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Abstract

BACKGROUND
For commonly used mortality models, the existing estimates change with the recalibration
of new data. This issue is also known as the lack of the new-data-invariant property.

OBJECTIVE
We adapt the Lee–Carter, age-period-cohort, Renshaw–Haberman, and Li–Lee models to
achieve the new-data-invariant property. The resulting fitted or forecast mortality indexes
are tractable and comparable when more recent data are modelled.

METHODS
Illustrated by mortality rates of the England and Wales populations, we explore the trade-
off between goodness of fit and the new-data-invariant property. Using the adapted model
and vector autoregressive framework, we explore the interdependencies of subregional
mortality dynamics in the United Kingdom.

RESULTS
To compare the goodness of fit, we consider the four adapted models and the Cairns–
Blake–Dowd model, which are invariant to new data without adaptation. The Renshaw–
Haberman model is demonstrated to be the best-performing model. The in-sample and

1 Department of Actuarial Studies and Business Analytics, Macquarie Business School, Macquarie University,
Sydney, Australia.
2 Department of Actuarial Studies and Business Analytics, Macquarie Business School, Macquarie University,
Syndey, Australia.
3 Department of Actuarial Studies and Business Analytics, Macquarie Business School, Macquarie University,
Sydney, Australia. Email: colin.zhang@mq.edu.au.
4 Department of Actuarial Studies and Business Analytics, Macquarie Business School, Macquarie University,
Sydney, Australia.

http://www.demographic-research.org 797

mailto:colin.zhang@mq.edu.au
http://www.demographic-research.org


Mok et al.: Mortality modelling with arrival of additional year of mortality data: Calibration and forecasting

backtesting results show that the proposed adaptation introduces only a small cost of
reduced model fitting, which is robust across sensitivity analyses.

CONCLUSIONS
The adapted Renshaw–Haberman model is recommended to construct tractable mortality
indexes.

CONTRIBUTION
From a methodological perspective, we adopt popular models to achieve a desirable new-
data-invariant property. Our empirical results suggest that the adapted model can provide
reliable forecast of mortality rates for use in demographic research.

1. Introduction

The seminal work of Vaupel, Villavicencio, and Bergeron-Boucher (2021) finds that, for
the countries doing the best, life expectancy has increased by roughly 2.5 years per decade
since 1840. Such a continuously increasing trend has a significant effect on various as-
pects of our society, such as healthcare systems, pension plans, and the insurance industry.
Vaupel, Villavicencio, and Bergeron-Boucher (2021) also point out the uncertainty of fu-
ture life expectancy, which may worsen the aging and longevity risks that many countries
are already facing. Influential demographic research has been conducted to combat un-
certainty and risks. For instance, Barbi et al. (2018) discuss the existence of extreme-age
mortality plateaus, which helps to understand the biological limit of the human lifespan.
Thinggaard et al. (2020) examine the survival status of the oldest ages and conclude that
lifespan and health increase among these populations.

The accuracy of forecasting future life expectancy is attributed to the accuracy of
projected future mortality rates. Such rates are usually obtained after calibrating histor-
ical experiences through the application of mortality models. In the mortality literature,
the most celebrated model is proposed in the seminal work of Lee and Carter (1992). In
addition, the Lee–Carter (LC) model assumes that the future mortality trend is a continu-
ation of the past, as captured by the estimated time-varying parameters. Over the past few
decades, numerous studies have focused on the extension of the LC model. As reviewed
by Booth and Tickle (2008), some earlier extensions include adjustment in the temporal
factor by matching life expectancy (Lee and Miller 2001), determining an optimum fit-
ting period (Booth, Maindonald, and Smith 2002), incorporating more sophisticated time
series specification in the forecasting of the temporal factor (Renshaw and Haberman
2003), and adopting a Poisson log-bilinear model in the estimation (Brouhns, Denuit,
and Vermunt 2002). More recent extensions have attempted to simplify jump-off rates
(Bergeron-Boucher et al. 2017), adopt a machine-learning method for temporal factor
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forecasting (Marino, Levantesi, and Nigri 2023), and address the coherence issue within
a multi-population framework (Kjærgaard et al. 2020; for a more detailed review of such
recent developments, see Basellini, Camarda, and Booth 2023).

Under the LC framework, forecasting of the temporal factor is performed via a usual
time series model, which incorporates the available mortality experience to date. The
mortality projection is then largely determined by this forecasted temporal factor. Other
factor-based mortality models employ a similar approach to obtain forecasts and pro-
jections. The accuracy of forecasting relies on the appropriate modelling of relevant
temporal factors. Moreover, fitted/forecast temporal factors may be employed to con-
struct model-based mortality indexes (Chan, Li, and Li 2014). Such indexes are useful
for demonstrating the overall evolution of the mortality experience of the investigated
population over time. Despite its popularity, as pointed out by Chan, Li, and Li (2014),
the LC model does not have the so-called new-data-invariant property. Specifically, the
produced mortality indexes of historical periods are not invariant when the sample period
is extended to include novel mortality rates. This property is desirable; otherwise, the as-
sociated mortality indexes will be intractable, owing to the potential variety of historical
values.

This study revisits the new-data-invariant property for a range of popular factor-
based mortality models. As stated by Chan, Li, and Li (2014), the Cairns–Blake–Dowd
(CBD) model (Cairns, Blake, and Dowd 2006) is the only factor model (without modifi-
cation) that is invariant to new data. Tan et al. (2014) attempt to adapt various mortality
models to achieve a new-data-invariant property. However, these adapted models can
accommodate only static samples and are unable to accommodate novel mortality data
that are received sequentially. Thus, this inability hinders the examined models from dy-
namically calibrating new data items to monitor and update new-data-invariant mortality
indexes.

