variation, when T = 60
years, is 1.09 children, which is quite substantial for a stationary population.



Demographic Research: Volume 49, Article 37

https://www.demographic-research.org 1041

Figure 3: Time trajectories of period births [g(t)] and cohort total fertility for
cohorts born at time t [CFR(t)] in sinusoidal hyperstationary models
where a = 2 and b = 0.3, with cycle lengths of 20, 40, 60, and 80 years

Cycle length (T) is 20 years Cycle length (T) is 40 years

Cycle length (T) is 60 years Cycle length (T) Is 80 years

Table 4: Extrema of birth sequence g(t) and fertility level CFR(t) in cyclically
stationary hyperstable models, with cycle lengths of 20, 40, 60, and 80
years

Cycle g(t) CFR(t) g(t)/CFR(t)

length (T) Max Min Max Min Phase
Max t Min t value value max t min t value value deviation

20 5 15 2.3 1.7 15 5 2.343 1.747 0
40 10 30 2.3 1.7 27.284 6.370 2.395 1.698 .091
60 15 45 2.3 1.7 45 15 2.626 1.537 0
80 20 60 2.3 1.7 63.948 25.306 2.603 1.545 −.066

Note: See text. Parameter values are a = 2 and b = 0.3. The g(t)/CFR(t) phase deviation is defined as [g(max t) – CFR(min t)] / T.

Table 5 looks at the implications of within-cycle fertility level variations by relating
the maximum and minimum CFR values to their associated proportions childless. There
is considerable variation in childlessness by cycle stage and some by cycle length. The
largest swing in the proportion childless is when T = 60, where the minimum is 7.2%
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childless and the maximum is 21.5%, a 14.3% difference. Even in a long-term stationary
population, cohort experience can vary substantially within a cycle.

Table 5: Maximum and minimum proportions childless in cyclically
stationary hyperstable model cohorts, with cycle lengths of 20, 40, 60,
and 80 years

Cycle Proportion childless at Difference
length (T) Max CFR Min CFR (min – max)

20 0.096 0.174 0.078
40 0.091 0.183 0.092
60 0.072 0.215 0.143
80 0.074 0.213 0.139

Note: Age-specific fertility assumed the same for women of all parities.

7. Summary and conclusions

Hyperstable models typically begin with a known birth trajectory and generate a
consistent set of age-specific birth rates. The model’s underlying mathematical structure
can be stated explicitly and leads to a number of new relationships and applications.
Hyperstable population projection matrices can bridge, or project a population across, an
interval, going from any given initial population to any given ending population. That
bridging property means that the fertility elements of any PPM can be written in
hyperstable form – that is, as [fx gt / gt−x].

Hyperstable models allow the derivation of new closed form equations relating
cohort birth trajectories to period birth trajectories. Such relationships are derived for
exponential, polynomial, and cyclical birth trajectories. Cyclical models are examined
further, with a new closed form expression found for the phase and relative amplitude
differences between period and cohort birth curves. The new theoretical relationship
between cohort and period birth curves in Equation (30) was examined using hypothetical
data and confirmed numerically. In all trajectories examined, a close relationship was
found between the total number of births to a given year’s cohort and the number of
period births a generation later.

Hyperstable models are a valuable resource for the analysis of populations with
time-varying fertility. The models offer an adaptable and realistic framework for
analyzing birth trajectories and show the close connections between period and cohort
births. Several model applications are presented, showing how hyperstable models can
bridge between fertility regimes, find cohort fertility levels and proportions childless
from birth sequences, and illuminate intra-cycle variability in cyclical populations. Due
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to their flexibility, hyperstable models can provide a useful analytical platform that
captures the past and likely future of actual populations more fully than can fixed rate
stationary or stable models.
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Appendix A. The eigenstructure of Leslie-form Matrix F

Eigenstructure refers to the unique decomposition of PPMs that breaks down an N x N
PPM A into

A = U Λ U−1 (A.1)

where U is an N x N matrix of right eigenvectors and Λ is an N x N diagonal matrix of
eigenvalues. The (1,1) element of Λ is the dominant eigenvalue (or root) of A, often
denoted by λ. It gives the long-term (or stable) growth rate implied by A. The leftmost
column of U is the dominant right eigenvector, frequently denoted by u. It gives the long-
term (stable) population composition implied by A. Matrix U−1, sometimes denoted by
V, is the matrix of left eigenvectors. The first row of V, often represented by v’, is the
dominant left eigenvector and relates to reproductive values (cf. Schoen 2006).

The eigenstructure of row stochastic Leslie-form matrices (projection matrices
whose rows sum to 1), such as the 3 x 3 F matrix of Equation (4), is relatively simple.
For all N, the dominant root (λ) is 1. For N = 3, the right eigenvector matrix, UF , has the
form

┌ ┐
│ 1 1 1 │

 UF  =  │ │
│ 1 1/λ2  1/λ3 │ (A.2)
│ │
│ 1 1/λ22     1/λ32 │
└ ┘

with λj denoting the jth subordinate eigenvalue, which must have a magnitude of less than
1. The generalization to N > 3 is clear. The eigenvalue matrix, Λ, is a diagonal matrix
whose (1,1) element is 1 and whose jth diagonal element (j>1) is λj. The dominant right
eigenvector of F, uF, is the first column of UF — that is, a column vector of 1s. The left
eigenvector matrix, VF, is the inverse of UF. The dominant left eigenvector of F, denoted
by vF’, has elements that sum to 1. Specifically, the jth element of vF’, vjF , can be written

 N    N  N

vjF = Σ fi  / Σ   Σ fi (A.3)
 i=j j=1 i=j

When N = 3, the elements of vF’ are 1/D, (f2+f3)/D, and f3/D, where D = 1+ f2+2f3.
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Sykes form, from Sykes (1973), is an alternative eigenstructure-related
decomposition. In Sykes form, PPM A can be written

A = λ Ud F Ud−1 (A.4)

where Ud is a diagonal matrix whose diagonal elements are the elements of the dominant
right eigenvector of A and where F is a row stochastic matrix. Any PPM can be written,
uniquely, in Sykes form.

