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Estimation of confidence intervals for decompositions and other
complex demographic estimators

Arun S. Hendi1

Abstract

BACKGROUND
While the use of standard errors and confidence intervals is common in regression-based
studies in the population sciences, it is far less common in studies using formal
demographic measures and methods, including demographic decompositions.

OBJECTIVE
This article describes and provides explicit instructions for using four different
approaches for computing standard errors for complex demographic estimators.

METHODS
Standard errors for Arriaga’s decomposition of life expectancy differences are computed
using the delta method, the Poisson bootstrap, the binomial bootstrap, and the Monte
Carlo approaches. The methods are demonstrated using a 50% sample of vital statistics
data on age-specific mortality among urban women in the Pacific region of the United
States in 1990 and 2019.

RESULTS
All four methods for computing standard errors returned similar estimates, with the delta
method, Poisson bootstrap, and Monte Carlo approaches being the most consistent. The
Monte Carlo approach is recommended for general use, while the delta method is
recommended for specific cases.

CONTRIBUTION
This study documents multiple ways of estimating statistical uncertainty for complex
demographic estimators and describes in detail how to apply these various methods to
nearly any rate-based demographic measure. It also provides advice on when the use of
standard errors is and is not appropriate in demographic studies. Explicit formulae for
computing standard errors for Arriaga’s decomposition using the delta method approach
are derived.

1 Princeton University, USA. Email: arun.hendi@princeton.edu.
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1. Introduction

Though statistical inference is commonly used in demographic studies involving
regression analysis and some types of forecasting, it is far less likely to be applied to life
table analyses, including those based on mortality, fertility, or any other types of rates;
decompositions across age, duration, cause of death, proximate determinants, or other
indices; and studies involving more complex formal demographic measures.

The avoidance of statistical inference in some demographic studies is likely due to
four separate reasons. First, it is in part due to the fact that demography as a field predates
modern statistical inference (and certainly the widespread use of statistical hypothesis
testing), meaning that many common demographic methods were developed without
attention to uncertainty arising from sampling variance. Second, demographers often
employ data that theoretically capture 100% of the population (e.g., national vital
statistics records), meaning there should be zero sampling variance. Third, the intricate
mathematics and theoretical assumptions underlying some demographic models often
make it difficult to derive closed-form estimators for sample variance or even to identify
precisely what the random variable in an analysis should be. Finally, unlike statistics,
demography is a substantive field, where the norm is to make judgments based on
expertise. Well-trained demographers know when a life expectancy is reasonable or
whether the difference between two countries in the total fertility rate is meaningful. They
thus focus more on demographic significance than on statistical significance.
Demographers are typically more concerned with problems arising from measurement
error, which in this line of work often affects estimates far more than sampling variance
ever could.

With the increasing level of interdisciplinarity in population research and
publishing, demographers are more often being called on to provide standard errors,
which can sometimes be a challenging task. No major demography textbook provides
advice on precisely how to compute standard errors for complex demographic estimators,
and the statistical literature is often either impenetrable or poorly adapted for
demographic studies. Several past studies have provided helpful descriptions of
procedures to compute standard errors for standardized rates, life expectancies, and
multistate life table parameters (Andreev and Shkolnikov 2010; Chiang 1984; Keyfitz
1966; Lo, Dan Vatnik, and Bourbeau 2016). This study adds to this literature by deriving
an explicit equation for approximating the variance of Arriaga’s (1984) decomposition
using the delta method; detailing the assumptions and methods for computing empirical
standard errors for any demographic estimator using Monte Carlo simulations and tools
such as the parametric bootstrap and the jackknife; and comparing and contrasting
variance estimates based on different approaches. While this article uses Arriaga’s
decomposition as an example of how to apply various variance estimation methods, the
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approaches described in this paper can be applied to any estimator that uses demographic
rates or probabilities as its input.

The remaining sections of this article describe when standard errors are required;
how to use the Monte Carlo, bootstrap, delta method, and jackknife approaches to
computing standard errors; how these approaches compare; and how the various
approaches can be extended to compute standard errors for any probability or rate-based
demographic estimator. Readers who are simply interested in getting a precise description
of how to compute Monte Carlo standard errors for demographic estimators can skip
directly to subsection 3.2, and those who are looking for a closed-form expression for
approximate standard errors for Arriaga’s decomposition can proceed to the subsection
labeled 3.1.

2. When are standard errors necessary?

Standard errors are important tools for assessing the precision of a sample-based
estimator. They allow researchers and their readers to understand whether an effect, trend,
or difference arises from underlying population processes versus sampling variation.
When standard errors or other measures of uncertainty are not provided in sample-based
studies, the researcher leaves open the possibility that a result or conclusion is
indistinguishable from a lack of result or a different conclusion.

When using whole population data, however, standard errors are generally not
necessary (see discussions of finite sample inference in Lohr 2022; Abadie et al. 2020,
and elsewhere). For example, if a researcher is using data on the total population and all
births in the year 2009 in California to compute the state’s 2009 crude birth rate, there is
no need to compute standard errors since there is no sampling variation (because there is
no sample). The purpose of standard errors is to capture variation that could occur due to
random sampling, so it is the random sampling, and not the underlying random data-
generating process, that drives the variation of interest in the estimator. An estimate based
on a 100% sample of the target population has a standard error of zero.

In some cases, demographers may work with whole population data pertaining to
small areas or relatively small countries. Either the researcher or a reader may want to
know more about the degree of random variation of an estimate. In such a case, the
population parameter is fixed, so the researcher might wish to avoid computing a standard
error for the value. In these instances, the researcher can instead answer a related question
that would arrive at the same conclusion: If my population were instead to be a random
sample of the same size being drawn from an infinitely large population, what would the
standard error be for my estimate? In that case, one can use a method like Monte Carlo
simulation, described in the subsequent pages, to provide an answer. Producing standard
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errors to answer this type of hypothetical question has precedent in demography, going
at least as far back as Keyfitz (1966).

More generally, standard errors are but one paradigm through which a researcher
can judge the quality of an estimate or the difference between two estimates. When
applied without thought, the use of standard errors can be misleading. For example, it
would not be sensible to compare an estimate based on data known to be faulty with an
estimate based on nonfaulty data, even if the “standard errors” were very large or very
small (Hendi 2017). Demographers have their own, separate set of standards to judge the
quality of measurement, and in general those should take precedence over concerns about
sampling variance.

As general guidance, standard errors (or confidence intervals or other measures of
sampling variance) should be used when employing sample data to make inferences about
population parameters or when making comparisons of estimates from two or more
samples. Standard errors can be interpreted as indicators of the precision of an estimate
in the sense that an estimate with a smaller standard error can be thought of as more likely
to be representative of the underlying population parameter.