The first objective of this study is to revisit the adaptations of popular mortality
models. The adapted specifications are expected to produce new-data-invariant mortality
indexes when models are recalibrated with sequential arrival of new data. In addition
to the LC model, we consider the age-period-cohort (APC) model (Cairns et al. 2009),
the Renshaw–Haberman (RH) model (Renshaw and Haberman 2006), and augmented
common factor model or Li–Lee (LL) model (Li and Lee 2005). Adaptations of these
models are examined by preserving parameters that are already estimated from the base
sample period (i.e., excluding new data) with the aim of minimising the number of needed
identifiability constraints. Two different strategies are proposed, with different levels of
needed restrictions on parameters.

According to Tan et al. (2014), the cost of such adaptations is reduced by model
fitting compared with non-adapted models. The second objective of this study, therefore,
is to explore the adaptation that best balances the trade-off between goodness of fit and
the new-data-invariant property. Analysing the male populations in English and Wales
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from 1951 to 2016 for the 60 to 89 age group, we find that the strategy of fixing historical
time-varying parameters is an optimal adaptation. Specifically, for the LC, APC, RH,
and LL models, such adaptation introduces a minimal level of reduction in in-sample
model fitting. Further, in contrast to the resulting goodness of fit of models that are
invariant to new data, we find that the adapted RH model outperforms the LC, APC, and
LL counterparts, as well as the original CBD model. This indicates that the adapted RH
model may be preferable for demographic research. We then compare systematically
the adapted and original RH models. The minimal level of reduced goodness of fit or
forecasting accuracy for the adapted model is verified via backtesting and a range of
sensitivity analyses. Thus, we conclude that the adapted RH model is an optimal strategy
for balancing the trade-off between model fitting and the new-data-invariant property.

The remainder of this paper is organised as follows: Section 2 explains the new-data-
invariant property and explores adaptations for the LC, APC, RH, and LL models. Section
3 compares the model-fitting performance between the static indexes, as investigated by
Tan et al. (2014) and the dynamic indexes proposed in Section 2. Section 4 presents the
results of the model backtesting and sensitivity analyses. Section 5 concludes.

2. New-data-invariant property and factor-based mortality models

2.1 New-data-invariant property

To facilitate the discussion of the new-data-invariant property, we list the following nota-
tions in Table 1, which will be used throughout the remainder of this paper.

Table 1: List of notations

mx,t =
Dx,t

Ex,t
The central mortality rate at age x in year t

Dx,t Observed number of deaths at age x in year t
Ex,t The matching exposures at age x in year t
qx,t The initial mortality rate at age x in year t
αx The geometric average rate at age x
βx Age-specific loading at age x
κt The temporal factor in year t
ex,t The error at age x in year t
γc The cohort factor, where c = t− x denotes year of birth
na The number of ages covered in the sample age range
x̄ The mean age over the sample age range
Bx The common age-specific loadings at age x for multi-populations modelling
Kt The common temporal factor in year t for multi-populations modelling

mx,t,i The central death rate at age x in year t for population i
αx,i,βx,i,κt,i The population-specific factors for population i
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We explain the new-data-invariant property using the CBD model (also known as M5
model) developed by Cairns, Blake, and Dowd (2006) and deemed the only specification
that achieves this property (Chan, Li, and Li 2014). The CBD model has the following
specifications:

ln(
qx,t

1− qx,t
) = κ

(1)
t + κ

(2)
t (x− x̄). (1)

The new-data-invariant property requires two conditions for the CBD model. The
first assumes a Poisson distribution for the number of deaths, expressed as Dx,t ∼
Poi(Ex,t,mx,t). This assumption is introduced in the literature on stochastic mortal-
ity models by Brouhns, Denuit, and Vermunt (2002) and then by Renshaw and Haberman
(2003). The second condition assumes a constant force of mortality for each integer age
interval to link qx,t and mx,t with mx,t = − ln(1− qx,t). With these two conditions, the
log-likelihood of Equation (1) is then expressed as follows:

x1∑
x=x0

t1∑
t=t0

Dx,t ln(Ex,tmx,t)− Ex,tmx,t − ln(Dx,t!) =

t1∑
t=t0

λ(t), (2)

where [x0,x1] is the sample age range, [t0, t1] is the sample period (presented in a contin-
uous interval), and λ(t) is the contribution to the log-likelihood from data in year t. Chan,
Li, and Li (2014) show that if the likelihood is separable for t ̸= s, including additional
λ(t) for t = t1 + 1, t1 + 2,..., will not change existing estimates for the temporal factors
κ
(1)
t and κ

(2)
t for t = t0, . . . , t1. The reason is that the estimate of κ(i)

t is dependent only
on mx,t, Dx,t and Ex,t with the same t. This occurs because the CBD model does not
have any age-specific or cohort parameters, as demonstrated in Equation (1). Thus, the
CBD model can be implemented using linear instead of bilinear features to estimate un-
known parameters. Further, because the likelihood is unaffected by including new data,
the estimates of parameters will stay unchanged. Therefore, the original CBD model has
a new-data-invariant property.

Unfortunately, this property does not hold for models with age-specific or cohort
coefficients. We take the LC model as an example, the specification of which is described
in Equation (3) with log-likelihood, as displayed in Equation (4).

ln(mx,t) = αx + βxκt + ex,t, (3)

λ(t) =

x1∑
x=x0

Dx,t(αx + βxκt + ln(Ex,t))− Ex,te
αx+βxκt − ln(Dx,t!). (4)
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For t ̸= s, evidently λ(t) and λ(s) share age-specific parameters αx and βx. With
the arrival of new data, the additional contribution λ(t) for t = t1 + 1, . . . will invari-
ably affect the original estimates of αx and βx. Similarly, even without considering the
identifiability constraint, the estimate of temporal factor κt is unlikely to hold, which
may introduce a change in the fitted trend. Consequently, the LC model is not invariant
to the arrival of new data. Further, the identifiability constraint contradicts intuitively
the new-data-invariant property. For the LC model, the identification constraint for κt is∑t1

t=t0
κt = 0. If the new-data-invariant property holds, κt1+1 for a single addition to

the sample must be zero to satisfy the constraint. This is clearly unrealistic and contra-
dicts the assumption that future mortality dynamics will continue to be based on historical
patterns. Similarly, other commonly employed factor models, such as the APC and RH
models, are not invariant to new data.