Appendix B. Derivation of the quadratic f(x) curve in Equation (16)

The essential characteristics of base fertility curve f(x) can be captured reasonably well
by a simple parabola. With f(x) equal to 0 at ages 15 and 45, undefined outside that
interval, and having an area of 1 in that interval, we can write the specifying equations

0 = w + 15y + 152 z
0 = w + 45y + 452 z
1 = ∫ (w+yx+zx2 ) dx = wx + yx2 /2 + zx3 /3 (B.1)

where the integral in the last equation is evaluated for x between ages 15 and 45.  Solving
the three equations in Equation (B.1) gives the solution

w = −3/20 ,        y = 1/75,      and z = −1/4500 (B.2)

The resultant function, f(x) = −3/20 + x /75 – x2 /4500, is symmetric at about age 30 and
reaches a maximum value of 0.05 at that age.
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Appendix C. Derivation of Equation (18) (declining exponential
trajectory)

The declining exponential g(t) function in Equation (14) leads to the integral in Equation
(15) for the trajectory of cohort births:

C(τ) = ∫ [f(x) g(τ+x)] dx (C.1)

where f(x) is the quadratic function of Equation (16) and the integral is evaluated between
ages 15 and 45. Thus

C(τ) = ∫ [ a+de−b(τ+x) ] [ −3/20 + x/75 – x2 /4500 ] dx
= a + de−bτ {−(3/20)[−e−bx /b]1545 + (1/75) [−e−bx (1+bx) /b2 ]1545

– (1/4500) [ −x2 e−bx /b – (2/b)( e−bx/ b2 + x e−bx/ b) ]1545 }
= a + (de−bτ /4500b3 ) { e−45b (30b + 2) + e−15b (30b − 2) }
= a + (de−b(τ+30)) { [e15b (15b − 1) + e−15b (150b + 1)] /2250b3 } (C.2)

which are the results shown in Equations (18) and (19). The integrated expression,
[…]1545 , is to be evaluated between ages 15 and 45.

That derivation uses the known integral relationships

∫ x eax dx = eax (ax – 1) / a2

and

∫ x2 eax dx = x2 eax  /a  – (2/a) ∫ x eax dx (C.3)

(Beyer 1978: 368).

Appendix D. Derivation of Equation (26) (cubic trajectory)

Since the cohort birth trajectory that results from a period cubic birth trajectory reduces
to the linear and quadratic relationships of Equations (22) and (24), only the cubic case
is shown here. The following derivation is analogous to the derivation in online Appendix
C to Schoen (2022).

With birth trajectory
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g(t) = R + at + bt2 + dt3 (D.1)

and the quadratic f(x) of Equation (16), we can write

C(τ) = ∫ [R + a(τ+x) + b(τ+x)2  + d(τ+x)3 ] [ −3/20 + x/75 – x2 /4500 ] dx
= g(τ) + [a+2bτ+3dτ2] ∫ [(−3x/20)+(x2 /75)−(x3 /4500)]dx

+ [b+3dτ] ∫ [(−3x2 /20)+(x3 /75)−(x4 /4500)]dx
+ d ∫ [(−3x3 /20)+(x4 /75)−(x5 /4500)]dx

Integrating and evaluating over the 15 to 45 age range, we have

C(τ) = g(τ) + 30(a+2bτ+3dτ2 ) + 945(b+3dτ) + 31050d]
= R + a(τ+30) + b(τ+30)2 +45b + d(τ+30)3 + 135dτ + 4050d
= g(τ+30) + 45 [b + 3d(τ+30)] (D.2)

which is the result in Equation (26).

Appendix E. Derivation of Equation (30) (sinusoidal trajectory)

With birth trajectory

g(t) = a + b sin ωt (E.1)

where frequency ω is related to cycle length T by ω = 2π/T and f(x) is the quadratic of
Equation (16), the number of births to the cohort born in year τ can be written

C(τ) = ∫ [a + b sin ω(τ+x)] [ −3/20 + x/75 – x2 /4500 ] dx (E.2)
= a + b ∫ [sin ωτ cos ωx + cos ωτ sin ωx] [ −3/20 + x/75 – x2 /4500 ] dx
= a+b ∫[sin ωτ cos ωx][−3/20+x/75–x2 /4500]dx

+ ∫[cos ωτ sin ωx][−3/20+x/75–x2 /4500]dx

where the integrals range from age 15 to age 45 and use is made of the trigonometric
identity sin(y+z) = sin y cos z + cos y sin z (Beyer 1978: 168). Let the first integral in the
last equation in (E.2) be denoted by Y and the second integral by Z. Then, carrying out
the integration using the expressions for (∫xj sin ax dx) and (∫xj cos ax dx) in Beyer 1978
(350, 358), we find

Y = [2 sin 45ω – 2 sin 15ω − 30ω (cos 45ω + cos 15ω)] / (4500ω3 )
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and

Z =  [− 2 cos 45ω + 2 cos 15ω − 30ω (sin 45ω + sin 15ω)] / (4500ω3 ) (E.3)

Using Equation (E.3) in Equation (E.2) and rearranging, we have

C(τ) = a+[b/(2250ω3 )][sin ωτ sin 45ω − sin ωτ sin 15ω
− 15ω(sin ωτ cos 45ω + sin ωτ cos 15ω) − cos ωτ cos 45ω
+ cos ωτ cos 15ω − 15ω (cos ωτ sin 45ω + cos ωτ sin 15ω)] (E.4)

Using trigonometric angle sum relationships like the one following Equation (E.2)
(see Beyer 1978: 167), we can rewrite Equation (E.4) as

C(τ) = a + (b/(2250ω3 )[−cos ω(τ+45) + cos ω(τ+15)
− 15ω ( sin ω(τ+45) + sin ω(τ+15) )]

and using function sum trigonometric relationships (Beyer 1978: 168), we then arrive at

C(τ) = a + b sin ω(τ+30)[ (sin 15ω − 15ω cos 15ω) / (1125ω3) ] (E.5)

which reproduces Equations (30) and (31). A similar derivation can express cohort total
fertility in terms of sinusoidal TFR(t) parameters under the assumptions used in Schoen
(2022).

Appendix F. Calculations to confirm the Equation (30) relationship
between period and cohort births, using hypothetical data

Equations (30) and (31) present a new relationship between period and cohort births
under hyperstability, showing a fixed phase difference between those two trajectories and
a relative amplitude in their fluctuations that greatly depends on cycle length. The
correctness of that relationship is not obvious, and numerical confirmation is appropriate.

Assume that the birth trajectory follows the sinusoidal pattern of Equation (28) and
that the fertility density is described by Equation (16). Set cycle length T to 24 years and
use parameters a = 2 and b = 0.3. Using single years of age, we adjust fertility to mid-
year and let fx+½  be

fx+½  = −3/20 + (x+½) / 75 – (x+½)2 / 4500 (F.1)
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The values of fx+½  are shown in the second column of Table F-1.

