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Standardized mean age at death (MADstd):
Exploring its potential as a measure of human longevity

Markus Sauerberg1

Marc Luy2

Abstract

BACKGROUND
Period mean age at death (MAD) is affected by a population’s age structure, and therefore
by its mortality, fertility, and migration history. Period life expectancy (𝑒0) is also a mean
age at death, for a standardized population with a stationary age structure. It depends only
on current mortality rates. Here, we explore a middle ground: an age-standardized
measure of period age at death, called MADstd, that includes both past and present
mortality influences, while omitting the effects of past fertility and migration.
OBJECTIVE
We want to highlight the common structure of the three measures by expressing them as
weighted averages with different weighting functions. This allows us to examine them
from the perspective of compositional change; i.e., how changes in the underlying age
structure affect MAD, MADstd, and 𝑒0.

METHODS
We compare MADstd with 𝑒0 and MAD formally and empirically, using data on six
countries from 1990 to 2020. A particular focus is given to the effect of the increased
mortality in 2020 on the three longevity measures.
RESULTS
The 𝑒0 indicator gives a higher average age at death than MAD and MADstd because the
relative number of older individuals is comparatively high in the hypothetical period life
table population. While 𝑒0 declines between 2019 and 2020, both MAD and MADstd show
increases in 2020. This can be attributed to differences in the dynamics of the age
structures underlying the three indicators. Only the life table population shifts to younger
ages, whereas for the observed population and standardized population in 2020 the
relative numbers of older individuals increased.
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CONCLUSION
Trends in MAD and MADstd are less sensitive to recent developments in mortality,
making 𝑒0 the most valuable for examining changes in period mortality rates over time.
Considering the interaction between changes in age-specific mortality rates and changes
in the underlying age structure deepens the understanding of diverging time trends in
MAD, MADstd, and 𝑒0.

CONTRIBUTION
We use the formulas developed by Vaupel and Canudas-Romo (2002) to study the change
in all three measures over time. Formulas provided by Vaupel and Zhang (2012) are used
to study cross-sectional differences in MAD, MADstd, and 𝑒0. These help us to better
understand the differences between the longevity measures and their most appropriate
applications.

1. Introduction

The mean age at death (MAD) is a summary measure of human longevity with a
straightforward interpretation. It gives the average age at which people have died in a
given population at a specific point in time. Relying on MAD, however, is not appropriate
for most comparative analyses because it is affected by a population’s age structure. For
instance, MAD is higher for populations with a larger proportion of older than younger
individuals, even if the mortality rates are identical in both populations. For this reason,
scholars usually prefer period life expectancy at birth (𝑒0), which is age-standardized and
widely used for mortality comparisons between countries or periods.

The 𝑒0 indicator is derived from the period life table; i.e., a model in which the life
course of a hypothetical population is simulated on the basis of the age-specific mortality
rates observed for a given population in one period. The age structure of this hypothetical
population, and thus 𝑒0, results exclusively from the given age-specific mortality rates.
Consequently, 𝑒0 is independent of the age structure of the underlying population and
reflects the average age at death of the hypothetical period life table population (e.g.,
Preston, Heuveline, and Guillot 2001; Luy et al. 2020). However, the hypothetical life
table population differs substantially from the real population in terms of its lifelong
mortality risks. In most countries, the current 𝑒0 value suggests a longer average lifespan
than the average number of life years realized by birth cohorts dying today (Guillot and
Payne 2019; Shkolnikov et al. 2011; Goldstein and Wachter 2005). This is because
mortality levels have been decreasing over time and past mortality rates are usually higher
than those currently observed. While the life table population faces only one set of
recently observed mortality rates, the birth cohorts dying today have been subjected to
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the historical mortality risks of their generation. The current 𝑒0 value can be interpreted
as an indicator of potential of longevity because it refers to the average age at death under
current mortality rates. However, it should not be used as a benchmark for assessing
whether a person’s age at death can be considered as comparatively young or old (Guillot
and Payne 2019; Vaupel 2002).