According to Chan, Li, and Li (2014), the new-data-invariant property is desirable
for constructing mortality indexes. Such indexes are commonly used to evaluate the evo-
lution of the mortality experience for a given population. In addition, the historical index
should not be affected by the inclusion of newly available data, such that the index is
tractable. To realise the new-data-invariant property, Tan et al. (2014) propose modifica-
tions to the identifiability constraints of models, including the LC and APC. However, the
developed adaptations are not appropriate for dynamically arriving data (i.e., yearly mor-
tality rates received sequentially). This is because of the static nature of the adaptation
proposed by Tan et al. (2014). Specifically, the entire data range [t0, t1] is split into two
static periods, [t0, tm] and (tm, t1], where tm is an intermediate time point. Moreover, the
estimation for the second period (tm, t1] is conditioned on pre-estimated parameters over
the first period [t0, tm]. Consequently, dynamically updating the data range (i.e., contin-
uously changing tm and t1) is unlikely to produce invariant estimates. Alternatively, this
study attempts to achieve a new-data-invariant property in a dynamic manner. The data
range is split into multiple subranges, such as [t0, t1], (t1, t2], (t2, t3], where ti (i > 1) is
the sequentially updated time points. Thus, the examined model is recalibrated every year
after the base period [t0, t1], such that the existing estimates of temporal factors remain
unchanged. The details of this adaptation for the four models examined are explained
below.

2.2 Adapted mortality models

In this study, we consider three well-studied single-population mortality models and a
popular multi-population model in the literature, all of which do not possess the new-
data-invariant property in their original specifications: the LC model by Lee and Carter
(1992), APC model by Cairns et al. (2009), RH model by Renshaw and Haberman (2006),
and LL model by Li and Lee (2005). The specifications of these models are briefly out-
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http://www.demographic-research.org


Demographic Research: Volume 50, Article 28

lined in Table 2. In this section, we explain the details of the adaptation of each model
to achieve a new-data-invariant property. In particular, our aim is to simplify the needed
identifiability constraints as much as possible during adaptation. Notably, identifiability
constraints are imposed in the estimation to obtain a unique set of estimated parameters.
Hence, a full re-estimation of the original model with the arrival of additional years of
data would imply a change to historical time-varying parameters, contradictory to the de-
sirable new-data-invariant property. The proposed adaptations to these mortality models
would leave historical time-varying parameters unchanged and totally remove or partially
alleviate the need to rely on identifiability constraints. In all applicable cases, the Poisson
distribution will be used to model the number of deaths, that is Dx,t ∼ Poi(Ex,t,mx,t).
The summary of mathematical description of the different model-specific data-invariance
adjustments is stated in Table 3 to 6.

Table 2: Specifications of examined mortality models

Model 1: The Lee–Carter model

ln (mx,t) = αx + βxκt + ex,t (2 constraints)

Model 2: The age-period-cohort model

ln (mx,t) = αx + n−1
α κt + n−1

α γt−x + ex,t (2 constraints)

Model 3: The Renshaw–Haberman model

ln (mx,t) = αx + β(1)
x κt + β(2)

x γt−x + ex,t (4 constraints)

Model 4: The Li–Lee (or augmented common factor) model

ln (mx,t,i) = αx,i + BxKt + βx,iκt,i + ex,t (6 constraints)

Table 3: Specifications of variants of Model 1

Number of
constraints

Identifiability constraints Preserved parameter with
new arrival of data

Parameter re-estimated
with new arrival of data

1a 2
∑

x βx = 1
∑

t κt = 0 αx, βx,κt

1b 0 [κt0 , ...,κt1 ] αx, βx,κt2

1c 0 [κt0
, ...,κt1

], βx αx,κt2

http://www.demographic-research.org 803
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Table 4: Specifications of variants of Model 2

Number of
constraints

Identifiability con-
straints

Preserved parameter with new
arrival of data

Parameter re-estimated with
new arrival of data

2a 2
∑

t κt = 0∑
t−x γt−x = 0

αx,κt, γt−x

2b 1
∑

t−x γt−x = 0 [κt0
, ...,κt1

] αx,κt2
, γt−x

2c 0 [κt0 , ...,κt1 ], γbase period αx,κt2
, γnew cohort

Note: The non-zero γbase period refers to [γt0−xn+5, ..., γt1−x1−5] since the first and last five cohorts are set
to be 0, where x1 is the youngest age, xn is the oldest age. With the arrival of new data, the first five cohort
[γt0−xn , ..., γt0−xn+4] and the last five cohort [γt2−x1−4, ..., γt2−x1 ] are set to be 0, the new cohort updated
at t2 will be γt2−x1−5 with one year of new arrival of data.

Table 5: Specifications of variants of Model 3

Number of
constraints

Identifiability constraints Preserved parameter with new
arrival of data

Parameter re-estimated
with new arrival of data

3a 4
∑

t κt = 0∑
t−x γt−x = 0∑
x β(1)

x = 1∑
x β(2)

x = 1

αx,κt,

β(1)
x , β(2)

x , γt−x

3b 1
∑

x β(2)
x = 1 αx, [κt0

, ...,κt1
] κt,β

(1)
x , β(2)

x , γt−x

3c 0 αx, [κt0 , ...,κt1 ],
γbase period

κt2 , β
(1)
x , β(2)

x
γnew cohort

Note: The non-zero γbase period refers to [γt0−xn+5, ..., γt1−x1−5] since the first and last five cohorts are set
to be 0, where x1 is the youngest age, xn is the oldest age. With the arrival of new data, the first five cohort
[γt0−xn , ..., γt0−xn+4] and the last five cohort [γt2−x1−4, ..., γt2−x1

] are set to be 0 , the new cohort updated
at t2 will be γt2−x1−5 with one year of new arrival of data.