Table F-1: Comparing calculated and estimated births in hypothetical data

f(x) from Eq(16) Time(t) 0 1 2 3 4 5
g(t) 100 107.7646 115 121.2132 125.9808 128.9778

Discrete C(t−15) 97.82565 97.33697 97.02978 96.925 97.02978 97.33697

Mid-year f(x+.5) Adjusted f
Age Eq(15) Sums to 1 Age Array of age-specific births

15.5 0.0032778 0.003276 15 0.327596 0.353037 0.37674 0.397095 0.412713 0.422531
16.5 0.0095 0.0094947 16 0.949472 1.023225 1.091925 1.15092 1.196187 1.224644
17.5 0.0152778 0.0152693 17 1.526929 1.645457 1.755935 1.850805 1.9236 1.969362
18.5 0.0206111 0.0205997 18 2.059966 2.21995 2.369 2.496992 2.595204 2.656942
19.5 0.0255 0.0254858 19 2.548583 2.746488 2.93089 3.08924 3.210746 3.287128
20.5 0.0299444 0.0299278 20 2.99278 3.225178 3.44172 3.627669 3.770353 3.860047
21.5 0.0339444 0.0339256 21 3.392558 3.656021 3.90149 4.11228 4.274024 4.3757
22.5 0.0375 0.0374792 22 3.747916 4.038909 4.310085 4.54295 4.721633 4.833958
23.5 0.0406111 0.0405885 23 4.058854 4.374056 4.667735 4.919923 5.113434 5.235079
24.5 0.0432778 0.0432537 24 4.325373 4.661249 4.974211 5.242957 5.449172 5.578805
25.5 0.0455 0.0454747 25 4.547472 4.900594 5.229626 5.512171 5.728976 5.865265
26.5 0.0472778 0.0472515 26 4.725151 5.092092 5.433981 5.727567 5.952844 6.094458
27.5 0.0486111 0.0485841 27 4.85841 5.235634 5.587161 5.889023 6.12065 6.266257
28.5 0.0495 0.0494725 28 4.947249 5.331329 5.689281 5.99666 6.232521 6.380789
29.5 0.0499444 0.0499167 29 4.991669 5.379284 5.740456 6.0506 6.288582 6.438184
30.5 0.0499444 0.0499167 30 4.991669 5.379284 5.740456 6.0506 6.288582 6.438184
31.5 0.0495 0.0494725 31 4.947249 5.331329 5.689281 5.99666 6.232521 6.380789
32.5 0.0486111 0.0485841 32 4.85841 5.235634 5.587161 5.889023 6.12065 6.266257
33.5 0.0472778 0.0472515 33 4.725151 5.092092 5.433981 5.727567 5.952844 6.094458
34.5 0.0455 0.0454747 34 4.547472 4.900594 5.229626 5.512171 5.728976 5.865265
35.5 0.0432778 0.0432537 35 4.325373 4.661249 4.974211 5.242957 5.449172 5.578805
36.5 0.0406111 0.0405885 36 4.058854 4.374056 4.667735 4.919923 5.113434 5.235079
37.5 0.0375 0.0374792 37 3.747916 4.038909 4.310085 4.54295 4.721633 4.833958
38.5 0.0339444 0.0339256 38 3.392558 3.656021 3.90149 4.11228 4.274024 4.3757
39.5 0.0299444 0.0299278 39 2.99278 3.225178 3.44172 3.627669 3.770353 3.860047
40.5 0.0255 0.0254858 40 2.548583 2.746488 2.93089 3.08924 3.210746 3.287128
41.5 0.0206111 0.0205997 41 2.059966 2.21995 2.369 2.496992 2.595204 2.656942
42.5 0.0152778 0.0152693 42 1.526929 1.645457 1.755935 1.850805 1.9236 1.969362
43.5 0.0095 0.0094947 43 0.949472 1.023225 1.091925 1.15092 1.196187 1.224644
44.5 0.0032778 0.003276 44 0.327596 0.353037 0.37674 0.397095 0.412713 0.422531

1.0005556 0.9999996 g(t) check 99.99996 107.765 115.0005 121.2137 125.9813 128.9783

Array C 98.13621 97.57096 97.17126 96.96436 96.96436 97.17127
% error –0.00317 –0.0024 –0.00146 –0.00041 0.000674 0.001702
ABS % err 0.003175 0.002404 0.001458 0.000406 0.000674 0.001702
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Table F-1: (Continued)

f(x) from Eq(16) Time(t) 6 7 8 9 10 11
g(t) 130 128.9778 125.9807 121.2132 114.9999 107.7645

Discrete C(t−15) 97.82565 98.4625 99.20413 100 100.7959 101.5375

Midyear f(x+.5) Adjusted f
Age Eq(15) Sums to 1 Age Array of age-specific births

15.5 0.0032778 0.003276 15 0.42588 0.422531 0.412713 0.397094 0.37674 0.353037
16.5 0.0095 0.0094947 16 1.23435 1.224644 1.196187 1.150919 1.091924 1.023224
17.5 0.0152778 0.0152693 17 1.98497 1.969361 1.9236 1.850804 1.755934 1.645456
18.5 0.0206111 0.0205997 18 2.678 2.656942 2.595203 2.496991 2.368999 2.219949
19.5 0.0255 0.0254858 19 3.31318 3.287127 3.210745 3.089239 2.930889 2.746486
20.5 0.0299444 0.0299278 20 3.89064 3.860046 3.770351 3.627667 3.441718 3.225176
21.5 0.0339444 0.0339256 21 4.41038 4.3757 4.274022 4.112278 3.901488 3.656018
22.5 0.0375 0.0374792 22 4.87227 4.833958 4.721632 4.542948 4.310083 4.038906
23.5 0.0406111 0.0405885 23 5.27657 5.235078 5.113432 4.919921 4.667733 4.374053
24.5 0.0432778 0.0432537 24 5.62302 5.578804 5.449171 5.242954 4.974207 4.661246
25.5 0.0455 0.0454747 25 5.91175 5.865264 5.728974 5.512168 5.229622 4.900591
26.5 0.0472778 0.0472515 26 6.14276 6.094457 5.952842 5.727564 5.433977 5.092088
27.5 0.0486111 0.0485841 27 6.31592 6.266256 6.120648 5.88902 5.587157 5.23563
28.5 0.0495 0.0494725 28 6.43136 6.380788 6.232519 5.996657 5.689277 5.331325
29.5 0.0499444 0.0499167 29 6.48921 6.438183 6.28858 6.050597 5.740452 5.379281
30.5 0.0499444 0.0499167 30 6.48921 6.438183 6.28858 6.050597 5.740452 5.379281
31.5 0.0495 0.0494725 31 6.43136 6.380788 6.232519 5.996657 5.689277 5.331325
32.5 0.0486111 0.0485841 32 6.31592 6.266256 6.120648 5.88902 5.587157 5.23563
33.5 0.0472778 0.0472515 33 6.14276 6.094457 5.952842 5.727564 5.433977 5.092088
34.5 0.0455 0.0454747 34 5.91175 5.865264 5.728974 5.512168 5.229622 4.900591
35.5 0.0432778 0.0432537 35 5.62302 5.578804 5.449171 5.242954 4.974207 4.661246
36.5 0.0406111 0.0405885 36 5.27657 5.235078 5.113432 4.919921 4.667733 4.374053
37.5 0.0375 0.0374792 37 4.87227 4.833958 4.721632 4.542948 4.310083 4.038906
38.5 0.0339444 0.0339256 38 4.41038 4.3757 4.274022 4.112278 3.901488 3.656018
39.5 0.0299444 0.0299278 39 3.89064 3.860046 3.770351 3.627667 3.441718 3.225176
40.5 0.0255 0.0254858 40 3.31318 3.287127 3.210745 3.089239 2.930889 2.746486
41.5 0.0206111 0.0205997 41 2.678 2.656942 2.595203 2.496991 2.368999 2.219949
42.5 0.0152778 0.0152693 42 1.98497 1.969361 1.9236 1.850804 1.755934 1.645456
43.5 0.0095 0.0094947 43 1.23435 1.224644 1.196187 1.150919 1.091924 1.023224
44.5 0.0032778 0.003276 44 0.42588 0.422531 0.412713 0.397094 0.37674 0.353037

