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Formal Relationship

How lifespan and life years lost equate to unity

Annette Baudisch1

José Manuel Aburto2

Abstract

BACKGROUND
Life expectancy at birth (e0), life years lost at death (e†), and lifetable entropy (H) are
key indicators that capture average lifespan and lifespan variation. Expressions and re-
lationships among these summary measures form the basis to analytically derive a range
of formal demographic relationships, that build on each other and together help create
new insights. Even though many elegant relationships are known, new ones are still to be
discovered.

RESULTS
The sum of life expectancy and life years lost at death, scaled by the level and rate param-
eters a and b of the Gompertz mortality model, equals one. This plain relationship has
mathematical beauty and connects key demographic measures. It directly implies further
relationships, and allows connecting existing ones. It can be interpreted as a pace–shape
decomposition of lifespan.

CONTRIBUTION
We contribute a useful relationship to complement analytical tools for studying life ex-
pectancy and lifespan variation. It can reveal macro-level regularities that may aid de-
velopment of novel forecasting methods in the future. It could also support more com-
parative research across species by quantifying the relative impact of the environment on
species’ life histories. We also propose the ratio a/b as a potential metric to signal major
trend changes in mortality improvements.
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1. Relationship

Life expectancy at birth (e0) is a summary measure of mortality that expresses the aver-
age number of years a newborn is expected to live assuming that current conditions will
prevail over time from a period perspective (Preston, Heuveline, and Guillot 2001). From
a cohort perspective it captures the average lifespan of a generation. It is defined as

(1) e0 =

∫ ω

0

ℓ(x) dx,

where ℓ(x) is the lifetable survival function at age x and ω is the highest age observed.
Life disparity (e†) is a complementary measure that summarizes the average life

years lost at the time of death (Goldman and Lord 1986; Hakkert 1987; Vaupel 1986). It
indicates how strongly people differ in their ages at death and is defined as (Vaupel and
Canudas-Romo 2003)

(2) e† = −
∫ ω

0

ℓ(x) ln ℓ(x) dx.

It holds that e0, e† ≥ 0 for all ages and for all survival patterns.
The quotient of lifespan disparity (2) and life expectancy (1) is a dimensionless

indicator of relative variation in the length of life known as the lifetable entropy (H)
(Leser 1955; Demetrius 1974; Keyfitz 1977).

Life expectancy results from the cumulative experience of the risk of death over
age, as captured by the age pattern of mortality. Although mortality over age depends on
a multitude of interacting causes both within and outside the body, theory proposed by
Gompertz suggests that mortality over adult ages is well described by a simple exponen-
tial pattern (Gompertz 1825). This Gompertz mortality model is given by

µ(x) = aebx.

Parameter a > 0 specifies the initial level of mortality µ(0) at age zero. Parameter b > 0
captures the rate at which the force of mortality increases over age x ≥ 0, typically
referred to as the rate of aging.3

The exponential model by Gompertz is generally known to capture not just the pat-
tern of mortality between ages 30 and 90 in human populations but also adult mortal-

3 Parameter b can be equal to or even smaller than zero for some species other than mammals (Reinke et al.
2022; da Silva et al. 2022; Baudisch Forthcoming)
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ity patterns across mammals (Promislow 1991) and many other species reasonably well
(Finch, Pike, and Witten 1990). And although other parametric mortality models, such as
the Gompertz Makeham model (Makeham 1860) or the Gamma-Gompertz model (Man-
ton, Stallard, and Vaupel 1986), are known to provide a better fit to the human adult mor-
tality pattern, an exponential increase is a central component of those models. Hence, it
appears to capture something fundamental about the underlying aging process.

Here we show that for the case of Gompertz mortality, life expectancy at birth (1)
and life disparity (2) are connected via the plain relationship

(3) a e0 + b e† = 1.

Lifespan and life years lost, scaled by the level of mortality and the rate of aging, sum to
unity. This simple connection between lifespan and life years lost at death was unknown,
yet it is not new. This relationship is a special case of a previously derived formulation
for the entropy of the Gompertz-Makeham model as a function of its model parameters,
life expectancy, and the crude death rate (Wrycza 2014).