Table 6: Specifications of variants of Model 4

Number of
constraints

Identifiability constraints Preserved parameter with new
arrival of data

Parameter re-estimated
with new arrival of data

4a 6
∑

x Bx = 1
∑

t Kt = 0∑
x βx,1 = 1∑
t κt,1 = 0∑
x βx,2 = 1∑
t κt,2 = 0

αx,1,αx,2 Bx,Kt

βx,1,κt,1, βx,2,κt,2

4b 0 [Kt0
, ...,Kt1

]
[κt0,1, ...,κt1,1]
[κt0,2, ...,κt1,2]

αx,1,αx,2 Bx,Kt2
βx,1,κt2,1, βx,2,κt2,2

2.2.1 Lee–Carter model

The LC model is one of the most popular mortality models used in demographic research.
In terms of estimation, both the single value decomposition method and the maximum
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likelihood estimation (MLE) method by Brouhns, Denuit, and Vermunt (2002) are com-
monly used. To ensure a unique parameter estimation, two identifiability constraints are
needed:

∑
x β̂x = 1 and

∑
t κ̂t = 0, because (α̂x,

1
c β̂x, cκ̂t) and (α̂x − dβ̂x, β̂x, κ̂t + d)

are two transformed sets of parameters (from (α̂x, β̂x, κ̂t)) that would leave the fitted
mortality rates unchanged in the absence of the identifiability constraints. In the remain-
der of this paper, we consider three cases of the LC model, namely Models 1a, 1b, and
1c, depending on the recalibration strategies. The MLE method is employed to produce
estimates over the base period [t0, t1].

Model 1a is the standard LC model. With the arrival of new data, all parameters
αx, βx, and κt are re-estimated with no additional restrictions other than the two identi-
fiability constraints stated above. The resulting κ̂t then changes each time the model is
recalibrated to include the new data.

Model 1b aims to achieve adaptation while maintaining κ̂t estimated from the sam-
ple of the base period [t0, t1]. With the additional data arrival in the period (t1, t2], the
estimated κ̂t over [t0, t1] is preserved, and we update the estimates of α̂x and β̂x for all
ages and obtain κ̂t2 via the MLE. During the MLE procedure, we discard the identifia-
bility constraints of β̂x and κ̂t. This is because κ̂t is unchanged for t ∈ [t0, t1], and only
one κt needs to be estimated, for t = t2. Thus, it is easy to see that the identifiability
issue no longer applies. Specifically, for t ∈ [t0, t1], we have unknown αx and βx for
ln(mx,t) = αx + βxκ̂t + ex,t, whereas κ̂t is known. Therefore, β’s and κ’s no longer
have a confounding effect on the likelihood. This recalibration process can then continue
for each sequentially updated mortality data period.

Apparently, the β̂x produced in the recalibration of Model 1b does not necessarily
sum up to 1. This is concerning when cross-population comparison is needed, because
the estimated β’s are not ‘standardised.’ To address this issue, Model 1c preserves esti-
mates of both κt and βx obtained over [t0, t1]. Thus, only αx and κt over the new data
period are (re-)estimated. The MLE procedure is performed without the need to apply
any identifiability constraints.

2.2.2 Age-period-cohort model

The APC model proposes including an additional cohort effect in the LC framework.
For identifiability constraints, the two commonly required values are

∑
t κ̂t = 0 and∑

γ̂t−x = 0. Moreover, Cairns et al. (2009) point out that the tilting parameter δ is
needed because adding nαδ((t− t̄)− (x− x̄)) to γt−x, subtracting nαδ(t− t̄) from κt,
and adding δ(x − x̄) to αx will have no effect on the first two constraints. Cairns et al.
(2009) also suggest that the first and last five cohort parameters γ̂t−x can be set to zero
to avoid getting unstable parameter estimates with the lack of mortality data. By doing
so, the additional constraints stated in Cairns et al. (2009) are no longer needed for the
APC model. In contrast hand, Hunt and Villegas (2015) propose an additional constraint
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of
∑

y ŷ − ȳγy
= 0 for y = t − x to speed up the convergence issue (see, for example,

Cairns et al. 2009) with minimal effect on the model fitting for both the APC and RH
models. Finally, similar to the case of the LC, we consider three cases for the new data
recalibration using the APC, namely, Models 2a, 2b, and 2c.

Model 2a is the standard APC model. All parameters αx, κt, and γt−x will be re-
estimated upon the arrival of new data, considering the two identifiability constraints.
Model 2b keeps the κ̂t obtained from the base period [t0, t1] and estimates α̂x, γ̂t−x, and
κ̂t for the new data. In this case, the constraint of

∑
t κ̂t = 0 is no longer needed for

the same reason, as stated in the LC case. However, the constraint of the cohort factor∑
γt−x = 0 is still required. It is possible to have α∗

x = αx− bn−1
a and γ∗

t−x = γt−x+ b
where b is a non-zero constant, such that αx + n−1

a κt + n−1
a γt−x = (αx − bn−1

a ) +
n−1
a κt + n−1

a (γt−x + b) = α∗
x + n−1

a κt + n−1
a γ∗

t−x. That is, identifiability constraint is
needed to obtain unique solutions. Model 2c preserves both the produced κ̂t and γ̂t−x,
and re-estimate αx, as well as associated κt and γt−x for the new data. Because the
cohort parameters over the base period are kept, the constraint

∑
γt−x = 0 is no longer

needed to ensure the uniqueness of the estimation. Therefore, no constraints are required
for Model 2c.

2.2.3 Renshaw–Haberman model

The RH model also considers the cohort effect, and has a more flexible specification than
that of the APC, with age-specific loadings for both the temporal (β(1)

x ) and cohort (β(2)
x )

effects. Altogether, four identifiability constraints are needed:
∑

t κt = 0,
∑

γt−x = 0,∑
x β

(1)
x = 1, and

∑
x β

(2)
x = 1. Similar to the APC counterpart, the first and last five

cohort years are excluded from the estimation to avoid high uncertainty therein. However,
this will not reduce the number of required identifiability constraints.