A less common way to obtain an age-standardized longevity measure is to assume a
population with a constant inflow of annual births, which is closed to migration. The age
structure of the constant-birth population is only shaped by cohort-specific mortality
rates, which enables us to compare experienced mortality levels between populations
without the effects of fertility and migration. The MAD calculated from this population
model can be referred to as the standardized mean age at death MADstd (Sardon 1994;
Bongaarts and Feeney 2003). In contrast to 𝑒0, the measure is based on the mortality
trajectories of individual birth cohorts (for all cohorts alive in a given period) and belongs
to the family of cross-sectional cohort averages (Luy 2010) such as the cross-sectional
average length of life (CAL) (Brouard 1986; Guillot 2003).

The aim of this paper is to compare MADstd formally and empirically to MAD and
𝑒0. Mathematically, the three measures can be expressed as weighted averages with
different weighting functions. This allows us to apply the formulas provided by Vaupel
and Zhang (2012) to study cross-sectional differences in MAD, MADstd, and 𝑒0. The
differences between these three measures can be attributed to differences in the age
distribution of deaths, which is given by the product of age-specific mortality rates and
the population’s age structure. We find that the size of the gap between the measures
depends on the covariance between age and the relative difference between their age
distributions of deaths.

We further examine how the three measures react to a sudden increase in age-
specific mortality rates; e.g., between the years 2019 and 2020. The formulas presented
by Vaupel and Canudas-Romo (2002) on decomposing change in population averages
into direct vs. indirect components enable us to express the change in MAD, MADstd, and
𝑒0 in terms of two covariances: the covariance between age and the change in age-specific
mortality rates, and the covariance between age and the change in the age structure.

2. Methods

2.1 The observed mean age at death (MAD)

The definition of the observed MAD is straightforward. The measure reflects the age at
which individuals have died on average in a given period,
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𝑀𝐴𝐷(𝑡) = ∫ 𝑥⋅𝐷(𝑥,𝑡)𝑑𝑥𝜔
0
∫ 𝐷(𝑥,𝑡)𝜔
0 𝑑𝑥

(1)

where 𝐷(𝑥, 𝑡) denotes the observed number of deaths at age x in time t. The age-specific
number of deaths at a given point in time is the product of people alive at a certain age at
time t, 𝑁(𝑥, 𝑡), and the age-specific force of mortality at time t, 𝜇(𝑥, 𝑡), with

𝑁(𝑥, 𝑡) = 𝐵(𝑡 − 𝑥) ⋅ 𝑝𝑐(𝑥, 𝑡 − 𝑥) +𝑀(𝑥, 𝑡) (2)

and

𝐷(𝑥, 𝑡) = 𝑁(𝑥, 𝑡) ⋅ 𝜇(𝑥, 𝑡) (3)

where 𝐵(𝑡 − 𝑥) is the number of births 𝑥 years before time t and 𝑝𝑐(𝑥, 𝑡 − 𝑥) is the
probability of individuals born in time 𝑡 − 𝑥 surviving until age 𝑥. The additional term,
𝑀(𝑥, 𝑡), reflects the net number of migrants alive at age 𝑥 in time 𝑡. This term can be
negative when there are more individuals leaving the population than migrating into the
population.

As shown in Equation (3), the 𝑁(𝑥, 𝑡) function, i.e., the population’s age structure,
can be seen as the weighting function for the corresponding age-specific force of
mortality. Even if mortality has remained constant between two periods, MAD can
increase or decrease through changes in 𝑁(𝑥, 𝑡). Demographers have addressed this issue
by using a standard age structure which is held constant (Kitagawa 1964). For instance,
the standardized death rate (SDR) uses such a reference population in order to compare
mortality levels more appropriately across populations or periods. However, it is
important to note that the choice of reference population has a direct impact on the results
(Kitagawa 1964; Keyfitz 1985). Therefore, it is more convenient to use 𝑒0 because it does
not require a reference population and can only be derived from the 𝜇(𝑥, 𝑡) function.