2. Proof

Wrycza (2014) starts his proof by deriving the cumulative hazard H(x) for the case of
the Gompertz-Makeham mortality model. Although quite similar, here we provide an
instructive alternative proof with a different starting point.

Life expectancy (1) and life disparity (2) sum to

(4) e0 + e† =

∫ ω

0

ℓ(x) dx −
∫ ω

0

ℓ(x) ln ℓ(x) dx .

With survival ℓ(x) relating to the underlying cumulative hazard function H(x) until age
x via ℓ(x) = exp[−H(x)], Equation (4) changes to

(5) e0 + e† =

∫ ω

0

ℓ(x) dx +

∫ ω

0

ℓ(x)H(x) dx .
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The cumulative hazard from age 0 (birth or some other chosen initial age) to age x is
defined as

H(x) =

∫ x

0

µ(a) da .

For a Gompertz mortality pattern, the cumulative hazard integrates an exponential func-
tion. Hence, it holds that

H(x) =
a

b
(ebx − 1) =

µ(x)

b
− a

b
,

which is a special case of Wryzca’s derivation for c = 0. Together with (1), this simplifies
Equation (5) to

(6) e0 + e† = e0 +
1

b

∫ ω

0

ℓ(x)µ(x) dx − a

b

∫ ω

0

ℓ(x) dx .

Since the product ℓ(x)µ(x) gives the distribution function of deaths, d(x), and its sum
over age is one,

∫ ω

0
d(x)dx = 1, Equation (6) reduces to

(7) e† =
1

b
− a

b
e0 .

Multiplying by b and adding a e0 proves equality (3).

3. Related results

Related relationships. Wrycza and Baudisch (2012) show that

(8)
de0
da

= −e†

a

and

(9)
de0
db

=
1

b
(e† − e0) ,

646 http://www.demographic-research.org

http://www.demographic-research.org


Demographic Research: Volume 50, Article 24

in line with equations (2) and (3) of Wrycza (2014) for c = 0. These relationships imply
that life expectancy declines as parameters a or b increase. This is true both for positive
or negative aging rates, as for b > 0 it holds that e† < e0, and for b < 0 it holds that
e† > e0.

Similar derivatives can be calculated for e† (derivations in the Appendix) based on
(7), a reshuffled version of (3), which gives

(10)
de†

da
=

de0
db

and

(11)
de†

db
=

a

b

(
de0
da

− de0
db

)
.

Elegant relationships also hold for the relative changes in life expectancy and life-
span disparity with respect to the mortality parameters (shown in the Appendix),

(12) −a
de0
da

e0
− b

de0
db

e0
= 1

and

(13) −a
de†

da

e†
− b

de†

db

e†
= 1 .

These relationships capture how relative changes of life expectancy and lifespan
disparity with respect to a and b weigh the contributions of these parameters to the total
change. They are elegant because of their symmetry within and among each other and
with Equation (3). That these relationships sum to one is useful because this can be
interpreted as a weighting function that reveals the comparative importance of the level
of mortality and the change in mortality over age in driving life expectancy and lifespan
disparity. The negative sign can be understood by noting that life expectancy declines
with increasing level and rate parameters.

Another way of using these equations is to express life expectancy and lifespan
disparity in terms of changes in these variables themselves, but not including the other.
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Mildly reshuffling the two above expressions gives

(14) e0 = −
(
a
de0
da

+ b
de0
db

)
and

(15) e† = −
(
a
de†

da
+ b

de†

db

)
.

Different to the relationships above, here life expectancy depends only on sensitivities of
life expectancy but not on the sensitivities of lifespan disparity. Similarly, life disparity
depends only on sensitivities of life disparity but not on the sensitivities of life expectancy.
Such separation can be helpful in formal derivations.