Three cases, namely Models 3a, 3b, and 3c, are examined. Model 3a is the standard
RH model. Similar to the cases of the LC and APC, Model 3b preserves the estimates of
κt over the based period [t0, t1]. The original RH model has four constraints. Thus, dif-
ferent from Models 1b and 2b, to reduce the needed constraints, we propose to maintain
the estimates of αx from the base period as well. Otherwise, two identifiability con-
straints,

∑
x β

(2)
x = 1 and

∑
γt−x = 0, would still be required. To see this, it is possible

to have multiple solutions for αx and γt−x with α∗
x = αx − bβ

(2)
x and γ∗

t−x = γt−x + b

for a non-zero constant b, such that αx + β
(1)
x κt + β

(2)
x γt−x = (αx − bβ

(2)
x ) + β

(1)
x κt +

β
(2)
x (γt−x + b) = α∗

x + β
(1)
x κt + β

(2)
x γ∗

t−x. Keeping the estimates of αx requires only
one identifiability constraint of

∑
x β

(2)
x = 1. This is so because non-unique solutions

are still possible for β∗(2)
x = β

(2)
x /c and γ∗

t−x = cγ∗
t−x, with a non-zero constant c. Fi-

nally, Model 3c keeps all estimates from the base period and needs only κ̂t and γ̂t−x to
be estimated for the new data. Identifiability constraints are no longer needed in this case.
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2.2.4 Li–Lee model

Unlike the three single-population mortality models, the LL (or augmented common fac-
tor) model is a multi-population counterpart. Compared with a single-population model,
such as the LC, the advantage of the LL model is that the forecast mortality rates are
coherent across the modelled populations (Li and Lee 2005). Thus, the ratio of fore-
cast mortality rates at each age will not diverge infinitely across populations, which is
particularly desirable for long-term projection. In the two-population case, the six iden-
tifiability constraints required are

∑
x Bx = 1,

∑
t Kt = 0 for the common factors, and∑

x βx,i = 1 and
∑

t κx,i = 0 for each of the population i = 1, 2.
For the LL model, we consider two cases. Model 4a is the standard LL model.

Model 4b preserves all estimates of the temporal factors Kt, κt,1, and κt,2 over the base
period. Similar to the reason stated for Model 1b, no constraints are required. We do not
explore the case (i.e., a potential Model 4c) to further fix age-specific loadings (i.e., Bx,
βx,1, and βx,2). As detailed in Section 3.3, this is to better balance the trade-off between
the new-data-invariant property and model fitting.

2.3 Forecasting

In the demographic literature, temporal factors κt (Models 1–3) and Kt (Model 4) are
normally assumed to be non-stationary (e.g., Lee and Carter 1992). A simple and com-
mon practice is to adopt a random walk with drift in terms of forecasting. For illustration,
the specification of this model for κt is as follows:

κ̂t = θ + κ̂t−1 + ϵt,

where θ is the drift parameter and ϵt is the error term. θ is estimated as the average
of ∆κ̂t = κ̂t − κ̂t−1 for all available κ̂t. Thus, θ = ∆κt/n, where n is the sample
size of ∆κt. After obtaining θ̂, from the base period [t0, t1], the one-step-ahead forecast
κ̂t1+1 can be produced, which is used to derive the point forecast of the central death rate
mx,t1+1, along with other estimated parameters.

As explained above, to achieve the new-data-invariant property, estimates of tempo-
ral factors over the base period are maintained for Models 1–4 b and c. As an alternative
to the simple random walk with drift model, we allow for an autoregressive integrated
moving average (ARIMA) structure to model κ̂t as follows:

∆dκ̂t = θ +

p∑
i=1

αi∆
dκ̂t−i −

q∑
j=1

βjϵt−j + ϵt ,
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where ∆d is the differencing operator, with ∆1κ̂t = κ̂t − κ̂t−1. αi and βj are associated
AR and MA coefficients at the ith and jth orders, respectively. To choose the order of p,
d, and q, we follow Hyndman and Khandakar (2008) and employ the corrected Akaike
information criterion (AIC). For all models, we find that ARIMA(0,1,0) specification
results in the smallest AIC and is then chosen as the final model. This coincides with
a simple random walk with drift. Finally, the new-data-invariant property requires these
models to be ‘path dependent.’ Thus, the h-step-ahead forecasts would be obtained as h
sequential one-step-ahead forecasts. At the h-step for Models 1–4 b and c, θ̂ depends on
all κ̂t estimated over [t0, th−1]. In contrast, for standard Models 1–4 a, θ̂ is kept constant
and depends only on κ̂t estimated over the base period.

3. Model-fitting performance

3.1 Data description

To illustrate the model performance, we employ the populations of England and Wales,
the mortality data of which are collected from the Human Mortality Database (2020);
these populations have been considered in most previous studies (e.g., Cairns et al. 2009).
Following Booth et al. (2006) and the findings of Lee and Miller (2001) regarding differ-
ent age patterns of change in mortality before and after 1950, we choose a range of data
starting from 1951 to 2016. The age range of 60 to 89 years is used because we focus
on analysing mortality at higher ages, as stated by Cairns et al. (2009). We consider the
male population for the single-population models and both male and female populations
for the multi-population model.