2.2 Period life expectancy at birth (𝒆𝟎)

As described in the introduction, 𝑒0 is derived from a period life table. It is often
interpreted as the number of life years that new-borns can expect if the prevailing age-
specific mortality rates remain constant in the future. Also, 𝑒0 can be seen as MAD in the
stationary population model (Preston, Heuveline, and Guillot 2001) and is calculated
from
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𝑒0(𝑡) = ∫ 𝑥⋅𝑑(𝑥,𝑡)𝑑𝑥𝜔
0
∫ 𝑑(𝑥,𝑡)𝜔
0 𝑑𝑥

(4)

where 𝑑(𝑥, 𝑡) represents the age-specific number of deaths given by the period life table
for time t. Similar to Equation (3), the age distribution of period life table deaths is
calculated as the product of the age distribution in the stationary life table population,
𝑙(𝑥, 𝑡), and 𝜇(𝑥, 𝑡):

𝑙(𝑥, 𝑡) = 𝑒−∫ 𝜇(𝑎,𝑡)𝑑𝑎𝑥
0 (5)

𝑑(𝑥, 𝑡) = 𝑙(𝑥, 𝑡) ⋅ 𝜇(𝑥, 𝑡). (6)

In contrast to 𝑁(𝑥, 𝑡), the age distribution in the stationary population is not related
to past births, deaths, and migration events but is solely a function of 𝜇(𝑥, 𝑡). It refers to
a hypothetical scenario, in which recently observed age-specific mortality rates are
assumed to remain constant for about 100 years (see, e.g., Preston, Heuveline, and Guillot
2001: 53). This is why 𝑒0 does not require a reference population or, as Heuveline (2023:
6) puts it, the measure can be seen as “internally standardized”.

2.3 The standardized mean age at death (MADstd)

MADstd, an alternative summary measure of longevity, is derived from the constant-birth
population. The constant-birth population model does not assume that the age-specific
force of mortality is constant over time. Mortality can differ from year to year in
accordance with the observed age- and cohort-specific mortality rates (Wilmoth 2005).
As described by Guillot (2003), the constant-birth (or standardized) population controls
for differences in the number of births by assuming each birth cohort had the same initial
size:

𝑆(𝑥, 𝑡) = 𝐵 ⋅ 𝑝𝑐(𝑥, 𝑡 − 𝑥) (7)

where 𝐵 is the constant number of annual births. In the case of one birth per year, (𝐵 =
1), the standardized population is simply given by the 𝑝𝑐(𝑥, 𝑡 − 𝑥) function, which can be
derived from age- and cohort-specific mortality rates:

𝑆(𝑥, 𝑡) = 𝑒−∫ 𝜇𝑐(𝑎,𝑡−𝑥)𝑑𝑎𝑥
0 (8)
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where 𝜇𝑐(𝑎, 𝑡 − 𝑥) denotes the force of mortality at age a for the cohort born x years ago.
Previously, 𝑆(𝑥, 𝑡) has been discussed in the context of the cross-sectional average length
of life (CAL), which is a summary measure of mortality given by integrating 𝑆(𝑥, 𝑡) over
age (Brouard 1986; Guillot 2003):

𝐶𝐴𝐿(𝑡) = ∫ 𝑆(𝑥, 𝑡)𝜔
0 . (9)

Applying the standardized population to the period force of mortality produces the
standardized age distribution of deaths:

𝐷𝑠𝑡𝑑(𝑥, 𝑡) = 𝑆(𝑥, 𝑡) ⋅ 𝜇(𝑥, 𝑡). (10)

Accordingly, the standardized MAD is defined as

𝑀𝐴𝐷𝑠𝑡𝑑(𝑡) = ∫ 𝑥⋅𝐷𝑠𝑡𝑑(𝑥,𝑡)𝑑𝑥𝜔
0
∫ 𝐷𝑠𝑡𝑑(𝑥,𝑡)𝜔
0 𝑑𝑥

. (11)

MADstd(t) can be interpreted as the mean age at death in time t if there are no
fluctuations in the annual number of births and the population is closed to migration
(Guillot 2006).