1.0005556 0.9999996 g(t) check 130.0005 128.9783 125.9812 121.2136 115.0004 107.7649

Array C 97.57097 98.13624 98.82855 99.60071 100.4001 101.1723
% error 0.002603 0.003314 0.003786 0.003993 0.003926 0.003597

ABS % err 0.002603 0.003314 0.003786 0.003993 0.003926 0.003597
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Table F-1: (Continued)

f(x) from Eq(16) Time(t) 12 13 14 15 16 17
g(t) 99.99992 92.23534 84.99992 78.78672 74.01918 71.0222

Discrete C(t−15) 102.1744 102.663 102.9702 103.075 102.9702 102.663

Midyear f(x+.5) Adjusted f
Age Eq(15) Sums to 1 Age Array of age-specific births

15.5 0.0032778 0.003276 15 0.3276 0.302163 0.27846 0.258105 0.242487 0.232669
16.5 0.0095 0.0094947 16 0.949499 0.875775 0.807074 0.74808 0.702812 0.674356
17.5 0.0152778 0.0152693 17 1.526899 1.408341 1.297864 1.202995 1.130199 1.084438
18.5 0.0206111 0.0205997 18 2.059998 1.900048 1.750998 1.623007 1.524795 1.463057
19.5 0.0255 0.0254858 19 2.548598 2.35071 2.166308 2.007958 1.886453 1.810072
20.5 0.0299444 0.0299278 20 2.992798 2.760419 2.543878 2.357929 2.215246 2.125552
21.5 0.0339444 0.0339256 21 3.392597 3.129176 2.883707 2.672918 2.511175 2.409499
22.5 0.0375 0.0374792 22 3.747897 3.456888 3.185712 2.952848 2.774165 2.661841
23.5 0.0406111 0.0405885 23 4.058897 3.74374 3.450062 3.197874 3.004365 2.88272
24.5 0.0432778 0.0432537 24 4.325396 3.989548 3.676586 3.407841 3.201626 3.071994
25.5 0.0455 0.0454747 25 4.547496 4.194402 3.865371 3.582826 3.366022 3.229734
26.5 0.0472778 0.0472515 26 4.725196 4.358304 4.016416 3.72283 3.497554 3.355941
27.5 0.0486111 0.0485841 27 4.858396 4.481162 4.129636 3.827774 3.596148 3.450542
28.5 0.0495 0.0494725 28 4.947196 4.563067 4.205116 3.897737 3.661877 3.51361
29.5 0.0499444 0.0499167 29 4.991696 4.604112 4.242941 3.932797 3.694816 3.545215
30.5 0.0499444 0.0499167 30 4.991696 4.604112 4.242941 3.932797 3.694816 3.545215
31.5 0.0495 0.0494725 31 4.947196 4.563067 4.205116 3.897737 3.661877 3.51361
32.5 0.0486111 0.0485841 32 4.858396 4.481162 4.129636 3.827774 3.596148 3.450542
33.5 0.0472778 0.0472515 33 4.725196 4.358304 4.016416 3.72283 3.497554 3.355941
34.5 0.0455 0.0454747 34 4.547496 4.194402 3.865371 3.582826 3.366022 3.229734
35.5 0.0432778 0.0432537 35 4.325396 3.989548 3.676586 3.407841 3.201626 3.071994
36.5 0.0406111 0.0405885 36 4.058897 3.74374 3.450062 3.197874 3.004365 2.88272
37.5 0.0375 0.0374792 37 3.747897 3.456888 3.185712 2.952848 2.774165 2.661841
38.5 0.0339444 0.0339256 38 3.392597 3.129176 2.883707 2.672918 2.511175 2.409499
39.5 0.0299444 0.0299278 39 2.992798 2.760419 2.543878 2.357929 2.215246 2.125552
40.5 0.0255 0.0254858 40 2.548598 2.35071 2.166308 2.007958 1.886453 1.810072
41.5 0.0206111 0.0205997 41 2.059998 1.900048 1.750998 1.623007 1.524795 1.463057
42.5 0.0152778 0.0152693 42 1.526899 1.408341 1.297864 1.202995 1.130199 1.084438
43.5 0.0095 0.0094947 43 0.949499 0.875775 0.807074 0.74808 0.702812 0.674356
44.5 0.0032778 0.003276 44 0.3276 0.302163 0.27846 0.258105 0.242487 0.232669

1.0005556 0.9999996 g(t) check 100.0003 92.23571 85.00026 78.78704 74.01948 71.02248

Array C 101.8646 102.4298 102.8295 103.0364 103.0364 102.8295
% error 0.003032 0.002271 0.001366 0.000374 –0.00064 –0.00162

ABS % err 0.003032 0.002271 0.001366 0.000374 0.000643 0.001622



Schoen: Analyzing hyperstable population models

1054 https://www.demographic-research.org

Table F-1: (Continued)

f(x) from Eq(16) Time(t) 18 19 20 21 22 23
g(t) 70 71.02226 74.01931 78.7869 85.00013 92.23558