3.2 Model parameter estimation and discussions

To illustrate the recalibration performance, we set the base period to 1951–2000.
Altogether, we plot the parameter estimates over three new data periods: 2001–2005,
2001–2010, and 2001–2015. Baseline results are also included for comparison. The
results of Models 1a–c are shown in Figure 1. We observe upward shifts of κ̂t and
downward shifts of α̂x for Model 1a with a longer recalibrated data range. This is
consistent with the overall improvement (decline) in mortality rates across all ages
during the period 2001–2015. The age-specific factors β̂x also ‘rotate’ slightly, which
suggests that the older age group (70 to 90) experiences more mortality improvements.
This is consistent with the findings of Li, Lee, and Gerland (2013). In Model 1b, no shifts
of κ̂t are observed over the base period because of the new-data-invariant property. The
age-specific factors β̂x in Model 1b rotate similarly to those in Model 1a, whereas α̂x do
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not change much with the arrival of new data. In Model 1c, the estimated β̂x over the
base period is further fixed, and α̂x also changes marginally with additional years of data.

The parameter estimates of Models 2a–c are presented in Figure 2. Similar to the
LC model, shifts are observed for all age, temporal, and cohort factors in Model 2a.
After fixing the temporal effects over the base period, only the cohort parameters shift
substantially in Model 2b. Finally, when both κ̂’s and γ̂’s are kept, even more limited
variations are visualised for Model 2c.

We demonstrate the parameter estimates of Models 3a–c in Figure 3. Overall, the
shifts of the three major factors (α̂’s, κ̂’s, and γ̂’s) in Model 3a are comparable to those in
Model 2a. After fixing the α̂x and κ̂t in Model 3b, and α̂x and κ̂t and γ̂t−x in Model 3c,
over the base period, much smaller variations are observed in these three factors. Because
the estimated age-specific loadings β̂(1)

x and β̂
(2)
x are not fixed over the base period in any

case, they exhibit highly similar patterns for Models 3a–c.
Finally, the estimates of Models 4a and 4b are plotted in Figures 4 and 5, respec-

tively. In the multi-population case, the reference population is selected as the total mor-
tality rates, with the male and female population combined. The population-specific α̂’s
and the common factors B̂’s and K̂’s in Model 4a demonstrate comparable patterns to
their single-population counterparts, as shown in Figure 1. In Model 4b, we keep K̂t,
κ̂t,1, and κ̂t,2 over the base period. Consequently, only age-specific loadings rotate with
the arrival of new data.

3.3 Model-fitting performance comparison

Tan et al. (2014) argue that the potential price to pay for the adaptation to achieve the
new-data-invariant property is the reduced model fitting. In this section, we explore this
using two widely employed performance comparison criteria: the Bayesian information
criterion (BIC) and the mean absolute percentage error (MAPE).

The BIC is used to assess the goodness of fit of a fitted model and penalises non-
parsimonious models. Based on the log-likelihood, the BIC is calculated as follows:

BIC = −2l + p ln(n),

where l is the log-likelihood of a fitted model, p is the number of total parameters, and d
is the number of observations. A smaller BIC indicates a better overall goodness of fit.
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Figure 1: Estimation of αx, βx, and κt for Lee–Carter model
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Figure 2: Estimation of αx, βx, and γt−x for age-period-cohort model
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Figure 3: Estimation of αx, β(1)
x , κt,β

(2)
x , and γt−x for Renshaw–Haberman

model
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Figure 4: Estimation of αx, Bx, Kt, βx,1, and βx,2, κt,1, and κt,2 for the
original Li–Lee model
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Figure 5: Estimation of αx, Bx, Kt, βx,1, and βx,2, κt,1, and κt,2 for the
adapted Li–Lee model
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We present BICs for all models (including the CBD Model for comparison) across
the base period and 16 recalibrated periods in Table 7.5 For the LC models, the BIC is
nearly identical for Models 1a and 1b, but is substantially larger for Model 1c. The results
of the APC and RH models are largely consistent with those of the LC, except that the
differences between Model 2a and Model 2b are noticeably greater than those between
Model 1a and Model 1b. Because the LL is a multi-population model, BICs are not
directly comparable to single-population models. In addition, BICs of the CBD model
are noticeably larger than those of Models 1b, 2b, and 3b. Overall, Model 3b (adapted RH
model) yields the smallest BICs among all new-data-invariant specifications, indicating
its preferred in-sample performance.

Table 7: BIC values for Models 1–4

Period/Model 1a 1b 1c 2a 2b 2c 3a 3b 3c 4a 4b CBD

1951–2000 25272 25272 25272 21867 21867 21867 20062 20062 20062 51918 51918 25629

1951–2001 25760 25760 25782 22506 22515 22557 20434 20437 20438 52902 52865 26044

1951–2002 26300 26300 26373 23113 23140 23249 20808 20813 20815 53948 53997 26489

1951–2003 26909 26911 27088 23723 23778 23987 21177 21186 21187 55063 55367 26993

1951–2004 27535 27537 27825 24320 24400 24713 21612 21622 21629 56261 56823 27510

1951–2005 28079 28081 28541 24954 25066 25509 22004 22020 22036 57498 58385 28014

1951–2006 28715 28717 29409 25394 25539 26115 22418 22440 22471 58869 60017 28590

1951–2007 29361 29363 30367 26060 26238 26970 22838 22878 22920 60373 61811 29202

1951–2008 29983 29985 31351 26763 26985 27887 23266 23328 23386 62008 63760 29847

1951–2009 30587 30590 32378 27393 27667 28718 23685 23773 23860 63514 65421 20494

1951–2010 31244 31248 33528 28003 28331 29518 24097 24220 24341 65007 67010 31122

1951–2011 31966 31971 34806 28506 28880 30222 24529 24677 24853 66701 68698 31817

1951–2012 32525 32531 35989 29046 29486 31007 24875 25031 25245 68368 70529 32536

1951–2013 33136 33142 37351 29721 30240 31978 25273 25438 25699 69994 72334 33373

1951–2014 33795 33803 38842 30260 30855 32805 25635 25822 26113 71626 74024 34187

1951–2015 34365 34374 40273 31154 31848 34162 26050 26226 26577 73331 76008 35144

1951–2016 34987 34997 41858 31902 32683 35377 26408 26591 26981 75101 77899 36067

As an alternative to the BIC, we use MAPE to compare the fitted central death rate
with the actual rate, which is calculated as follows:

1

n

∑
x,t

∣∣∣∣m̂x,t − (Dx,t/Ex,t)

(Dx,t/Ex,t)

∣∣∣∣ ,

5 Studies including Hunt and Villegas (2015) have documented the importance to set β(2)
x = 1 to simplify

the RH model. In our analyses (available upon request) analogous to those presented in Tables 3 to 6,
those simplified RH models outperforms the LC (Models 1a–1c) but underperform the RH (Models 3a–3c)
proposed in this paper. This further supports the usefulness of our final model.
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where n is the number of observations, Dx,t is the actual number of deaths at age x in
year t, Ex,t is the corresponding exposed to risk, and m̂x,t is the fitted central death rate
from the examined model. A smaller MAPE indicates a more accurate estimate.