Equations 2 and 7 show formally that both the age distribution of the real population
and the standardized age distribution are based on historical mortality data; i.e., mortality
risks that cohort members have experienced over the course of their lives. This is why
the standardized age distribution is formally closer to the real population than the age
structure of the hypothetical period life table population, 𝑙(𝑥, 𝑡). The latter can only
correspond to the real population’s age structure when mortality does not change over
time. Since mortality rates have been decreasing over the last century, 𝑙(𝑥, 𝑡) includes a
higher proportion of older individuals than the observed and standardized age
distribution, leading to a higher average age at death.

Moreover, comparing 𝑙(𝑥, 𝑡) and 𝑆(𝑥, 𝑡) reveals that both functions reflect the age
distribution of a hypothetical population; i.e., the age distribution of the stationary
population and the standardized age distribution, respectively, which are solely derived
from the force of mortality. Therefore, both 𝑒0 and MADstd can be seen as internally
standardized measures because they do not use an external reference population. While
MADstd is formally closer to the observed MAD, the disadvantage of MADstd is its high
data demand: the empirical calculation of 𝑆(𝑥, 𝑡) requires a long time series of detailed
cohort-specific data.

It is obvious that differences between the 𝑁(𝑥, 𝑡) and 𝑆(𝑥, 𝑡) functions are due to the
changes in births and migration flows in the real population. Empirically, 𝑁(𝑥, 𝑡) will
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differ from 𝑆(𝑥, 𝑡) because real populations are usually not characterized by constant
fertility rates and zero net migration. However, standardizing for changes in births and
migration is essential for an unbiased mortality comparison between two populations
because it ensures that differences in MADstd can only result from mortality differences.
Table 1 summarizes the three measures compared in this paper with their characteristics
regarding the populations on which they are based and the time frame of the mortality
rates they summarize.

Table 1: Summary table of the longevity measures MAD(t), MADstd(t), and
𝒆𝟎(𝒕) with their specific characteristics

MAD(t) MADstd(t) 𝑒0(𝑡)

Formula ∫ 𝑥 ⋅ 𝐷(𝑥, 𝑡)𝑑𝑥𝜔
0

∫ 𝐷(𝑥, 𝑡)𝜔
0 𝑑𝑥

∫ 𝑥 ⋅ 𝐷𝑠𝑡𝑑(𝑥, 𝑡)𝑑𝑥𝜔
0

∫ 𝐷𝑠𝑡𝑑(𝑥, 𝑡)𝜔
0 𝑑𝑥

∫ 𝑥 ⋅ 𝑑(𝑥, 𝑡)𝑑𝑥𝜔
0

∫ 𝑑(𝑥, 𝑡)𝜔
0 𝑑𝑥

Short description Mean age at death in a real
population at time t.

Mean age at death at time t,
assuming no fluctuations in the
annual number of births and no

migration.

Mean age at death in the
stationary population at time t.

Weighting function 𝐷(𝑥, 𝑡) = 𝑁(𝑥, 𝑡) ⋅ 𝜇(𝑥, 𝑡)
Observed number of age-specific

deaths in time t.

𝐷𝑠𝑡𝑑(𝑥, 𝑡) = 𝑆(𝑥, 𝑡) ⋅ 𝜇(𝑥, 𝑡)
Standardized age distribution of

deaths in time t.

𝑑(𝑥, 𝑡) = 𝑙(𝑥, 𝑡) ⋅ 𝜇(𝑥, 𝑡)
Age distribution of period life table

deaths in time t.

Age structure of
reference population

𝑁(𝑥, 𝑡)
Age distribution of the real

population in time t.

𝑆(𝑥, 𝑡)
Age distribution of the constant-

birth population in time t.