Relationships for the lifetable entropy H = e†/e0 as the ratio of life expectancy and
life disparity follow accordingly. Dividing the reshuffled version of our basic relationship
(7) by e0 yields

(16) H =
1

b

(
1

e0
− a

)
,

an expression for lifetable entropy as an explicit function of the Gompertz parameters and
life expectancy. This is again a special case of Wrycza (2014), Equation (1).

This expression can be used to derive changes in lifetable entropy with respect to
parameters a and b (see Appendix) as

(17)
dH
da

=
1

b

(
H
ae0

− 1

)
and

(18)
dH
db

= − a

b2

(
H
ae0

− 1

)
,

which implies that

(19)
dH
db

= −a

b

dH
da

.
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Multiplying this equation by b reveals a relationship among the sensitivities of the
lifetable entropy. If mortality follows a Gompertz pattern, then the absolute change in
entropy with respect to the level of mortality equals the absolute change with respect
to the rate of change in mortality, respectively scaled by level and rate of mortality. It
follows that the sum of absolute change in the lifetable entropy weighted respectively by
level and rate parameter of Gompertz mortality equals zero:

(20) a
dH
da

+ b
dH
db

= 0 .

A similar observation is true for relative changes of entropy with respect to mortality
parameters, where

(21) a
dH
da

H
+ b

dH
db

H
= 0 .

These equations have a symmetry that is similar to relationships (3), (12), and (13). Dif-
ferent from the previous equations, however, the relationships here sum to zero. This
is useful because it can be interpreted as a budget constraint between the level and rate
parameter of mortality, such that any gains or losses of change in one must be balanced
by gains or losses in the other.

Alternative formulations. For formal analysis, it can help to express sensitivities
of life expectancy as a function of life expectancy alone, which holds analogously for
lifespan disparity and the lifetable entropy. Using the fundamental relationship (3) by
expressing e† as a function of e0, as in (7), or the other way around as appropriate, and
inserting respectively for e0 or e† into the original sensitivity Equations (8) and (10) yields
sets of alternative, linear relationships.

Sensitivities with respect to the level of mortality follow the positive linear relation-
ships

(22)
de0
da

= − 1

ab
+

1

b
e0

and

(23)
de†

da
= − 1

ab
+

a+ b

ab
e†,
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with negative intercepts given by the inverse of the product of level and rate parameter a
and b.

Sensitivities with respect to the rate of mortality follow negative linear relationships

(24)
de0
db

=
1

b
− a+ b

b
e0

and

(25)
de†

db
=

1

b2
− a+ 2b

b2
e†,

with positive intercepts given by inverse functions of the rate parameter b.
Analogously, sensitivities of entropy can be found. They turn out to follow the

quadratic relationships

(26)
dH
da

=
1

a

(
H2 +

a

b
H − a

b

)
and

(27)
dH
db

= −1

b

(
H2 +

a

b
H − a

b

)
,

where change in a and b are given by the same expressions, just differently scaled by the
inverse of the respective parameter with opposite signs, in agreement with relationship
(19). The ratio a/b characterizes the quadratic equation of entropy and captures the rela-
tive magnitude of the level and rate parameter of mortality. Its interpretation is discussed
below.

Connection to previous results. The main relationship derived in (3) links the
level and rate parameters of the Gompertz mortality model with life expectancy and life
disparity. It readily connects with previous results of mathematical demography.

Vaupel (1986) shows that for Gompertz mortality, the lifetable entropy H = e†/e0
can be approximated by H ≈ 1/be0. Similarly, our relationship implies that for popula-
tions with negligible baseline levels of mortality, a ≈ 0, life disparity is the reciprocal of
the rate of aging, b, as e† ≈ 1/b.

Conversely, for populations with negligible increase in mortality over age, b ≈ 0,
the relationship converges to the case of constant mortality, where life expectancy equals
the inverse of the hazard, here e0 ≈ 1/a.
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Equation (7) allows expressing e† as a linear function of e0 with intercept 1/b and
slope −a/b. This is a special case of the more general case of the Gompertz–Makeham
mortality model (Wrycza 2014).

Dividing the relationship in Equation (3) by e0 leads to the result that a + bH =
1/e0, or equivalently

(28) µ̄ = a + bH .