Discrete C(t−15) 102.1744 101.5375 100.7959 100 99.20413 98.4625

Midyear f(x+.5) Adjusted f
Age Eq(15) Sums to 1 Age Array of age-specific births

15.5 0.0032778 0.003276 15 0.22932 0.232669 0.242487 0.258106 0.27846 0.302164
16.5 0.0095 0.0094947 16 0.66465 0.674356 0.702813 0.748082 0.807076 0.875777
17.5 0.0152778 0.0152693 17 1.06883 1.084439 1.130201 1.202997 1.297867 1.408345
18.5 0.0206111 0.0205997 18 1.442 1.463059 1.524798 1.62301 1.751003 1.900053
19.5 0.0255 0.0254858 19 1.78402 1.810073 1.886456 2.007963 2.166313 2.350716
20.5 0.0299444 0.0299278 20 2.09496 2.125554 2.21525 2.357934 2.543884 2.760426
21.5 0.0339444 0.0339256 21 2.37482 2.409501 2.511179 2.672924 2.883714 3.129184
22.5 0.0375 0.0374792 22 2.62353 2.661843 2.77417 2.952854 3.18572 3.456897
23.5 0.0406111 0.0405885 23 2.84123 2.882722 3.00437 3.197881 3.45007 3.74375
24.5 0.0432778 0.0432537 24 3.02778 3.071997 3.201631 3.407848 3.676596 3.989558
25.5 0.0455 0.0454747 25 3.18325 3.229737 3.366028 3.582834 3.865381 4.194413
26.5 0.0472778 0.0472515 26 3.30764 3.355944 3.49756 3.722838 4.016426 4.358316
27.5 0.0486111 0.0485841 27 3.40088 3.450545 3.596154 3.827783 4.129646 4.481173
28.5 0.0495 0.0494725 28 3.46304 3.513613 3.661883 3.897745 4.205126 4.563079
29.5 0.0499444 0.0499167 29 3.49419 3.545218 3.694822 3.932806 4.242951 4.604123
30.5 0.0499444 0.0499167 30 3.49419 3.545218 3.694822 3.932806 4.242951 4.604123
31.5 0.0495 0.0494725 31 3.46304 3.513613 3.661883 3.897745 4.205126 4.563079
32.5 0.0486111 0.0485841 32 3.40088 3.450545 3.596154 3.827783 4.129646 4.481173
33.5 0.0472778 0.0472515 33 3.30764 3.355944 3.49756 3.722838 4.016426 4.358316
34.5 0.0455 0.0454747 34 3.18325 3.229737 3.366028 3.582834 3.865381 4.194413
35.5 0.0432778 0.0432537 35 3.02778 3.071997 3.201631 3.407848 3.676596 3.989558
36.5 0.0406111 0.0405885 36 2.84123 2.882722 3.00437 3.197881 3.45007 3.74375
37.5 0.0375 0.0374792 37 2.62353 2.661843 2.77417 2.952854 3.18572 3.456897
38.5 0.0339444 0.0339256 38 2.37482 2.409501 2.511179 2.672924 2.883714 3.129184
39.5 0.0299444 0.0299278 39 2.09496 2.125554 2.21525 2.357934 2.543884 2.760426
40.5 0.0255 0.0254858 40 1.78402 1.810073 1.886456 2.007963 2.166313 2.350716
41.5 0.0206111 0.0205997 41 1.442 1.463059 1.524798 1.62301 1.751003 1.900053
42.5 0.0152778 0.0152693 42 1.06883 1.084439 1.130201 1.202997 1.297867 1.408345
43.5 0.0095 0.0094947 43 0.66465 0.674356 0.702813 0.748082 0.807076 0.875777
44.5 0.0032778 0.003276 44 0.22932 0.232669 0.242487 0.258106 0.27846 0.302164

1.0005556 0.9999996 g(t) check 70.00028 71.02254 74.0196 78.78721 85.00047 92.23595

Array C 102.4298 101.8646 101.1722 100.4001 99.60067 98.82851
% error –0.0025 –0.00322 –0.00373 –0.004 –0.004 –0.00372

ABS % err 0.0025 0.003221 0.003734 0.004001 0.003997 0.003717
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Table F-1: (Continued)

f(x) from Eq(16) Time(t) 24 25 26 27 28 29
g(t) 100.0002 107.7647 115.0002 121.2133 125.9809 128.9778

Discrete C(t−15) 97.82565 97.33697 97.02978 96.925 97.02978 97.33697

Midyear f(x+.5) Adjusted f
Age Eq(15) Sums to 1 Age Array of age-specific births

15.5 0.0032778 0.003276 15 0.327601 0.353037 0.37674 0.397095 0.412713 0.422531
16.5 0.0095 0.0094947 16 0.949502 1.023226 1.091926 1.150921 1.196188 1.224644
17.5 0.0152778 0.0152693 17 1.526902 1.64546 1.755937 1.850806 1.923602 1.969362
18.5 0.0206111 0.0205997 18 2.060003 2.219954 2.369003 2.496995 2.595206 2.656943
19.5 0.0255 0.0254858 19 2.548604 2.746492 2.930894 3.089243 3.210748 3.287129
20.5 0.0299444 0.0299278 20 2.992805 3.225183 3.441725 3.627673 3.770355 3.860048
21.5 0.0339444 0.0339256 21 3.392606 3.656026 3.901495 4.112284 4.274027 4.375702
22.5 0.0375 0.0374792 22 3.747906 4.038914 4.310091 4.542954 4.721637 4.83396
23.5 0.0406111 0.0405885 23 4.058907 4.374063 4.667741 4.919928 5.113437 5.235081
24.5 0.0432778 0.0432537 24 4.325407 4.661256 4.974217 5.242961 5.449176 5.578807
25.5 0.0455 0.0454747 25 4.547507 4.900601 5.229632 5.512176 5.728979 5.865267
26.5 0.0472778 0.0472515 26 4.725208 5.092099 5.433987 5.727572 5.952847 6.09446
27.5 0.0486111 0.0485841 27 4.858408 5.235642 5.587167 5.889029 6.120654 6.266259
28.5 0.0495 0.0494725 28 4.947208 5.331337 5.689288 5.996666 6.232525 6.380791
29.5 0.0499444 0.0499167 29 4.991708 5.379292 5.740463 6.050606 6.288586 6.438186
30.5 0.0499444 0.0499167 30 4.991708 5.379292 5.740463 6.050606 6.288586 6.438186
31.5 0.0495 0.0494725 31 4.947208 5.331337 5.689288 5.996666 6.232525 6.380791
32.5 0.0486111 0.0485841 32 4.858408 5.235642 5.587167 5.889029 6.120654 6.266259
33.5 0.0472778 0.0472515 33 4.725208 5.092099 5.433987 5.727572 5.952847 6.09446
34.5 0.0455 0.0454747 34 4.547507 4.900601 5.229632 5.512176 5.728979 5.865267
35.5 0.0432778 0.0432537 35 4.325407 4.661256 4.974217 5.242961 5.449176 5.578807
36.5 0.0406111 0.0405885 36 4.058907 4.374063 4.667741 4.919928 5.113437 5.235081
37.5 0.0375 0.0374792 37 3.747906 4.038914 4.310091 4.542954 4.721637 4.83396
38.5 0.0339444 0.0339256 38 3.392606 3.656026 3.901495 4.112284 4.274027 4.375702
39.5 0.0299444 0.0299278 39 2.992805 3.225183 3.441725 3.627673 3.770355 3.860048
40.5 0.0255 0.0254858 40 2.548604 2.746492 2.930894 3.089243 3.210748 3.287129
41.5 0.0206111 0.0205997 41 2.060003 2.219954 2.369003 2.496995 2.595206 2.656943
42.5 0.0152778 0.0152693 42 1.526902 1.64546 1.755937 1.850806 1.923602 1.969362
43.5 0.0095 0.0094947 43 0.949502 1.023226 1.091926 1.150921 1.196188 1.224644
44.5 0.0032778 0.003276 44 0.327601 0.353037 0.37674 0.397095 0.412713 0.422531