3. Approaches for computing standard errors

We focus on four main approaches to constructing standard errors or confidence intervals
for decompositions and other complex demographic estimators: the delta method
approach, Monte Carlo simulation, two versions of the parametric bootstrap, and the
jackknife. These are the most commonly used methods for approximating sample
variance in social science research, but they see relatively less use in demography. We
describe each method in turn and demonstrate how to apply several of the methods to
compute standard errors for Arriaga’s age decomposition of the difference between two
life expectancies. We then compare the approaches, describing the strengths and
weaknesses and indicating the appropriate use case for each approach.

3.1 The delta method approach

The delta method is an analytic approach to approximating the sample variance of an
estimator. We say it is analytic because it has a closed-form expression and doesn’t
depend on resampling, unlike many empirical standard error approaches. The logic
behind the delta method is to compute the sample variance of a linearized version of an
estimator, since deriving a formula for the variance of a linear function of estimators is
often easier than computing the variance of a nonlinear function (Greene 2018). Consider
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population parameter 𝜃 (e.g., the survival probability at ages 45‒49). We use sample data
to estimate that parameter, and our estimator is 𝜃෠, which is asymptotically normal. We
are ultimately interested in some continuous function of the parameter, 𝑔(𝜃) (e.g., life
expectancy at birth), and thus would like to compute the sample variance of 𝑔൫𝜃෠൯. Rather
than undertake that complicated computation, we instead approximate the estimator by
writing:

𝑔൫𝜃෠൯ ≈ 𝑔(𝜃) + ൫𝜃෠ − 𝜃൯ ⋅ 𝑔′(𝜃)

and write the variance of this approximation as:

𝑣𝑎𝑟 ቀ𝑔൫𝜃෠൯ቁ ≈ 𝑣𝑎𝑟൫𝜃෠൯ ⋅ ൫𝑔′(𝜃)൯2.

To compute the approximate sample variance of a function of some estimator, we
multiply the variance of the estimator itself by the square of the derivative of the function.
This logic can be extended to functions of multiple estimators, as in the case of many
demographic measures that are functions of multiple age-specific rates or probabilities.

To apply this approach to Arriaga’s decomposition, we first write the decomposition
as a function of the age-specific estimators for survival or mortality (the 𝑝𝑛 𝑥 or 𝑚𝑛 𝑥
values).2 These age-specific estimators are asymptotically normal. We can write
Arriaga’s decomposition in terms of 𝑝𝑛 𝑖 values as follows:

Δ𝑛 𝑥 = 𝑝𝑛 0
1 × … × 𝑝𝑛 𝑥−𝑛

1 ⋅ ( 𝑎𝑛 𝑥
2 + (𝑛 − 𝑎𝑛 𝑥

2) 𝑝𝑛 𝑥
2) − 𝑝𝑛 0

1 × … × 𝑝𝑛 𝑥−𝑛
1

⋅ ( 𝑎𝑛 𝑥
1 + (𝑛 − 𝑎𝑛 𝑥

1) 𝑝𝑛 𝑥
1) + 𝑒𝑥+𝑛2 × 𝑝𝑛 𝑥

2 ⋅ ( 𝑝𝑛 0
1 × … × 𝑝𝑛 𝑥−𝑛

1 )
− 𝑒𝑥+𝑛2 × 𝑝𝑛 0

1 × … × 𝑝𝑛 𝑥−𝑛
1 × 𝑝𝑛 𝑥

1

to allow for straightforward differentiation with respect to the 𝑝𝑛 𝑖
1 and 𝑝𝑛 𝑖

2 values (where
the superscripts correspond to the two populations whose life expectancy difference is
being decomposed). The 𝑎𝑛 𝑥 value represents the average number of person-years lived
by someone who dies in the age interval 𝑥 to 𝑥 + 𝑛. Following the above notation, the 𝑔
function is Δ𝑛 𝑥 and the 𝜃 values are the 𝑝𝑛 𝑖

1 and 𝑝𝑛 𝑖
2 values that we are differentiating

with respect to. Those derivatives are used to calculate the variance. The 𝑝𝑛 𝑖
1 and 𝑝𝑛 𝑖

2

values appear in this formulation of the decomposition in two ways: either through the
𝑝𝑛 𝑖 values themselves or implicitly through the 𝑒𝑥+𝑛 values. We thus additionally note

that the derivative of 𝑒𝑥+𝑛 is

2 The notation used in this article is similar to that used in Preston, Heuveline, and Guillot (2001).
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𝜕
𝜕 𝑝𝑛 𝑖

𝑒𝑥+𝑛 = ൝
0 if 𝑥 + 𝑛 > 𝑖

𝑙𝑖
𝑙𝑥+𝑛

⋅ [(𝑛 − 𝑎𝑖𝑛 ) + 𝑒𝑥+2𝑛]  if 𝑥 + 𝑛 ≤ 𝑖.

Then the derivatives of Δ𝑛 𝑥 with respect to the parameter values are:

𝜕 Δ𝑛 𝑥

𝜕 𝑝𝑛 𝑖
1 =

⎩
⎪
⎨

⎪
⎧𝑙𝑥

1

𝑙01
⋅

1
𝑝𝑛 𝑖
1 ⋅ ቆ

𝐿𝑛 𝑥
2

𝑙𝑥2
−

𝐿𝑛 𝑥
1

𝑙𝑥1
ቇ +

𝑒𝑥+𝑛2

𝑝𝑛 𝑖
1 ⋅ ቆ 𝑝𝑛 𝑥

2 ⋅
𝑙𝑥1

𝑙01
−
𝑙𝑥+𝑛1

𝑙01
ቇ if 𝑥 > 𝑖

−
𝑙𝑥1

𝑙01
⋅ ൫(𝑛 − 𝑎𝑛 𝑥

1) + 𝑒𝑥+𝑛2 ൯ if 𝑥 = 𝑖

0 if 𝑥 < 𝑖

𝜕 Δ𝑛 𝑥

𝜕 𝑝𝑛 𝑖
2 =

⎩
⎪
⎨

⎪
⎧ 𝑙𝑥1

𝑙01
⋅ ൫(𝑛 − 𝑎𝑛 𝑥

2) + 𝑒𝑥+𝑛2 ൯    if 𝑥 = 𝑖

𝑙𝑖2

𝑙𝑥+𝑛2 ⋅ ቀ(𝑛 − 𝑎𝑖2𝑛 ) + 𝑒𝑥+2𝑛2 ቁ × ቆ 𝑝𝑛 𝑥
2 ⋅
𝑙𝑥1

𝑙01
−
𝑙𝑥+𝑛1

𝑙01
ቇ    if 𝑥 < 𝑖

0    if 𝑥 > 𝑖.