Equation (28) is similar to Equation (1) in Wrycza (2014) for c = 0. It decomposes the
average, or crude, death rate in a stationary population µ̄ into the sum of the baseline
mortality level and the lifetable entropy weighted by the rate of aging.

4. Applications

The relationships proposed in this paper contribute tools to explore and compare mortality
patterns across populations. This applies especially also for analysis of human and non-
human populations over time and across different environments within the pace–shape
framework (Baudisch 2011).

Motivated by theoretical insights from evolutionary demographic models on how
optimal resource allocation determines patterns of birth and death over age (Baudisch
2008), this framework distinguishes how long organisms live (the pace of mortality) from
how mortality changes over age (the shape of mortality) to characterize aging (Baudisch
2011). The pace dimension captures lifespan and can be measured by life expectancy
(Wrycza and Baudisch 2014). The shape dimension captures how relatively strongly the
age pattern of mortality increases or decreases over (adult) ages, including the possibility
that mortality remains constant with age. Measures of shape turn out to be equivalent to
prominent measures of relative spread – for example, the Gini coefficient, the coefficient
of variation, and lifetable entropy (Wrycza, Missov, and Baudisch 2015).

Within the pace–shape framework, the relationships presented in this paper are par-
ticularly useful. They can aid analysis and are intuitively appealing and interpretable.
Parameter a determines the level of mortality, and hence the pace of mortality. Parame-
ter b determines how fast mortality changes with age, and hence relates to the shape of
mortality. In (3), parameter a scales life expectancy e0, a measure of pace, while the rate
parameter b scales life disparity e†, a key component of the lifetable entropy H = e†/e0,
a measure of shape.4

4 It is important to note that the rate of mortality b in itself is not a shape measure. As a rate, it depends on units
of time and thereby includes the signal of pace. Thus, dividing e† by e0 to get lifetable entropy as a measure of
shape can be interpreted as removing the signal of pace from the processes that determine the patterns of death.
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Pace- versus shape-driven populations. From a pace versus shape perspective,
relationship (3) decomposes the impact of pace versus shape on lifespan. The first term
captures the relative importance of the level of mortality (pace), and the second term
captures the relative importance of how mortality changes with age (shape), which both
sum to one. As above, similar interpretations hold for the other relationships, such as the
weighting functions (3), (12), and (13) and the budget constraints (20) and (21), which
constrain the dynamics of mortality over time in pace–shape space (with pace on the
x-axis and shape on the y-axis).

A large pace component in (3) implies that life expectancy mainly hinges on en-
vironmental conditions and less so on mortality differences across the age range. By
contrast, a large shape component implies that life expectancy mainly results from aging
processes, whereas environmental conditions are relatively less important for how long
individuals live on average.

Figure 1 illustrates these dynamics fitting Gompertz models between ages 35 and
90 by sex to 15 countries for which data is available at least from 1922 from the Hu-
man Mortality Database (HMD 2023; Barbieri et al. 2015). These included Australia,
Switzerland, Denmark, Finland, Iceland, Sweden, Norway, Netherlands, Italy, England
and Wales, Northern Ireland, Scotland, France, Canada, and Spain. Sensitivity analyses
were carried out by fitting the models to ages between 30 and 90, and results were very
similar. To fit the models, we used the Gompertz specification in the MortalityLaws pack-
age in R (Pascariu 2019), from which we retrieved the Gompertz parameters. To calculate
life expectancy from these parameters, we used the formula given by Missov and Lenart
(2013) and the formulation by Wrycza (2014).5

5 Replication materials are available here https://github.com/CPop-SDU/Baudisch-Aburto 2023
Demographic Research.
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Figure 1: Decomposition into pace (left) and shape (right) contribution to
determine lifespan and lifespan variation for selected countries
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Figure 1 reveals that back to the 18th century, for human populations it was never just
the overall level of environmental mortality that determined how long people lived and
how much they differed in their ages at death. The fact that people grow old at a certain
rate always influenced life expectancy and its disparity to at least about 75%. Nowadays,
the level of mortality is so low that more than 95% of our survival prospects hinge on the
rate of aging. Notably, over historical time, there are some countries where conditions
have been so challenging that the overall level of death has played a close to or equal role
as the age differences in mortality in determining lifespan.