1.0005556 0.9999996 g(t) check 100.0006 107.7652 115.0006 121.2138 125.9814 128.9783

Array C
% error Ave % err

ABS % err 0.002563
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Table F-1: (Continued)

f(x) from Eq(16) Time(t) 30 31 32 33 34 35
g(t) 130 128.9777 125.9807 121.213 114.9998 107.7643

Discrete C(t−15) 97.82565 98.4625 99.20413 100 100.7959 101.5375

Midyear f(x+.5) Adjusted f
Age Eq(15) Sums to 1 Age Array of age-specific births

15.5 0.0032778 0.003276 15 0.42588 0.422531 0.412713 0.397094 0.376739 0.353036
16.5 0.0095 0.0094947 16 1.23435 1.224643 1.196186 1.150918 1.091923 1.023222
17.5 0.0152778 0.0152693 17 1.98497 1.969361 1.923599 1.850802 1.755932 1.645454
18.5 0.0206111 0.0205997 18 2.678 2.656941 2.595201 2.496989 2.368996 2.219945
19.5 0.0255 0.0254858 19 3.31318 3.287126 3.210743 3.089236 2.930885 2.746482
20.5 0.0299444 0.0299278 20 3.89064 3.860045 3.770349 3.627664 3.441714 3.225171
21.5 0.0339444 0.0339256 21 4.41038 4.375698 4.27402 4.112274 3.901483 3.656013
22.5 0.0375 0.0374792 22 4.87227 4.833956 4.721629 4.542944 4.310078 4.0389
23.5 0.0406111 0.0405885 23 5.27657 5.235077 5.113429 4.919916 4.667727 4.374047
24.5 0.0432778 0.0432537 24 5.62302 5.578802 5.449167 5.242949 4.974201 4.661239
25.5 0.0455 0.0454747 25 5.91175 5.865262 5.72897 5.512163 5.229616 4.900583
26.5 0.0472778 0.0472515 26 6.14276 6.094455 5.952838 5.727559 5.433971 5.092081
27.5 0.0486111 0.0485841 27 6.31592 6.266254 6.120644 5.889015 5.58715 5.235623
28.5 0.0495 0.0494725 28 6.43136 6.380786 6.232515 5.996652 5.68927 5.331318
29.5 0.0499444 0.0499167 29 6.48921 6.438181 6.288576 6.050592 5.740445 5.379273
30.5 0.0499444 0.0499167 30 6.48921 6.438181 6.288576 6.050592 5.740445 5.379273
31.5 0.0495 0.0494725 31 6.43136 6.380786 6.232515 5.996652 5.68927 5.331318
32.5 0.0486111 0.0485841 32 6.31592 6.266254 6.120644 5.889015 5.58715 5.235623
33.5 0.0472778 0.0472515 33 6.14276 6.094455 5.952838 5.727559 5.433971 5.092081
34.5 0.0455 0.0454747 34 5.91175 5.865262 5.72897 5.512163 5.229616 4.900583
35.5 0.0432778 0.0432537 35 5.62302 5.578802 5.449167 5.242949 4.974201 4.661239
36.5 0.0406111 0.0405885 36 5.27657 5.235077 5.113429 4.919916 4.667727 4.374047
37.5 0.0375 0.0374792 37 4.87227 4.833956 4.721629 4.542944 4.310078 4.0389
38.5 0.0339444 0.0339256 38 4.41038 4.375698 4.27402 4.112274 3.901483 3.656013
39.5 0.0299444 0.0299278 39 3.89064 3.860045 3.770349 3.627664 3.441714 3.225171
40.5 0.0255 0.0254858 40 3.31318 3.287126 3.210743 3.089236 2.930885 2.746482
41.5 0.0206111 0.0205997 41 2.678 2.656941 2.595201 2.496989 2.368996 2.219945
42.5 0.0152778 0.0152693 42 1.98497 1.969361 1.923599 1.850802 1.755932 1.645454
43.5 0.0095 0.0094947 43 1.23435 1.224643 1.196186 1.150918 1.091923 1.023222
44.5 0.0032778 0.003276 44 0.42588 0.422531 0.412713 0.397094 0.376739 0.353036

1.0005556 0.9999996 g(t) check 130.0005 128.9782 125.9812 121.2135 115.0003 107.7648
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Table F-1: (Continued)

f(x) from Eq(16) Time(t) 36 37 38 39 40 41
g(t) 99.99976 92.23519 84.99978 78.78661 74.0191 71.02215