The open-ended age group has to be treated specially. Since 𝑞∞ 𝑥 = 1, some prior
studies assumed zero variance arising from this age group (Chiang 1984). In many
instances, the open-ended age group encompasses a significant proportion of all deaths,
suggesting that it does contribute variance to demographic measures (Lo, Dan Vatnik,
and Bourbeau 2016). We thus instead assume that deaths in this age group arise from a
Poisson process in which the variance of the number of deaths equals the mean. The
derivatives involving mortality in the open-ended age group are thus:

𝜕 Δ𝑛 𝑥

𝜕 𝐷∞ 𝜔
1 = 0                                                           if 𝑥 < 𝜔

𝜕 Δ𝑛 𝑥

𝜕 𝐷∞ 𝜔
2 = −

𝑙𝜔2

𝑙𝑥+𝑛2 ⋅
𝑒𝜔2

𝐷∞ 𝜔
2 ⋅ ቆ 𝑝𝑛 𝑥

2 ⋅
𝑙𝑥1

𝑙01
−
𝑙𝑥+𝑛1

𝑙01
ቇ if 𝑥 < 𝜔

𝜕 Δ∞ 𝜔

𝜕 𝑝𝑛 𝑖
1 =

𝑙𝜔1

𝑙01
⋅

1
𝑝𝑛 𝑖
1 ⋅ (𝑒𝜔2 − 𝑒𝜔1 ) if 𝑖 < 𝜔

𝜕 Δ∞ 𝜔

𝜕 𝑝𝑛 𝑖
2 = 0                                    if 𝑖 < 𝜔

𝜕 Δ∞ 𝜔

𝜕 𝐷∞ 𝜔
1 =

𝑙𝜔1

𝑙01
⋅
𝑒𝜔1

𝐷∞ 𝜔
1

𝜕 Δ∞ 𝜔

𝜕 𝐷∞ 𝜔
2 = −

𝑙𝜔1

𝑙01
⋅
𝑒𝜔2

𝐷∞ 𝜔
2
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The variance of the Arriaga’s decomposition estimator can thus be approximated
using the delta method by

var( Δ𝑛 𝑥) ≈ ൥෍ ቆ
𝜕 Δ𝑛 𝑥

𝜕 𝑝𝑛 𝑖
1ቇ

2

× ቆ
(1 − 𝑝𝑛 𝑖

1)2 × 𝑝𝑛 𝑖
1

𝐷𝑛 𝑖
1 ቇ

𝜔−𝑛

𝑖=0

൩

+ ൥෍ ቆ
𝜕 Δ𝑛 𝑥

𝜕 𝑝𝑛 𝑖
2ቇ

2

× ቆ
(1 − 𝑝𝑛 𝑖

2)2 × 𝑝𝑛 𝑖
2

𝐷𝑛 𝑖
2 ቇ

𝜔−𝑛

𝑖=0

൩

+ ൬
𝜕 Δ𝑛 𝑥

𝜕 𝐷∞ 𝜔
2൰

2

× 𝐷∞ 𝜔
2

(1)

var( Δ∞ 𝜔) ≈ ൥෍ ቆ
𝜕 Δ∞ 𝜔

𝜕 𝑝𝑛 𝑖
1 ቇ

2

×
𝜔−𝑛

𝑖=0

ቆ
(1 − 𝑝𝑛 𝑖

1)2 × 𝑝𝑛 𝑖
1

𝐷𝑛 𝑖
1 ቇ൩

+ ቈ൬
𝜕 Δ∞ 𝜔

𝜕 𝐷∞ 𝜔
1 ൰

2

× 𝐷∞ 𝜔
1 ቉ + ቈ൬

𝜕 Δ∞ 𝜔

𝜕 𝐷∞ 𝜔
2൰

2

× 𝐷∞ 𝜔
2 ቉.

(2)

In practice, applying the delta method to Arriaga’s decomposition, or any
demographic estimator involving an age-structured population, becomes somewhat
complicated in that it requires keeping track of two indices: the age index of the estimator,
𝑥, and the age index of each parameter, 𝑖. For Arriaga’s decomposition applied to
standard abridged life tables, this means that for each of the Δ𝑛 𝑥 values for the 19 age
groups we must calculate derivatives corresponding to each of the 19 𝑝𝑛 𝑥 and 𝐷∞ 𝜔
parameters for each of the two populations involved in the decomposition. Clearly, using
the delta method for demographic measures can quickly become complicated.

How then, in practice, do we apply the delta method to compute the sample variance
for Arriaga’s decomposition? First we compute the decomposition itself. Then, for each
Δ𝑛 𝑥 value, we use the above formulas to calculate the derivatives with respect to each

age group, evaluated at the observed life table values. We then plug those values into
Equations (1) and (2) above. We provide an Excel spreadsheet with formulas as well as
R code, each demonstrating these computations for two abridged life tables, in the
supplementary online material. Researchers can replace the life table parameters in the
worksheet or data files with their own data to retrieve standard errors corresponding to
their analyses.

The delta method procedure can easily be adapted for cases when the researcher is
using multistage stratified sample surveys instead of simple random samples. The only
changes in these cases would be that in Equations (1) and (2) one would replace
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ቆ൫1− 𝑝𝑛 𝑖
1൯
2

× 𝑝𝑛 𝑖
1

𝐷𝑛 𝑖
1 ቇ and ቆ൫1− 𝑝𝑛 𝑖

2൯
2

× 𝑝𝑛 𝑖
2

𝐷𝑛 𝑖
2 ቇ with the respective squared standard errors of the 𝑝𝑛 𝑖

1

and 𝑝𝑛 𝑖
2 values, where the standard errors for these values are supplied by the statistical

software. Also in Equations (1) and (2), one would replace 𝐷∞ 𝜔
1  and 𝐷∞ 𝜔

2  with the
respective squared standard errors of 𝐷∞ 𝜔

1  and 𝐷∞ 𝜔;
2 ; once again these standard errors

are supplied by the statistical software.3 So long as the researcher has made sure to set up
the rate or probability estimation analysis in the software to take into account survey
design and sample weights (e.g., in Stata this would be by using the svyset command and
svy prefixes, and in R one would use the survey package), this method will return
accurate standard error estimates for Arriaga’s decomposition.

3.2 The Monte Carlo approach

Another approach to approximating the sample variance of a demographic estimator is
through Monte Carlo simulation. Monte Carlo methods work by simulating estimates
based on distributional assumptions. They are often used to assess the properties of
sampling distributions for complex estimators that may not admit closed-form standard
errors (Hendry 1995). In the context of demography, Monte Carlo approaches have been
used to study the sampling distributions of life table parameters (Andreev and Shkolnikov
2010).

For a complex demographic estimator such as Arriaga’s decomposition, we can
apply a Monte Carlo approach by making an assumption about the sampling distribution
of 𝑝𝑛 𝑥 or 𝑚𝑛 𝑥 values, drawing a random value from those distributions for each age
group, computing Arriaga’s decomposition based on each set of age-specific random
draws, recording the decomposition values, and then repeating the process hundreds or
even thousands of times. The hundreds or thousands of distinct decomposition values
make up the sampling distribution of the decomposition estimator under the distributional
assumptions mentioned earlier. For example, the standard deviation of this empirical
sampling distribution is the standard error for the decomposition. The 2.5th and 97.5th

percentiles of the empirical sampling distribution correspond to the 95% confidence
interval values.