It would be interesting to compare these values to other species in changing envi-
ronments. We hypothesize that in nature for nonhuman populations, the pace component
would be considerably larger than the shape component, in contrast to what we observe
for humans. We propose that our relationship could be used to quantify the relative impact
of the environment on species’ life histories in a comparative framework.

Another way of capturing the relative role of level (pace) and change (shape) in mor-
tality is by the ratio of a/b. Pace-driven populations are characterized by relatively high a
and relatively low b values; shape-driven populations are characterized by relatively high
b and relatively low a values. The ratio a/b scales sensitivities of entropy (see (26) and
(27)) and its magnitude can be interpreted as the relative importance of pace versus shape
in a population.

Although there was little consistent change in a/b in the 19th century (Appendix,
Figure A-1), Figure 2 reveals two separate trends over the first and the second half of the
20th century. We observe a steep decline until 1950 followed by a much slower decline
thereafter. The shift in dynamics around 1950 is consistent with previous findings on
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the rectangularization and shift of the survival curve (Ebeling, Rau, and Baudisch 2018;
Cheung et al. 2005; Canudas-Romo 2008; Bergeron-Boucher, Ebeling, and Canudas-
Romo 2015; Bongaarts 2005; Kannisto 1996). The regular change in a/b over time,
together with the kink in the trend, suggests that this ratio could be used to signal further
trend changes in the future.

Figure 2: The ratio a/b for selected countries, zoomed into values below 0.1,
which are predominantly observed after 1900. See Appendix for the
complete range
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Search for novel macro-level regularities. Demographers aim to describe, model,
and predict change in mortality and life expectancy in the past, present, and future.
Macro-level summary measures, such as e0, e†, or H, strongly aid such analysis. Remark-
able regularities have been revealed within pace–shape space for human and primate pop-
ulations on how longevity emerged over time (Aburto et al. 2020; Colchero et al. 2021,
2016). As life expectancy increases, life disparity tends to decline, although exceptions
to this relationship exist (Aburto and van Raalte 2018; Aburto et al. 2020). Regulari-
ties of change are important information for developing forecasting methods (Pascariu,
Canudas-Romo, and Vaupel 2018; Bergeron-Boucher et al. 2018; Torri and Vaupel 2012).
The relationships presented here, in particular those for e0 and H as pace and shape mea-
sures respectively, can become instrumental for discovering new regularities.

Aburto et al. (2020) and Colchero et al. (2021, 2016) find strong regularities in pace–
shape space – that is, for trends in life expectancy versus (scaled) lifetable entropy. In
tight connection, Figure 3 shows the sensitivity of life expectancy and lifetable entropy
to changes in the baseline level of mortality a. Similar to the linear relationships discov-
ered in pace–shape space, the sensitivities of pace and shape with respect to the level of
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mortality also follow a tight and almost linear trend. Notably, the analogous sensitivities
of pace and shape with respect to the rate of aging (Figure A-2, Appendix) do not follow
a similarly tight relationship.

Figure 3: Derivative of e0 with respect to a (calculated based on Equation 8) by
derivative of H with respect to a (calculated based on Equation 17)
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Finding a strong regularity for a but not for b is consistent with results by Colchero
et al. (2021). They demonstrate that their tight relationship between life-expectancy and
lifetable entropy results from changes in a but not in b. Together with their finding, the
relationship in Figure 3 may further aid understanding of changes in the lifetable entropy
given changes in baseline mortality and their effect on life expectancy.