In Table 8, we present MAPEs of all examined models over 17 periods. In line with
our observations regarding the BIC, we find that the less stringent new-data-invariant
models (1b, 2b, and 3b) are superior to their more restrictive equivalents (1c, 2c, and
3c). Compared to the standard models (1a, 2a, and 3a), the costs of achieving new-
data-invariant property for Models 1b, 2b, and 3b are more acceptable, evidenced by the
marginally increased MAPEs. Further, in contrast to all new-data-invariant specifications,
Model 3b almost uniformly leads to the smallest MAPE, suggesting its best goodness-of-
fit performance.

Table 8: MAPE values for Models 1–4

Period/Model 1a 1b 1c 2a 2b 2c 3a 3b 3c 4a 4b CBD

1951–2000 2.30% 2.30% 2.30% 1.78% 1.78% 1.78% 1.31% 1.31% 1.31% 2.39% 2.39% 2.34%

1951-2001 2.31% 2.31% 2.31% 1.82% 1.82% 1.82% 1.31% 1.31% 1.31% 2.40% 2.38% 2.32%

1951–2002 2.32% 2.32% 2.33% 1.86% 1.86% 1.86% 1.30% 1.31% 1.31% 2.41% 2.40% 2.31%

1951–2003 2.34% 2.34% 2.37% 1.89% 1.89% 1.90% 1.30% 1.30% 1.30% 2.43% 2.43% 2.31%

1951–2004 2.36% 2.36% 2.40% 1.92% 1.92% 1.95% 1.31% 1.31% 1.32% 2.45% 2.47% 2.31%

1951–2005 2.37% 2.37% 2.44% 1.95% 1.96% 1.99% 1.31% 1.31% 1.32% 2.47% 2.51% 2.32%

1951–2006 2.40% 2.40% 2.49% 1.96% 1.97% 2.01% 1.32% 1.32% 1.33% 2.50% 2.55% 2.33%

1951–2007 2.43% 2.43% 2.54% 1.99% 2.00% 2.06% 1.33% 1.34% 1.34% 2.53% 2.60% 2.35%

1951–2008 2.45% 2.45% 2.59% 2.02% 2.04% 2.11% 1.34% 1.35% 1.36% 2.57% 2.66% 2.37%

1951–2009 2.47% 2.47% 2.65% 2.05% 2.06% 2.15% 1.35% 1.37% 1.38% 2.61% 2.70% 2.39%

1951–2010 2.50% 2.50% 2.71% 2.07% 2.09% 2.19% 1.35% 1.38% 1.40% 2.64% 2.73% 2.41%

1951–2011 2.53% 2.53% 2.78% 2.09% 2.11% 2.23% 1.36% 1.39% 1.41% 2.68% 2.77% 2.44%

1951–2012 2.54% 2.54% 2.84% 2.12% 2.14% 2.27% 1.35% 1.39% 1.42% 2.72% 2.81% 2.47%

1951–2013 2.56% 2.55% 2.91% 2.16% 2.19% 2.33% 1.35% 1.39% 1.43% 2.76% 2.85% 2.51%

1951–2014 2.57% 2.57% 2.99% 2.20% 2.23% 2.38% 1.35% 1.39% 1.43% 2.80% 2.89% 2.54%

1951–2015 2.58% 2.58% 3.06% 2.25% 2.29% 2.46% 1.36% 1.40% 1.45% 2.85% 2.94% 2.59%

1951–2016 2.60% 2.60% 3.14% 2.29% 2.34% 2.53% 1.35% 1.39% 1.45% 2.89% 2.98% 2.64%

To sum up, we demonstrate that for single-population models, Models 1b, 2b, and
3b are more preferred specifications to Models 1c, 2c, and 3c, respectively, concerning
model-fitting performance. This may be explained by the fact that imposing more restric-
tions on a model will make its likelihood deviate more from the maximum and therefore,
reduce the goodness of fit. Consequently, for the multi-population case, we consider fix-
ing only the estimates of temporal factors as in Model 4b. As presented in Tables 7 and
8, the resulting BICs and MAPEs of Model 4b only marginally increase, which is con-
sistent with the single-population findings. In general, we find that the RH models beat
other specifications, whereas Model 3b consistently outperforms the new-data-invariant
competitors. This finding is consistent with the both BIC and MAPE results. Therefore,
to best balance the goodness of fit and new-data-invariant property, our analyses suggest
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that the less restrictive adapted RH model may be the optimal approach. Next, we further
explore the original and adapted RH models to verify this.

4. Model backtesting performance and sensitivity analyses

In addition to assessing the in-sample model-fitting performance, backtesting can serve
as a useful tool for evaluating the projection accuracy of a model. Because the RH models
outperform competitors, we focus on the performance of Models 3a, 3b, and 3c in this
section.

To obtain backtesting results, we split the entire dataset into various training and
testing sets. Specifically, our training sets start from 1951 to 2000, and we include one
new arrival year of data, until 1951–2015 rates are included. For the testing sets, we
consider three categories: one-, three-, and five-year projections. For instance, using the
initial training set of 1951–2000, we project mortality rates over the next one (2001),
three years (2001–2003), and five years (2001–2005). Similar to Section 3, the MAPE
is used in all cases to measure backtesting performance. Thus, in this example, the one-,
three-, and five-year MAPEs are obtained by comparing the projected rates against real
data over 2001, 2001–2003, and 2001–2005, respectively.