Applying the Monte Carlo approach is a straightforward three-step procedure. The
first step is to determine the parameters and their corresponding estimators. For Arriaga’s
decomposition (and just about any other demographic estimator), the parameters could
be either the 𝑝𝑛 𝑥 values for all age groups or the 𝑚𝑛 𝑥 values for all age groups. Since

3 Note that one should change only values that show up directly in Equations (1) and (2). The 𝐷∞ 𝜔 values in
the partial derivatives should not be changed.
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most life tables are constructed starting from 𝑚𝑛 𝑥 values, we use those as our running
example. If one is using, for example, a 1% sample of the population to estimate 𝑚𝑛 𝑥
values, then one can assume that age-specific deaths follow a Poisson distribution, where
the mean and variance are both 𝐷𝑛 𝑥 (the observed number of deaths in the sample). The
age-specific population counts, 𝑁𝑛 𝑥, are assumed to be nonrandom.

The second step is to draw a random number of deaths ( 𝐷𝑛 𝑥) for each age group and
for each of the two populations involved in the decomposition from the respective
Poisson distribution for that group. Next we compute the life tables for the two
populations based on the simulated data, and then we compute Arriaga’s decomposition
based on these two simulated life tables. We then record the decomposition values and
repeat step two 999 more times, recording the decomposition values each time. If we
were to conduct 1,000 simulations, then at the end we should have recorded 1,000 Δ𝑛 𝑥
values for each age group, giving us an empirical sampling distribution for each age
group.

The third and final step is to compute the value of interest based on the simulated
estimates. For example, if we wanted to know the standard error for the decomposition
value at ages 50‒54, we would calculate the standard deviation of the simulated
decomposition values for ages 50‒54. If we wanted the 95% confidence interval of the
decomposition estimate for the 50‒54 age group, we would compute the 2.5th and 97.5th

quantiles of the simulated decomposition values for ages 50‒54.
Though we have outlined the Monte Carlo approach using a Poisson distribution

assumption for death rates, the Poisson assumption is likely to hold just as well for any
type of demographic rate, including fertility, marriage, migration, or other types of
transitions. In some cases, however, it may be more appropriate or easier to use alternate
distributional assumptions. For example, if we were to compute age-specific death rates
using event history analysis (either occurrence-exposure ratios or model-based estimates)
or some other type of maximum likelihood estimation, it might be sensible to instead
assume a normal distribution for the rate estimators themselves.

One remaining question is how to choose the number of simulations. We mentioned
above that one could compute hundreds or even thousands of simulations in the Monte
Carlo exercise. There are many rules of thumb, but 1,000 simulations should be adequate
for most demographic estimators. The runtime for computing Monte Carlo standard
errors for Arriaga’s decomposition based on 1,000 simulations should be no more than a
few seconds on a modern computer. We provide sample R code to compute Monte Carlo
standard errors in the supplementary online appendix.

The description above has emphasized the use of Monte Carlo for simple random
samples, but Monte Carlo approaches are of equal utility for researchers using multistage
stratified sample survey data. In the context of demographic estimation, the most
common way this type of data is used is by producing rate or probability estimates using
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the survey data and subsequently using these rate or probability estimates as inputs to
compute decompositions, life expectancies, or other quantities, often stratified by group.
For example, one could use data from the U.S. National Health Interview Survey to
estimate age-specific death rates by sex, education category, and five-year period and
then use these rate estimates to compute an age decomposition of the change over time
in the educational gradient in life expectancy. This is a very complicated estimator, and
most statistical packages would provide only the sample variances of the rates
themselves, not those for the decomposition. Furthermore, the researcher may not be sure
which decompositions they want to compute until after running their code to estimate the
rates and then examining those rates. They may also want to compute follow-up estimates
at a later stage.

In these cases, the Monte Carlo approach is the most flexible and easy-to-use method
for computing standard errors. Most statistical packages offer options to incorporate
survey design and sample weights when dealing with complex survey data. Thus, when
one uses survey functions to compute means, ratios, probabilities, or predicted values
from regressions, the statistical software will return not just the estimates but also
standard errors that take into account sample design. The rate or probability estimates
from these analyses are asymptotically normally distributed, with mean equal to the
estimate itself and sample variance equal to the squared standard errors. When the
researcher subsequently wishes to compute a decomposition or other quantity that
involves the rates or probabilities previously estimated, they can estimate standard errors
for the decomposition by employing the Monte Carlo approach: They would simply draw
random rates or probabilities from normal distributions, with means and variances
provided by the rate or probability estimates and their squared standard errors, and then
compute the decomposition based on these randomly drawn values. Repeating this
process 999 additional times and computing the standard deviation of the 1,000 recorded
values yields the standard error of the decomposition. The value of this approach is that
it does not require researchers to rerun an entire analysis every time they wish to compute
a new decomposition (which, when dealing with large event history data files, can be
very computationally intensive). Instead the rates or probabilities and their corresponding
standard errors have to be estimated only once. The Monte Carlo standard error for the
decomposition or another complex demographic estimator will thus take into account
survey design, so long as the estimator is entirely a function of quantities estimated in the
first stage of analysis (e.g., rates or probabilities). If the complex demographic estimator
is a function of additional estimates, then variance arising from those estimates should
also be incorporated into the Monte Carlo exercise.
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3.3 The bootstrap approach

The bootstrap is a commonly used approach to estimating sample variance that relies on
resampling. It was first introduced by Efron (1979) as an alternative to the popular
jackknife procedure. There are two common types of bootstrap procedures: the
nonparametric and the parametric bootstrap. The logic behind the nonparametric
bootstrap is that one can replicate the sampling process by taking a with-replacement
sample of size 𝑁 from any population-representative sample of size 𝑁. Because sample
variance represents the variation in an estimator when applied across different potential
samples, the nonparametric bootstrap approach mirrors the sampling process when the
original sample size (𝑁) is large enough. In the parametric bootstrap procedure, the
researcher makes a distributional assumption about the data-generating process to
replicate the sampling process. Another way to word this is that one assumes a model
from which the data arise and then uses the estimated parameters of the model to create
new synthetic samples, repeating the process to generate a sampling distribution. The
sample size in each synthetic sample is equal to the sample size of the original sample.
Both the parametric and nonparametric approaches can be used to produce confidence
intervals for complex demographic estimators.

To apply the nonparametric bootstrap, one needs to replicate the sampling process.
For example, when working with a 1% simple random sample of annual vital statistics
data, the researcher would first organize the data so that each row represents an
individual, including an indicator for whether or not the individual died in the period of
interest. The data are then sorted into age groups. If there are 𝑁 rows in the data for a
given age group, researchers would then randomly sample 𝑁 of the rows with
replacement, so that any given row can be selected multiple times. The same procedure
would be applied to each age group, producing a replicate sample that contains
observations for each age group. For each replicate sample, the researcher would compute
the decomposition or other estimator of interest, record the value, and then repeat the
procedure with a new replicate sample.