𝑙(𝑥, 𝑡)
Age distribution of the stationary

population in time t.
Influenced by…
current mortality Yes Yes Yes
past mortality Yes Yes No
past fertility Yes No No
past migration Yes No No

2.4 Examining the difference between two weighted averages

We have defined MAD, MADstd, and 𝑒0 as three different weighted averages,

𝐴 = ∫ 𝑥⋅𝑤(𝑥,𝑡)𝑑𝑥𝜔
0
∫ 𝑤(𝑥,𝑡)𝑑𝑥𝜔
0

(12)

where the weighting function,𝑤(𝑥, 𝑡), corresponds to one of the three age distributions of
deaths, 𝐷(𝑥, 𝑡), 𝐷𝑠𝑡𝑑(𝑥, 𝑡), or 𝑑(𝑥, 𝑡), which are given by 𝑁(𝑥, 𝑡) ⋅ 𝜇(𝑥, 𝑡), 𝑆(𝑥, 𝑡) ⋅ 𝜇(𝑥, 𝑡),
and 𝑙(𝑥, 𝑡) ⋅ 𝜇(𝑥, 𝑡), respectively. To examine differences between these three mortality
measures more closely, we use the formulas to calculate the difference between two
weighted averages developed by Vaupel and Zhang (2012). Let 𝑤1(𝑥, 𝑡) and 𝑤2(𝑥, 𝑡) be
two different weighting functions; e.g., the age distribution of period life table deaths in
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time t or the age distribution of the constant-birth population in time t. The difference
between two averages with alternative weighting functions is then given by

𝐴2(𝑡)− 𝐴1(𝑡) =
𝑐𝑜𝑣ቀ𝑥,𝑤2𝑤1

ቁ

𝐸ቀ𝑤2𝑤1
ቁ

(13)

where 𝑐𝑜𝑣 ቀ𝑥,𝑤2

𝑤1
ቁ is the covariance between x and 𝑤2

𝑤1
 , and 𝐸 ቀ𝑤2

𝑤1
ቁ denotes the expected

(or mean) value of the relative difference between the two alternative weighting
functions. Note that the denominator of Equation (13), 𝐸 ቀ𝑤2

𝑤1
ቁ, is a weighted average with

𝑤1 providing the weights.
Equation (13) reveals that the mean age at death in a population with an older age

distribution of deaths will be higher than the mean age at death in a population with a
younger age distribution of death. This is because the relative difference of the two
weighting functions (the older age distribution of deaths divided by the younger age
distribution of deaths) is positively correlated with age.

2.5 Examining the change over time of population averages

Previous work by Vaupel and Canudas-Romo (2002) provides helpful equations for
decomposing time derivatives of averages. Their work elaborates on the findings of
Preston, Himes, and Eggers (1989) and of Schoen and Kim (1992). Using the notation of
a dot on top of a variable to denote the derivative of a quantity with respect to time and
an acute accent to represent the derivative of the logarithm of a quantity with respect to
time, the change of a population average, 𝐴(𝑡), over time can be expressed as,

�̇� = 𝑐𝑜𝑣(𝑥, �́�). (14)

In the case of examining the change of an average age at death over time, �́� is the
relative derivative of the given age distribution of deaths; e.g., �́�(𝑥, 𝑡), �́�𝑠𝑡𝑑(𝑥, 𝑡), or �́�(𝑥, 𝑡).

To analyse changes in the average age at death with respect to differences in the age
structure, we can substitute 𝑤(𝑥, 𝑡) by the product of 𝜇(𝑥, 𝑡) and the given population age
structure, 𝑘(𝑥, 𝑡), yielding 𝑤(𝑥, 𝑡) = 𝜇(𝑥, 𝑡) ⋅ 𝑘(𝑥, 𝑡). Vaupel and Canudas-Romo (2002)
have shown that this allows us to express the time derivative of the average age at death
in terms of the sum of two covariances:

�̇� = 𝑐𝑜𝑣(𝑥, �́�) + 𝑐𝑜𝑣൫𝑥, �́�൯. (15)
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The first term is the covariance between age and change in age-specific mortality
rates, while the second term reflects the covariance between age and change in the age
structure of the underlying population. It should be noted that the covariance between
two variables reflects compositional effects and cannot be interpreted as direct effects of
mortality versus age structure (Vaupel and Canudas-Romo 2002). For instance, when
applying Equation (15) to study the dynamics of MAD, MADstd, and 𝑒0, all three measures
use the same ages x and the same relative derivative �́�. Still, the 𝑐𝑜𝑣(𝑥, �́�) terms are not
identical for the three measures (see Table 3). This is because the weights in the
covariance function for MAD, MADstd, and 𝑒0 are different.