Discrete C(t−15) 102.1744 102.663 102.9702 103.075 102.9702 102.663

Midyear f(x+.5) Adjusted f
Age Eq(15) Sums to 1 Age Array of age-specific births

15.5 0.0032778 0.003276 15 0.327599 0.302162 0.278459 0.258105 0.242487 0.232669
16.5 0.0095 0.0094947 16 0.949498 0.875773 0.807073 0.748079 0.702811 0.674355
17.5 0.0152778 0.0152693 17 1.526896 1.408339 1.297862 1.202993 1.130198 1.084437
18.5 0.0206111 0.0205997 18 2.059995 1.900045 1.750995 1.623004 1.524794 1.463056
19.5 0.0255 0.0254858 19 2.548594 2.350706 2.166304 2.007956 1.886451 1.810071
20.5 0.0299444 0.0299278 20 2.992793 2.760415 2.543873 2.357926 2.215244 2.125551
21.5 0.0339444 0.0339256 21 3.392592 3.129171 2.883702 2.672915 2.511172 2.409498
22.5 0.0375 0.0374792 22 3.747891 3.456883 3.185707 2.952843 2.774162 2.661839
23.5 0.0406111 0.0405885 23 4.05889 3.743734 3.450056 3.19787 3.004361 2.882718
24.5 0.0432778 0.0432537 24 4.325389 3.989541 3.67658 3.407836 3.201622 3.071992
25.5 0.0455 0.0454747 25 4.547489 4.194395 3.865365 3.582821 3.366019 3.229732
26.5 0.0472778 0.0472515 26 4.725188 4.358297 4.016409 3.722825 3.497551 3.355939
27.5 0.0486111 0.0485841 27 4.858388 4.481154 4.129629 3.827769 3.596144 3.45054
28.5 0.0495 0.0494725 28 4.947188 4.563059 4.205109 3.897731 3.661873 3.513608
29.5 0.0499444 0.0499167 29 4.991688 4.604104 4.242934 3.932791 3.694812 3.545213
30.5 0.0499444 0.0499167 30 4.991688 4.604104 4.242934 3.932791 3.694812 3.545213
31.5 0.0495 0.0494725 31 4.947188 4.563059 4.205109 3.897731 3.661873 3.513608
32.5 0.0486111 0.0485841 32 4.858388 4.481154 4.129629 3.827769 3.596144 3.45054
33.5 0.0472778 0.0472515 33 4.725188 4.358297 4.016409 3.722825 3.497551 3.355939
34.5 0.0455 0.0454747 34 4.547489 4.194395 3.865365 3.582821 3.366019 3.229732
35.5 0.0432778 0.0432537 35 4.325389 3.989541 3.67658 3.407836 3.201622 3.071992
36.5 0.0406111 0.0405885 36 4.05889 3.743734 3.450056 3.19787 3.004361 2.882718
37.5 0.0375 0.0374792 37 3.747891 3.456883 3.185707 2.952843 2.774162 2.661839
38.5 0.0339444 0.0339256 38 3.392592 3.129171 2.883702 2.672915 2.511172 2.409498
39.5 0.0299444 0.0299278 39 2.992793 2.760415 2.543873 2.357926 2.215244 2.125551
40.5 0.0255 0.0254858 40 2.548594 2.350706 2.166304 2.007956 1.886451 1.810071
41.5 0.0206111 0.0205997 41 2.059995 1.900045 1.750995 1.623004 1.524794 1.463056
42.5 0.0152778 0.0152693 42 1.526896 1.408339 1.297862 1.202993 1.130198 1.084437
43.5 0.0095 0.0094947 43 0.949498 0.875773 0.807073 0.748079 0.702811 0.674355
44.5 0.0032778 0.003276 44 0.327599 0.302162 0.278459 0.258105 0.242487 0.232669

1.0005556 0.9999996 g(t) check 100.0002 92.23556 85.00012 78.78693 74.0194 71.02244
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Table F-1: (Continued)

f(x) from Eq(16) Time(t) 42 43 44 45 46 47
g(t) 70 71.0223 74.01939 78.78701 85.00027 92.23574

Discrete C(t−15) 102.1744 101.5375 100.7959 100 99.20413 98.4625

Midyear f(x+.5) Adjusted f
Age Eq(15) Sums to 1 Age Array of age-specific births

15.5 0.0032778 0.003276 15 0.22932 0.232669 0.242488 0.258106 0.278461 0.302164
16.5 0.0095 0.0094947 16 0.66465 0.674357 0.702814 0.748083 0.807078 0.875778
17.5 0.0152778 0.0152693 17 1.06883 1.08444 1.130202 1.202999 1.297869 1.408347
18.5 0.0206111 0.0205997 18 1.442 1.463059 1.524799 1.623012 1.751006 1.900056
19.5 0.0255 0.0254858 19 1.78402 1.810074 1.886458 2.007966 2.166317 2.35072
20.5 0.0299444 0.0299278 20 2.09496 2.125555 2.215252 2.357938 2.543888 2.760431
21.5 0.0339444 0.0339256 21 2.37482 2.409503 2.511182 2.672928 2.883719 3.12919
22.5 0.0375 0.0374792 22 2.62353 2.661845 2.774173 2.952858 3.185725 3.456903
23.5 0.0406111 0.0405885 23 2.84123 2.882724 3.004373 3.197886 3.450076 3.743756
24.5 0.0432778 0.0432537 24 3.02778 3.071999 3.201635 3.407853 3.676602 3.989565
25.5 0.0455 0.0454747 25 3.18325 3.229739 3.366032 3.582839 3.865387 4.19442
26.5 0.0472778 0.0472515 26 3.30764 3.355946 3.497564 3.722844 4.016433 4.358323
27.5 0.0486111 0.0485841 27 3.40088 3.450547 3.596158 3.827788 4.129653 4.481181
28.5 0.0495 0.0494725 28 3.46304 3.513615 3.661887 3.897751 4.205133 4.563086
29.5 0.0499444 0.0499167 29 3.49419 3.54522 3.694826 3.932811 4.242958 4.604131
30.5 0.0499444 0.0499167 30 3.49419 3.54522 3.694826 3.932811 4.242958 4.604131
31.5 0.0495 0.0494725 31 3.46304 3.513615 3.661887 3.897751 4.205133 4.563086
32.5 0.0486111 0.0485841 32 3.40088 3.450547 3.596158 3.827788 4.129653 4.481181
33.5 0.0472778 0.0472515 33 3.30764 3.355946 3.497564 3.722844 4.016433 4.358323
34.5 0.0455 0.0454747 34 3.18325 3.229739 3.366032 3.582839 3.865387 4.19442
35.5 0.0432778 0.0432537 35 3.02778 3.071999 3.201635 3.407853 3.676602 3.989565
36.5 0.0406111 0.0405885 36 2.84123 2.882724 3.004373 3.197886 3.450076 3.743756
37.5 0.0375 0.0374792 37 2.62353 2.661845 2.774173 2.952858 3.185725 3.456903
38.5 0.0339444 0.0339256 38 2.37482 2.409503 2.511182 2.672928 2.883719 3.12919
39.5 0.0299444 0.0299278 39 2.09496 2.125555 2.215252 2.357938 2.543888 2.760431
40.5 0.0255 0.0254858 40 1.78402 1.810074 1.886458 2.007966 2.166317 2.35072
41.5 0.0206111 0.0205997 41 1.442 1.463059 1.524799 1.623012 1.751006 1.900056
42.5 0.0152778 0.0152693 42 1.06883 1.08444 1.130202 1.202999 1.297869 1.408347
43.5 0.0095 0.0094947 43 0.66465 0.674357 0.702814 0.748083 0.807078 0.875778
44.5 0.0032778 0.003276 44 0.22932 0.232669 0.242488 0.258106 0.278461 0.302164