Applying the nonparametric bootstrap to complex survey data is a bit more
complicated, since each survey has its own distinct design, meaning that two different
surveys could potentially require two very different bootstrap resampling procedures.
Since many surveys today provide instructions for drawing bootstrap samples, one can
easily apply those procedures to produce a replicate sample. For one specific way to
construct bootstrap weights for a multistage complex probability sample, see Lohr
(2022:376–77). One would then produce a split records (person-year) file for the replicate
sample and carry out the decomposition or other estimation, record the result, and start
again with a new replicate sample. The set of results from each replicate sample
constitutes the sampling distribution. One can select the 2.5th and 97.5th percentiles of this
distribution to form a 95% confidence interval.
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The parametric bootstrap requires less in the way of sampling, since it assumes a
specific data-generating process. If a researcher is using a 1% sample from vital statistics
data, for example, they can apply the parametric bootstrap by assuming that age-specific
deaths are generated from a Poisson process with the intensity parameter equal to the
number of deaths in the sample for that age group. The researcher would then draw a
random number of deaths for each age group from the corresponding Poisson
distribution. This latter step is the parametric analog to drawing a with-replacement
sample with size equal to the original sample size. The researcher would next compute
age-specific death rates based on these randomly generated death counts and 1% of the
age-specific population count (the latter is assumed to be nonrandom), compute the
decomposition or other demographic estimator of interest, record the result, and then start
again with a new set of random draws from the age-specific Poisson distributions,
repeating this hundreds or thousands of times. Once again, these results constitute the
sampling distribution, and one can select the 2.5th and 97.5th percentiles of this
distribution to form a 95% confidence interval. We do not give instruction on applying
the parametric bootstrap to complex survey data, since doing so is more onerous and
provides no clear advantage over the nonparametric bootstrap.

The Monte Carlo and bootstrap approaches are very similar, and in fact the bootstrap
can be thought of as a special case of the Monte Carlo approach. The main difference is
that the bootstrap requires knowledge of the data or the data-generating process, while
one can get by using the Monte Carlo approach based only on knowledge of the sampling
distributions of the age-specific rate or probability estimators. For example, suppose a
researcher was interested in computing a decomposition of the difference between the
life expectancies for college graduates in France and the United Kingdom. The researcher
finds estimates and standard errors for the age-specific rates in a published paper but
doesn’t have access to the original survey data used to produce the estimates. That
researcher can instead assume that the estimators are approximately normal4 and draw
random rate estimates from a normal distribution with mean equal to the reported rate
and variance equal to the square of the reported standard error. They could apply the
Monte Carlo approach using this assumption, which would allow them to compute
confidence intervals for their decompositions without any reference to the original survey
data. In addition to requiring less (or no) data, this method is also easier to apply with
complex survey data than the nonparametric bootstrap, which requires an intimate
understanding of the sampling procedure and can take hours or even days to run on a
sufficiently large sample with thousands of bootstrap replicates.

4 This will in general be a good assumption if the 𝑝𝑛 𝑥 values aren’t too close to 0 or 1 and if the number of age-
specific person-years in the sample is sufficiently large. One rule of thumb suggests that the normal
approximation to the binomial distribution is accurate if 𝑛𝑝 and 𝑛(1 − 𝑝) are both greater than 5. In the case
of survey-based mortality estimates, this means we should observe at least five deaths and five survivors in any
given age group, which will typically require, at most, 5,000 person-years of exposure per age group.
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3.4 The jackknife approach

Another approach commonly used to produce uncertainty estimates is the jackknife. Like
the nonparametric bootstrap, the jackknife relies on replicating the estimator using
multiple subsamples of the data (see section 11.5.5 of Cameron and Trivedi 2005 for an
accessible description). When using a simple random sample of size 𝑁, the “delete-one”
jackknife is a replication approach where the researcher excludes one observation (the
𝑗𝑡ℎ observation) at a time, recomputes the estimator using this subsample, records the
estimate (denoted Δ𝑛 𝑥(𝑗)), and then repeats this procedure (𝑁 − 1) more times,
excluding the next observation each time. The jackknife estimate of sample variance is
then 𝑁−1

𝑁
 multiplied by the sum of the squared differences between each jackknife

replicate estimate and the overall estimate:

var( Δ𝑛 𝑥) ≈
𝑁 − 1
𝑁

෍( Δ𝑛 𝑥(𝑗) − Δ𝑛 𝑥)2
𝑁

𝑗=1

.

When using data from a complex multistage stratified sample, the approach differs
slightly, since this type of sample design requires the researcher to keep all observations
together within each primary sampling unit (PSU). Thus, instead of excluding one
observation at a time, the researcher excludes one PSU at a time, inflating the sample
weights to account for the exclusion of the PSU. Different surveys have varying
recommendations for how to apply the jackknife when using their data. See Lohr (2022:
374) for one clear description of how to apply the jackknife to sample survey data
generally.

The jackknife is a useful tool for estimating sample variance primarily because of
its simplicity of application. For the purposes of decompositions and other complex
demographic estimators applied to large simple random samples of vital statistics data, it
is less useful. For example, applying the jackknife to a sample of 5,000,000 would require
estimating the decomposition 5,000,000 times, which could take thousands of times
longer than the approaches described above. The jackknife is more useful when
estimating variance for complex estimators applied to sample surveys with relatively
small numbers of PSUs, such as the Demographic and Health Surveys (Elkasabi 2019;
Lohr 2022). In the case of non-smooth estimators, such as sample quantiles, the delete-
one jackknife may not be consistent or asymptotically unbiased (Shao and Wu 1989),
rendering the application of the jackknife much more difficult. Because the jackknife
does not present a good use case for large vital statistics samples compared to the methods
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described above, it is not included in the numerical comparison that follows, but it should
be considered a useful option for complex survey data.

4. Comparison of approaches and application to demographic
decomposition

Researchers may wonder: Which of these variance estimation methods is best for my
specific application? While this section goes through the steps of demonstrating each
method and comparing the resultant standard errors, the reader may be happy to hear that
all the approaches described in this article return very similar standard error estimates,
meaning that demographers can choose any one of the methods with confidence that it
will not substantially affect the findings or interpretation of results. All the methods also
allow for the incorporation of complex survey design when stratified multistage sample
data are used, so that the standard error estimates can reflect the sampling approach. We
can thus focus on other dimensions when comparing the variance estimation methods,
including ease of use, concordance with other methods, accuracy, computational
efficiency, and consistency across multiple applications.