2.6 Data

Our empirical results are based on period- and cohort-specific mortality data provided by
the Human Mortality Database (HMD 2023) and refer to the time period 1990 to 2020.
At the time of the study the required data was available in the HMD for five populations
(Denmark, England and Wales, France, Sweden, and Switzerland). In addition, we
obtained cohort-specific life tables for Germany from Destatis (2023), which are
available up to the year 2017. Consequently, the mortality figures for Germany in our
analysis only cover 1990 to 2017.

3. Results

3.1 Cross-sectional differences in the three longevity measures

Figure 1 presents annual estimates of observed MAD, MADstd, and 𝑒0 for women and
men between 1990 and 2020. The 𝑒0 measure shows the highest values in each year and
in every population and gender. The difference between 𝑒0 and the other two measures
varies between populations. In Germany and France, for example, the gap between 𝑒0
and the two MAD indicators is greater than in Sweden. Also, the levels of the three
mortality measures are more similar among women. This can be attributed to country-
and sex-specific differences in historical mortality. Older individuals living in France or
Germany today experienced particularly high mortality risks during the Second World
War and the post-war era, which is not reflected in the 𝑙(𝑥, 𝑡) function. Accordingly, the
difference between the observed population and the period life table population is
comparatively large in those countries, especially among men.
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Figure 1: Time trends in the observed mean age at death, MAD, standardized
mean age at death, MADstd, and period life expectancy at birth, 𝒆𝟎,
for women and men in 6 selected populations, 1990–2020

Source: Own calculations based on data from HMD (2023) and Destatis (2023).

Most populations show a crossover of MAD and MADstd. In the early 1990s the
value for MAD exceeds MADstd, but for more recent years MADstd indicates a higher
average age at death. Differences between MAD and MADstd must, by definition, reflect
the effects of past fertility and migration. MADstd will be greater than MAD when the
𝑆(𝑥, 𝑡) function indicates an older age structure than the 𝑁(𝑥, 𝑡) function. In this situation,
the relative difference between the two weighting functions will be positively correlated
with age. This can happen when births have been falling rather than constant over time.
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For instance, in 1990 MAD is almost one year higher than MADstd for French women. In
2019, however, MADstd exceeds MAD by about 0.6 years (see Table 2). Applying
Equation (13) reveals that the covariance between age and 𝐷𝑠𝑡𝑑(𝑥,𝑡)

𝐷(𝑥,𝑡)
 has indeed changed

between the two points in time (from –0.57 to +0.47).
As shown formally above, differences in the three age distributions of deaths stem

from differences in the underlying population age structures given by 𝑁(𝑥, 𝑡), 𝑆(𝑥, 𝑡), and
𝑙(𝑥, 𝑡). A comparison of the three age structures for Swiss women and men in 2019 is
depicted in Figure 2. The 𝑒0 indicator provides the highest average ages at death for all
analysed populations.

Figure 2: The relative difference in the age structure of the observed
population and the constant-birth population when compared with
the age structure of the period life table population, Swiss women
and men in 2019

Source: Own calculations based on data from HMD (2023).

A stagnation or slowing down of improvements in period mortality rates would lead
to convergence between 𝑆(𝑥, 𝑡) and 𝑙(𝑥, 𝑡), resulting in similar values for 𝑒0 and MADstd.
In the case of observed MAD, the age distribution of the real population is not only
shaped by mortality but also includes changes in births and net migration. Past changes
in fertility and migration explain the fluctuations in the 𝑁(𝑥, 𝑡) function shown in Figure
2. In many European countries the observed MAD might cross over again with MADstd
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because of the shift in the age structure when the ‘baby boomers’ reach older ages,
leading to a higher relative number of older individuals in the population.