We emphasize that the results in the figures presented here do not include the effect
of juvenile mortality and do not account for death beyond age 90. We also do not neces-
sarily capture mortality by the best fitting model at every time point, and our period-based
analysis is limited by the corresponding assumption of a hypothetical cohort, but we ar-
gue that relying on a Gompertz pattern fitted to real-world data provides a reasonable
view of the ongoing dynamics that can lead to helpful general insights.
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5. Conclusion

We conclude that our central relationship and those derived from it hold promising po-
tential for discovering and modeling macro-level regularities in lifespan and lifespan dis-
parity, which may aid development of novel forecasting methods. It could further aid
comparative research across species to quantify the relative impact of the environment
on species’ life histories. Last but not least, the analysis presented here exemplifies the
beauty and power of formal demography to capture the essence of mortality change – or
in Jim Vaupel’s words – “the champagne of demography” and “the stories that angels tell
each other on Sundays.” We dedicate this piece to him.
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A. Appendix

A.1 Changes in life disparity

A.1.1 Changes in life disparity with respect to a

Taking the derivative of Equation (7) with respect to a gives

(29)
de†

da
= 0 − e0

b
− a

b

de0
da

.

Inserting (8) gives

(30)
de†

da
= −e0

b
+

a

b

e†

a
,

which simplifies to

(31)
de†

da
=

1

b

(
e† − e0

)
and proves Equation (10).

A.1.2 Changes in life disparity with respect to b

Taking the derivative of equation (7) with respect to b gives

(32)
de†

db
= − 1

b2
+

ae0
b2

− a

b

de0
db

Taking out the inverse rate of aging such that

(33)
de†

db
=

1

b

(
−1

b
(1− ae0)− a

de0
db

)

and setting 1 = e0/e0 within the internal brackets, the first term changes into

(34)
de†

db
=

1

b

(
−e0

b

(
1

e0
− a

)
− a

de0
db

)
.
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Replacing for equation (16) in the internal brackets

(35)
de†

db
=

1

b

(
−e0H− a

de0
db

)
.

and remembering that entropy H is the ratio of e†/e0, this simplifies to

(36)
de†

db
=

1

b

(
−e† − de0

db

)
.

Noting (8) and taking out a finally leads to

(37)
de†

db
=

a

b

(
de0
da

− de0
db

)
which poves (11).

A.2 Changes in entropy

Taking the derivative of entropy (16) with respect to a

(38)
dH
da

=
1

b

(
− 1

e20

de0
da

− 1

)
,

and inserting equation (9) for the derivative

(39)
dH
da

=
1

b

(
1

e20

e†

a
− 1

)
gives

dH
da

=
1

b

(
H
ae0

− 1

)
.(40)
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Taking the derivative of entropy (16) with respect to b gives

(41)
dH
db

= − 1

b2

(
1

e0
− a

)
− 1

b

1

e20

de0
db

.

This can further be rearranged into

(42)
dH
db

= − 1

b2e0
+

a

b2
− 1

b2e20
(e† − e0) ,

and by moving the second term to the end and accounting for (16) into

(43)
dH
db

= − 1

b2e0
(1 + (H− 1)) +

a

b2
,

which reduces to

(44)
dH
db

=
1

b2

(
a− H

e0

)
.

A.3 Relative changes

Multiplying (8) by a/e0 and (9) by b/e0 leads respectively to the scaled relative changes

(45)
a

e0

de0
da

= − a

e0

e†

a
= −H

and

(46)
b

e0

de0
db

=
b

e0

1

b
(e† − e0) = H− 1.

Summing both equations proves Equation (12).
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Similarly, multiplying (10) by a/e† and (11) by b/e† leads respectively to the scaled
relative changes

(47)
a

e†
de†

da
=

a

e†
1

b
(e† − e0) =

a

b

(
1 − 1

H

)
and

b

e†
de†

db
=

b

e†
a

b

(
de0
da

− de0
db

)
=

b

e†
a

b

(
−e†

a
− 1

b
(e† − e0)

)
=(48)

−1 − a

b

(
1 − 1

H

)
.

Summing both equations proves Equation (13).
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A.4 Further figures

Figure A-1: The ratio a/b for selected countries before 1900, full range of
observed values
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Figure A-2: Derivative of e0 with respect to b by derivative of H with respect to b
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