This section compares and contrasts the various sample variance estimation
approaches described above using example data on female mortality in the urban portion
of the Pacific region of the United States. The data consist of a 50% simple random
sample of age-specific death and population counts from the years 1990 and 2019. The
counts are sorted into the age groups 0, 1‒4, 5‒9, 10‒14, …, 80‒84, and 85+ years. Deaths
data come from the annual U.S. Multiple Cause of Death (MCD) files, and population
counts come from the annual bridged-race population estimates. The goal of the analysis
is to compute Arriaga’s decomposition for the change in life expectancy at birth between
those two years for women in this region. Between 1990 and 2019, life expectancy
increased by 5.7 years for women in this region. Table 1 presents the decomposition of
this 5.7-year increase into age group contributions, with most of the increase attributable
to declines in infant mortality and mortality at ages 50 and older.
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Table 1: Arriaga’s decomposition for change in life expectancy between 1990
and 2019 for women in the urban Pacific region of the United States

1990 2019  Arriaga

Age 𝑥 𝑚𝑛 𝑥 𝑎𝑛 𝑥 𝑞𝑛 𝑥 𝑙𝑥 𝐿𝑛 𝑥 𝑚𝑛 𝑥 𝑎𝑛 𝑥 𝑞𝑛 𝑥 𝑙𝑥 𝐿𝑛 𝑥 Δ𝑛 𝑥

0 0.007655 0.074435 0.007601 1.000000 0.992964 0.003609 0.063104 0.003596 1.000000 0.996631 0.34

1 0.000433 1.510379 0.001730 0.992399 3.965320 0.000175 1.516522 0.000698 0.996404 3.983887 0.08

5 0.000185 2.500000 0.000926 0.990682 4.951116 0.000118 2.500000 0.000588 0.995708 4.977077 0.03

10 0.000224 2.698390 0.001119 0.989765 4.946274 0.000109 2.673004 0.000546 0.995123 4.974350 0.04

15 0.000399 2.625958 0.001994 0.988657 4.938605 0.000208 2.717355 0.001042 0.994580 4.970533 0.06

20 0.000467 2.560885 0.002330 0.986685 4.927819 0.000327 2.599822 0.001635 0.993543 4.963819 0.04

25 0.000538 2.609242 0.002686 0.984386 4.915609 0.000366 2.632594 0.001829 0.991919 4.955300 0.05

30 0.000752 2.645253 0.003754 0.981742 4.900032 0.000562 2.652385 0.002807 0.990105 4.944000 0.05

35 0.001069 2.651170 0.005331 0.978056 4.878036 0.000781 2.646976 0.003897 0.987326 4.927576 0.07

40 0.001541 2.706326 0.007677 0.972843 4.847083 0.001120 2.649646 0.005585 0.983479 4.904482 0.09

45 0.002628 2.706583 0.013063 0.965374 4.797949 0.001600 2.669022 0.007968 0.977985 4.871762 0.19

50 0.004234 2.670296 0.020964 0.952764 4.717286 0.002449 2.688760 0.012179 0.970193 4.823654 0.29

55 0.006295 2.681929 0.031022 0.932790 4.596873 0.003895 2.677877 0.019302 0.958377 4.748930 0.33

60 0.010252 2.655346 0.050056 0.903853 4.413187 0.005957 2.648850 0.029376 0.939879 4.634479 0.48

65 0.015119 2.644060 0.072993 0.858610 4.145398 0.008548 2.662720 0.041901 0.912269 4.472003 0.58

70 0.023492 2.640862 0.111291 0.795938 3.770714 0.013564 2.673357 0.065747 0.874044 4.236520 0.65

75 0.037778 2.614471 0.173272 0.707357 3.244402 0.022154 2.685871 0.105370 0.816579 3.883780 0.69

80 0.061530 2.500000 0.266634 0.584792 2.534146 0.040466 2.500000 0.183743 0.730536 3.317103 0.56

85 0.151531 1.000000 0.428867 2.830227 0.110591 1.000000 0.596305 5.391965 1.05

Total 79.31 84.98 5.66

One may wish to establish the precision of these estimates, either out of curiosity or
because of a request from a reader. We can do this using any of the three approaches
described above. We provide R code or computations in Excel for each approach in the
supplementary online appendix. We start with the Monte Carlo approach.

For our Monte Carlo standard errors, we draw random age-specific death rate values
and compute Arriaga’s decomposition for each set of age-specific draws. We assume that
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the underlying deaths in this population arise from a Poisson distribution.5 Under this
assumption, both the mean number of deaths and the variance in the number of deaths
will equal the observed number of deaths. Rather than draw random deaths directly from
a Poisson distribution, we use the fact that the Poisson distribution is well approximated
by a normal distribution. Since the age-specific death rate is computed as 𝑚𝑛 𝑥 =
𝐷𝑛 𝑥/ 𝑁𝑛 𝑥 (where 𝐷𝑛 𝑥 and 𝑁𝑛 𝑥 are the death and population counts, respectively, from

the 50% sample – that is, not life table or stationary-equivalent values), then the death
rate will have an approximate normal distribution with mean equal to 𝑚𝑛 𝑥 and variance
equal to 𝐷𝑛 𝑥

𝑁𝑛 𝑥
2 = 𝑚𝑛 𝑥/ 𝑁𝑛 𝑥. For each age group, we draw 1,000 replicate 𝑚𝑛 𝑥 values from

the age-specific normal distribution with mean 𝑚𝑛 𝑥 and variance 𝑚𝑛 𝑥/ 𝑁𝑛 𝑥 for the 1990
sample and then do the same for the 2019 sample. We then use each set of mortality
schedules to compute 1,000 different 1990 life tables and 1,000 different 2019 life tables.
Finally, we compute 1,000 Arriaga’s decompositions for the difference between the
corresponding 1990 and 2019 life tables, recording the decomposition values as we go.
For each age group, we compute the standard deviation of the 1,000 Δ𝑛 𝑥 values, which
is our estimate of the standard error for the Arriaga’s decomposition value at ages 𝑥 to
𝑥 + 𝑛. The standard error for the sum of the Δ𝑛 𝑥 values (the standard error for the change
in life expectancy between 1990 and 2019) can be computed by summing up the Δ𝑛 𝑥
values for each of the 1,000 decompositions and computing the standard deviation of
these 1,000 values.

The second approach we demonstrate is the delta method approach. Applying this
method is very straightforward, since it only requires the researcher to plug life table
values into the equations given above. The challenging aspect of applying the delta
method to Arriaga’s decomposition is that one must keep track of two separate indices:
the age index for the decomposition value (𝑥 to 𝑥 + 𝑛) and the age index for the derivative
(𝑖 to 𝑖 + 𝑛). In this application, we assume that deaths are binomially distributed in each
age group from infancy through 80–84 years and that deaths at ages 85+ are Poisson
distributed. We compute derivatives of Arriaga’s decomposition with respect to the 𝑝𝑛 𝑖
and 𝐷∞ 85 values for each of the two populations (1990 and 2019) and the variances for
the 𝑝𝑛 𝑖 and 𝐷∞ 85 values for the same two populations before combining them in the
summations shown in Equations (1) and (2). When applying the method in our example
case, using a spreadsheet for computation, we use an intermediate step to compute 𝑙𝑖

2

𝑙𝑥+𝑛2 ⋅

ቀ(𝑛 − 𝑎𝑖2𝑛 ) + 𝑒𝑥+2𝑛2 ቁ, which appears in the derivative with respect to 𝑝𝑛 𝑖
2. The

intermediate step is not required but makes incorporating 𝑒𝑥+2𝑛2  simpler in a spreadsheet
format. The intermediate step uses an alternate way to construct a life expectancy and is

5 Note that in all these exercises, we assume away the possibility of individual heterogeneity, which is ‒ perhaps
to the field’s detriment ‒ consistent with much of the empirical literature on mortality trends and patterns.
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related to an approach used by Chiang (1984). The computations for the delta method
application are provided in an Excel file in the supplementary appendix; sample R code
is in a separate file.