More generally, let s be the last year of a training set, then κ̂s+1 = θ+ κ̂s is used to
project m̂x,s+1 in the RH models. MAPE of a one-year projection is then calculated by∑

x(m̂x,s+1 −mx,s+1)/mx,s+1, where m̂x,s+1 is the projected rate and mx,s+1 is the
actual rate. For the three-year and five-year projections, the last training sets are 1951–
2013 and 1951–2011, respectively, with the testing sets of 2014–2016 and 2012–2016,
respectively.

MAPE results are computed for Models 3a, 3b, and 3c and are displayed in Table 9.
It can be concluded that, similar to the in-sample results, Models 3a and 3b again exhibit
a similar level of MAPE, whereas MAPE of Model 3c deviates substantially from them.

Finally, we consider a range of sensitivity analyses. In Section 3, we focus on the RH
models because of their outstanding performance. Three types of sensitivity analyses are
conducted, and all analyses are based on the one-year projection described above. First,
the base period (the starting training set) is altered to three sets: 1951–1995, 1951–2005,
and 1956–2005. The corresponding MAPEs are listed in Table 10. Second, we test
the sensitivity of the recalibration period. In the baseline analyses, all models are updated
every year with the arrival of new data. Using the same starting training set of 1951–2000,
we update the RH models every three years and five years with the newly arrived data.
Third, all models are still updated yearly using a fixed-sample rolling window approach.
Specifically, rather than expanding the sample size at each step, we use a fixed size of 50
years and change the starting and ending years to project the one-year rate. MAPE results
for the rolling window and the two new recalibration periods are reported in Table 11.
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Regarding the rolling window part, the dataset has been updated by removing the oldest
year and incorporating the latest year’s data. For the three-year recalibration period,
we recalibrated our results using the most recent data every three years. Similarly, we
recalibrated our results with the most recent data every five years. Additionally, to be
consistent with Section 3, we also present the in-sample BIC of each training set in Tables
12 and 13. In summary, we find that Models 3a and 3b exhibit superior performance in
both in-sample evaluation (as measured by the BIC) and backtesting (as measured by
MAPE) compared with Model 3c, as indicated by various robustness checks. Therefore,
we identify Model 3b as the optimal strategy to cope with the new-data-invariant property
in demographic analyses.

Table 9: MAPE values for Model 3

One-year projection Three-year projection Five-year projection

Model 3a 3b 3c 3a 3b 3c 3a 3b 3c

1951–2000 1.67% 1.66% 1.66% 1.45% 1.45% 1.45% 5.02% 4.97% 4.92%

1951–2001 1.35% 1.36% 1.36% 2.90% 2.91% 2.93% 5.09% 5.22% 5.22%

1951–2002 1.32% 1.33% 1.28% 3.90% 3.98% 3.96% 6.41% 6.57% 6.51%

1951–2003 3.70% 3.71% 3.70% 6.16% 6.26% 6.30% 6.70% 6.79% 6.75%

1951–2004 1.71% 1.73% 1.79% 3.28% 3.37% 3.38% 5.59% 5.59% 5.51%

1951–2005 2.13% 2.17% 2.35% 2.84% 2.98% 3.03% 5.10% 5.07% 5.09%

1951–2006 1.97% 2.11% 2.20% 3.46% 3.45% 3.57% 5.79% 5.65% 5.56%

1951–2007 2.27% 2.48% 2.52% 3.28% 3.26% 3.45% 3.22% 3.36% 3.78%

1951–2008 2.89% 3.03% 3.19% 5.41% 5.39% 5.38% 2.70% 2.93% 3.48%

1951–2009 2.06% 2.36% 2.67% 1.74% 2.25% 2.81% 2.23% 2.70% 3.09%

1951–2010 2.73% 2.90% 3.13% 2.59% 2.69% 3.08% 4.94% 5.26% 5.20%

1951–2011 2.03% 2.29% 2.51% 3.17% 3.55% 3.60% 7.05% 7.47% 7.50%

1951–2012 2.13% 2.21% 2.61% 4.56% 4.80% 4.81% - - -

1951–2013 1.36% 1.50% 1.93% 3.29% 3.64% 3.64% - - -

1951–2014 3.55% 3.61% 3.77% - - - - - -

1951–2015 1.04% 1.20% 1.75% - - - - - -
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Table 10: MAPE values for different base year for Model 3
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Table 11: MAPE values for various recalibration windows
R
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Table 12: BIC values for different base years for Model 3
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Table 13: BIC values for various recalibration windows
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5. Concluding remarks

This paper explores the new-data-invariant property of a variety of popular mortality
models. For each model, we propose two strategies with different levels of introduced
restrictions on the parameters. Using the male population of England and Wales, we
demonstrate that the less restricted adapted RH model can achieve the new-data-invariant
property, with trivial loss in the goodness of fit and backtesting performance. In addi-
tion, the adjusted RH model outperforms the LC, APC, CBD, and LL counterparts and
is, therefore, deemed optimal.

The proposed adjustments in this paper will provide easier tracking of mortality
indexes, with new data sequentially received in the future. This significantly comple-
ments the CBD (or M5) model, as studied by Chan, Li, and Li (2014). However, future
research should be conducted analysing other populations and/or different age groups.
In particular, a case study of mortality interdependencies can be extended to include a
more comprehensive collection of geographically and/or economically connected pop-
ulations. The findings may facilitate related demographic research, such as that on the
geographical spillovers of the mortality dynamics of associated populations. Further, this
research focuses on the adaptations of single-population mortality models. Other popular
multi-population frameworks, such as the joint-LC model and the coherent functional de-
mographic model, may be further examined to adopt more cross-population information.
Finally, long-term forecasts based on the adopted models should be investigated.
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