1.0005556 0.9999996 g(t) check 70.00028 71.02258 74.01968 78.78733 85.00061 92.2361
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Table F-1: (Continued)

f(x) from Eq(16) Time(t) 48 49 50 51 52
g(t) 100.0003 107.7649 115.0003 121.2134 125.9809

Discrete C(t−15) 97.82565 97.33697 97.02978 96.925 97.02978

Midyear f(x+.5) Adjusted f
Age Eq(15) Sums to 1 Age Array of age-specific births

15.5 0.0032778 0.003276 15 0.327601 0.353038 0.376741 0.397095 0.412714
16.5 0.0095 0.0094947 16 0.949503 1.023228 1.091928 1.150922 1.196189
17.5 0.0152778 0.0152693 17 1.526905 1.645462 1.755939 1.850808 1.923603
18.5 0.0206111 0.0205997 18 2.060007 2.219957 2.369006 2.496997 2.595207
19.5 0.0255 0.0254858 19 2.548608 2.746496 2.930897 3.089246 3.21075
20.5 0.0299444 0.0299278 20 2.99281 3.225188 3.441729 3.627676 3.770358
21.5 0.0339444 0.0339256 21 3.392611 3.656032 3.9015 4.112287 4.274029
22.5 0.0375 0.0374792 22 3.747912 4.03892 4.310096 4.542959 4.72164
23.5 0.0406111 0.0405885 23 4.058913 4.374069 4.667747 4.919933 5.11344
24.5 0.0432778 0.0432537 24 4.325414 4.661263 4.974223 5.242966 5.449179
25.5 0.0455 0.0454747 25 4.547515 4.900608 5.229638 5.512182 5.728983
26.5 0.0472778 0.0472515 26 4.725215 5.092107 5.433994 5.727578 5.952851
27.5 0.0486111 0.0485841 27 4.858416 5.235649 5.587174 5.889034 6.120658
28.5 0.0495 0.0494725 28 4.947216 5.331345 5.689294 5.996672 6.232529
29.5 0.0499444 0.0499167 29 4.991716 5.3793 5.74047 6.050612 6.28859
30.5 0.0499444 0.0499167 30 4.991716 5.3793 5.74047 6.050612 6.28859
31.5 0.0495 0.0494725 31 4.947216 5.331345 5.689294 5.996672 6.232529
32.5 0.0486111 0.0485841 32 4.858416 5.235649 5.587174 5.889034 6.120658
33.5 0.0472778 0.0472515 33 4.725215 5.092107 5.433994 5.727578 5.952851
34.5 0.0455 0.0454747 34 4.547515 4.900608 5.229638 5.512182 5.728983
35.5 0.0432778 0.0432537 35 4.325414 4.661263 4.974223 5.242966 5.449179
36.5 0.0406111 0.0405885 36 4.058913 4.374069 4.667747 4.919933 5.11344
37.5 0.0375 0.0374792 37 3.747912 4.03892 4.310096 4.542959 4.72164
38.5 0.0339444 0.0339256 38 3.392611 3.656032 3.9015 4.112287 4.274029
39.5 0.0299444 0.0299278 39 2.99281 3.225188 3.441729 3.627676 3.770358
40.5 0.0255 0.0254858 40 2.548608 2.746496 2.930897 3.089246 3.21075
41.5 0.0206111 0.0205997 41 2.060007 2.219957 2.369006 2.496997 2.595207
42.5 0.0152778 0.0152693 42 1.526905 1.645462 1.755939 1.850808 1.923603
43.5 0.0095 0.0094947 43 0.949503 1.023228 1.091928 1.150922 1.196189
44.5 0.0032778 0.003276 44 0.327601 0.353038 0.376741 0.397095 0.412714

1.0005556 0.9999996 g(t) check 100.0007 107.7653 115.0008 121.2139 125.9814

The calculation of the age-time-specific birth array begins by finding the number of
period births for times 0 through 52. For each of those years, the births at every age from
15 through 44 are found by multiplying the appropriate g(t) by fx+½ . The calculations are
then verified by summing the age-specific births for each year and confirming that they
sum to g(t). That verification is shown, beginning in column (5) of Table F-1.

Cohort births are then found by summing diagonal elements of the birth array. Time
0 corresponds to the commencement of fertility for the cohort born in year −15. That
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cohort’s fertility ends at time 29. Births for 24 consecutive cohorts (one cycle) are
followed, through the cohort born at time +8, whose fertility is complete at time 52.

Table F-1 shows total cohort births from Equation (30) on line 3, beginning in
column (5), which shows C(t−15) = 97.82565. The corresponding total cohort births
found by summing array elements is shown on the third line from the bottom of the table,
beginning in column (5), where the first entry is 98.13621. The next line shows the
percent error (−0.00317) and the bottom line the magnitude or absolute value of the error
(0.003175). After time 24, Table F-1 shows that the average absolute error between the
Equation (30) value and the array sum value was 0.00256. The magnitude of the largest
error was 0.004001. In short, given the inevitable discrepancies in approximating a
continuous-time relationship with discrete data, Equation (30) is confirmed by the
calculations shown in Table F-1.

Appendix G. Finding the extrema of cohort total fertility in cyclically
hyperstationary models

We seek the times within a cycle when the CFR(t) curve of Equation (41),

CFR(t) = { a + b sin ω(t+30)[sin 15ω − 15ω cos 15ω]/(1125ω3) }
/ {.5[a + b sin ωt]} (G.1)

attains its maximum and minimum values. Following the usual procedure of
differentiating the function and setting the derivative to 0, we find

CFR(t)’ = 0 = (a+bsin ωt)[H(ω) cos ω(t+30)] – [a+H(ω) sin ω(t+30)][b cos ωt]
(G.2)

where, following Equation (31),

H(ω) = [sin 15ω − 15ω cos 15ω]/(1125ω3)

and common factors have been eliminated from Equation (G.2).

To simplify Equation (G.2), expand terms to find

aH(ω) cos ω(t+30) + (b H(ω) sin ωt)(cos ω(t+30)) = ab cos ωt
+ bH(ω) sin ω(t+30) cos ωt (G.3)
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From Bayer (1978: 168) we have the trigonometric identity

sin x cos y = ½ sin(x+y) + ½ sin(x−y) (G.4)

Using Equation (G.4) in Equation (G.2) yields

aH(ω) cos ω(t+30) − ab cos ωt = bH(ω) sin 30ω (G.5)

Equation (G.5) is the result in Equation (42), which can be numerically solved for
the time extrema using Maple or a similar mathematical package. The fertility values at
those extrema can then be found from Equation (G.1).
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