The third approach for approximating the variance of Arriaga’s decomposition is the
bootstrap, and we apply two different versions of the parametric bootstrap. The first
version assumes that deaths are distributed binomially while the second assumes that
deaths arise from a Poisson distribution. For each of the 1,000 or so replicate samples in
the binomial version, we draw random numbers of age-specific deaths from age-specific
binomial distributions with probability 𝑞𝑛 𝑥 and with the number of trials equal to
𝐷𝑛 𝑥/ 𝑞𝑛 𝑥 for all but the open-ended age group. (Since 𝑞∞ 85 = 1, the variance in the open-

ended age group under the binomial assumption would be zero.) For the open-ended age
group, we draw a random number of deaths from the Poisson distribution with parameter
𝐷∞ 85. We use this random draw strategy for each of the two periods, 1990 and 2019. For

each replicate sample, we construct death rates and life tables and then compute Arriaga’s
decomposition and record the values. The Poisson version is very similar. The only
difference is that in the Poisson version, the random death counts at ages 0 through 80–
84 are drawn from the Poisson distribution with parameter 𝐷𝑛 𝑥. The resulting
decomposition values constitute the sampling distribution of the Arriaga’s decomposition
estimator, and the standard deviation of those values equals the standard error.

Table 1 shows the results of applying Arriaga’s decomposition to the change in life
expectancy between 1990 and 2019 based on the 50% sample data from each of those
years. For a particular age group, Arriaga’s decomposition provides the number of years
of the life expectancy difference attributable to changes in mortality for that age group.
The values are highest for infancy and at the older adult ages and are relatively low for
ages 1 through 50. The sum of the decomposition values across all age groups is 5.66
years, which is equal to the overall change in life expectancy between 1990 and 2019.

Figure 1 plots standard error estimates for Arriaga’s decomposition as a function of
age for each of the four methods described above. The age pattern of the standard error
estimates tends to follow the age pattern of the Arriaga decomposition values ‒ the largest
standard errors are at infancy and at the older adult ages while smaller standard errors
prevail at the child and younger adult ages. The older-age deceleration in standard errors
starting at around age 60 is in part due to the greater number of deaths occurring at those
ages relative to the preceding age groups. A larger number of deaths is akin to a larger
sample size, leading to lower sample variance. From infancy through ages 60‒64 and for
ages 85+, the standard error estimates are nearly identical for all four types of estimators.
At ages 65‒69 through 80‒84, the bootstrap method using the binomial assumption tends
to produce standard errors that are slightly lower than estimates produced using the other
three methods, which all produce highly similar standard error estimates. Theoretically,
the binomial bootstrap should return standard errors that are comparable to the delta
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method approach, since both approaches use the same distributional assumptions. The
lower standard error produced by the binomial bootstrap may be due to that method’s
different approach to randomly drawing the number of deaths in a synthetic cohort, which
relies on equating the number of trials to 𝐷𝑛 𝑥/ 𝑞𝑛 𝑥. The other methods do not require
specifying the number of trials in this way.

Figure 1: Comparison of standard errors for Arriaga’s decomposition using
different statistical approaches

Note: Monte Carlo assumes that age-specific death rates follow a normal distribution, with mean equal to the observed death rate and
variance equal to 𝑚𝑛 𝑥

𝑁𝑛 𝑥
. Bootstrap binomial and delta method assume that deaths are binomially distributed for age groups 0 through

80‒84 and that Poisson is distributed for ages 85+.
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Figure 2 shows boxplot diagrams for each of the empirical standard error methods
(Monte Carlo and bootstrap) in the 65‒69 through 80‒84 age groups. Each point used to
compute the boxplot is an Arriaga decomposition value from one of the 1,000
simulations, so the boxplots represent the empirical sampling distributions of the
decomposition estimator. It is clear from this figure that the centers of the distributions
are all highly comparable; the spreads of the Poisson bootstrap and Monte Carlo sampling
distributions are also highly similar. The spread of the binomial bootstrap is somewhat
lower, which is reflected in the lower standard error described above. The lower variance
is not being driven solely by outliers in the extremes of the distribution but by a smaller
interquartile range as well.

Figure 2: Empirical sampling distributions of Arriaga’s decomposition from
bootstrap and Monte Carlo simulations, ages 65‒69 through 80‒84

Despite the small differences between the four methods, and in particular between
the binomial bootstrap and the other three approaches, all four methods provide very
similar standard error estimates, with the Monte Carlo, Poisson bootstrap, and delta
method approaches being the most consistent.

At the end of it all, the reader may again ask: Which of these approaches is best for
me to use? We can adjudicate the different methods on the basis of six dimensions:
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accuracy, data requirements, concordance with other methods, ease of use, computational
efficiency, and consistency across multiple applications. Table 2 summarizes the
comparisons across five of these dimensions. The easiest of these dimensions to judge is
accuracy. All four methods are accurate in the sense that they all provide theoretically
correct estimates, although it should be noted that all four methods are approximations.
A complex estimator like Arriaga’s decomposition does not admit an exact closed-form
sample variance formula. Another important limitation is that none of these four methods
assigns positive variance when zero deaths (or births, etc.) are observed. In these cases,
the estimated death rate will be zero and the sample variance will either be zero or
undefined. Though all four methods are theoretically accurate, we saw that the Poisson
bootstrap, delta method, and Monte Carlo approaches tended to be in concordance more
often, suggesting that these methods should be preferred over the binomial bootstrap.

Of the four methods, the Monte Carlo approach is perhaps the easiest to use. It
requires assumptions that are similar to those of the other methods and is very easy to
code, leaving less room for potential mistakes. The delta method approach is perhaps the
most difficult to use, since it requires the researcher to compute derivatives of potentially
very complex estimators. The counterargument to ease of use is computational efficiency.
The delta method is by far the most computationally efficient of the approaches described
above. Because it doesn’t require simulation or repeated sampling, it will have the
quickest runtime. The remaining methods do not differ greatly from one another in their
computational efficiency. Finally, the delta method is also the best approach in terms of
consistency across multiple applications. Since it does not rely on empirical sampling,
the delta method will always yield the same standard error when applied to the same
estimator and data. The remaining three methods, on the other hand, will in general
produce slightly different standard errors depending on where the random number
generator in the statistical software is set.

Since all the approaches provide similar standard error estimates, perhaps a prudent
tactic is to go with the simplest approach that provides the least room for error or
confusion. We recommend using the Monte Carlo approach for three main reasons. First,
the Monte Carlo approach requires very little in the way of complicated computations
and makes only a very minimal additional assumption compared to the other methods.
The delta method assumes that the death rate or death probability estimators are
approximately normal, which is an excellent assumption. The Monte Carlo and bootstrap
methods both make assumptions about the distribution for the data-generating process
(that is, a binomial or Poisson distribution). The specific Monte Carlo approach outlined
in this section additionally assumes that the age-specific death rates are approximately
normal, which is in general a very good assumption so long as the number of deaths is
around five or more.
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Table 2: Comparison of methods for computing standard errors of
demographic estimators
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The second advantage to the Monte Carlo approach is that it can be consistently
applied across multiple types of demographic data. One can assume a normal distribution
and apply the Monte Carlo approach to vital statistics samples, as shown above, or to
estimates from an event history analysis (survival analysis) applied to survey data.
Applying the delta method to event history analysis estimates requires replacing the
sample variance terms for 𝑝𝑛 𝑥 and 𝑚∞ 85 in Equations (1) and (2) with estimated sample
variances provided by the statistical software used to conduct the event history analysis.
Applying the nonparametric bootstrap approach to event history analysis can become
very complicated when one uses highly complex surveys, since the sampling
methodology would need to be empirically replicated in the bootstrap analysis.

The third advantage of the Monte Carlo approach follows from the first two: One
can compute Monte Carlo standard errors for estimates even without access to the
underlying data used to produce those estimates. So long as the researcher has the rate
(or probability) estimates and the standard errors for those rates (probabilities), they can
use the Monte Carlo approach to construct confidence intervals even for estimators that
are very complex functions of the rates or probabilities, such as Arriaga’s decomposition.
While researchers typically do have access to the underlying data, the real benefit here
arises from the way demographers typically conduct their analyses. They often start by
estimating age- and category-specific rates or probabilities. At a later stage, they use those
rates to compute a decomposition or other measure. In the first stage of this analysis, the
researcher has already estimated the rates and the standard errors for those rates. For any
subsequent calculations that require these rates as inputs, the researcher can simply use
the rate standard errors in combination with Monte Carlo to produce the standard error
for subsequent estimates of decompositions, etc. They do not need to run the entire
analysis again. This is especially helpful when one is using event history analysis applied
to large survey datasets to compute rates, which can be very computationally intensive.
We thus recommend using the Monte Carlo approach whenever the researcher has a
sufficient number of deaths (greater than five per age group) in the sample. When there
are fewer than five deaths in some of the age groups, none of the methods described in
this article (or anywhere else) will yield sensible standard errors, so the researcher should
pick a method and explain that readers should take the estimates with a grain of salt, since
the number of deaths is relatively low in a particular age group. The one exception to this
advice is if one is writing a general purpose program to compute standard errors that will
potentially be applied many times for a given estimator. For example, if one were to
program an R package that computes a specific decomposition, it might be more sensible
to simply hardcode the delta method approach into the package rather than require users
to run a bootstrap or Monte Carlo analysis every time they use the decomposition
function. (See the supplementary materials for sample R code for precisely this purpose.)
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5. Extensions to other demographic estimators

The methods described above can be used for more general applications, including
ascertaining standard errors for other very complex demographic estimators. The
simplest extension is for approximating the standard error for Arriaga’s decomposition
applied to causes of death. A cause of death decomposition uses age-cause-specific
mortality rates. Arriaga’s cause of death decomposition is

Δ𝑛 𝑥
𝑖 = Δ𝑛 𝑥 ⋅

𝑚𝑛 𝑥
𝑖 (2019) − 𝑚𝑛 𝑥

𝑖 (1990)
𝑚𝑛 𝑥(2019) − 𝑚𝑛 𝑥(1990),

where 𝑖 indicates cause of death 𝑖, so that 𝑚𝑛 𝑥
𝑖 = 𝐷𝑛 𝑥

𝑖/ 𝑁𝑛 𝑥 and the Δ𝑛 𝑥
𝑖  values sum across

𝑖 to Δ𝑛 𝑥. We can use the Monte Carlo approach to compute standard errors for the cause
of death decomposition. One can assume that age-cause-specific deaths ( 𝐷𝑛 𝑥

𝑖 ) are
Poisson distributed and proceed just as described above by randomly drawing age-cause-
specific death rates and computing the corresponding cause decomposition 1,000 times.
The analysis would draw 1,000 random 𝑚𝑛 𝑥

𝑖  values from a normal distribution with mean
𝑚𝑛 𝑥
𝑖  and variance 𝑚𝑛 𝑥

𝑖 / 𝑁𝑛 𝑥 for each age-cause group and then compute the cause of
death decomposition for each of the 1,000 sets of age-cause-specific rates. The standard
deviation of the 1,000 simulated Δ𝑛 𝑥

𝑖  values is the standard error for the cause of death
decomposition value for cause 𝑖 at ages 𝑥 to 𝑥 + 𝑛.

The general algorithm for computing Monte Carlo standard errors for any rate-based
demographic estimator is given below:

(1) Assume that the events process (age/cause/duration-specific deaths, births,
marriages, migrations, divorces, etc.) follows a Poisson distribution.

(2) Compute the event rates (death rates, birth rates, etc.).
(3) Simulate new sets of age- or duration-specific event rates by drawing random rates

from a normal distribution with mean equal to the observed rate and variance equal
to the observed rate divided by the number of person-years of exposure.6 If the rates
are estimated from complex survey data, let the variance equal the squared standard
error of the estimated rate provided by the statistical software.

(4) For each set of simulated duration- or age-specific rates, compute the estimator of
interest (e.g., a decomposition, an age-standardized rate, a tempo-adjusted value,
the number of person-years lost). Repeat steps three and four 1,000 times.

6 With annual data, this is typically the mid-year population. With five-year data (e.g., deaths in 2000‒2004),
this would typically be the mid-period population multiplied by five or the sum of the annual mid-year
populations within the five-year time window.
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(5) Record each simulated value of the estimator. The 2.5th percentile and 97.5th

percentile of these values represent the lower and upper bounds of the 95%
confidence interval for the estimator. The standard deviation of the simulated values
is the standard error.

6. Conclusions

Standard errors or other estimates of statistical uncertainty are important components of
demographic analyses when one is using sample data. This article describes four distinct
methods for computing standard errors for complex, rate-based demographic estimators
while also warning that standard errors can at times be inappropriate or misleading when
used in demographic studies. We suggest that researchers use the Monte Carlo approach
described above to quantify uncertainty when necessary.
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