Table 2: Cross-sectional differences between MADstd and the other two
longevity measures, MAD and e0, for women and men in France and
England and Wales, 1990 and 2019

France England and Wales
Year 1990 Year 2019 Year 1990 Year 2019

Women Men Women Men Women Men Women Men

MADstd 77.27 68.05 83.75 76.64 76.01 69.75 81.39 76.88
MAD 78.21 68.81 83.15 75.92 77.24 70.99 80.85 76.09

Difference (MADstd – MAD) –0.94 –0.76 +0.61 +0.72 –1.23 –1.24 +0.53 +0.80

𝑐𝑜𝑣 ቆ𝑥,
𝐷𝑠𝑡𝑑(𝑥, 𝑡
𝐷(𝑥, 𝑡)

ቇ –0.57 –0.48 +0.47 +0.52 –0.87 –0.85 +0.42 +0.60

𝐸 ቆ
𝐷𝑠𝑡𝑑(𝑥, 𝑡
𝐷(𝑥, 𝑡)

ቇ +0.61 +0.64 +0.78 +0.72 +0.71 +0.68 +0.78 +0.75

𝑐𝑜𝑣 ൬𝑥,𝐷
𝑠𝑡𝑑(𝑥, 𝑡
𝐷(𝑥, 𝑡) ൰

𝐸 ൬𝐷
𝑠𝑡𝑑(𝑥, 𝑡
𝐷(𝑥, 𝑡) ൰

–0.94 –0.76 +0.61 +0.72 –1.23 –1.24 +0.53 +0.80

𝑒0 80.95 72.72 85.52 79.75 78.67 73.04 83.45 79.80

Difference (MADstd – 𝑒0) –3.67 –4.67 –1.77 –3.11 –2.66 –3.29 –2.06 –2.92

𝑐𝑜𝑣 ቆ𝑥,
𝐷𝑠𝑡𝑑(𝑥, 𝑡
𝑑(𝑥, 𝑡)

ቇ –2.23 –2.97 –1.38 –2.23 –1.89 –2.25 –1.62 –2.20

𝐸 ቆ
𝐷𝑠𝑡𝑑(𝑥, 𝑡
𝑑(𝑥, 𝑡)

ቇ +0.61 +0.64 +0.78 +0.72 +0.71 +0.68 +0.78 +0.75

𝑐𝑜𝑣 ൬𝑥,𝐷
𝑠𝑡𝑑(𝑥, 𝑡
𝑑(𝑥, 𝑡) ൰

𝐸 ൬𝐷
𝑠𝑡𝑑(𝑥, 𝑡
𝑑(𝑥, 𝑡) ൰

–3.67 –4.67 –1.77 –3.11 –2.66 –3.29 –2.06 –2.92

Source: Own calculations based on data from HMD (2023).

3.2 MAD, MADstd, and e0 during the mortality change between 2019 and 2020

The time trends in Figure 1 show that 𝑒0 decreased substantially in most analysed
populations in the year 2020, while both MADs show further increases. For instance, 𝑒0
decreased by 0.7 years for Swedish men between 2019 and 2020, while both MADstd and
MAD increased by about 0.4 years over the same period (see Table 3). The changes in
the corresponding age-at-death distributions are presented in Figure 3. In addition, Figure
4 depicts the ratio of age-specific mortality rates 𝑚(𝑥) in 2019 and 2020 for Swedish
women and men. This graph shows that mortality rates were consistently higher in 2020
for the middle- and old-age groups, whereas mortality rates at younger ages were more
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fluctuating. This increase in mortality at older ages resulted in a larger number of deaths
for Swedish men in 2020 (49,381 deaths in 2020 vs. 44,026 deaths in 2019). The
additional deaths are mostly observed around age 80 and the age distribution of deaths
changed primarily in terms of its magnitude. Consequently, observed MAD increased
from 77.74 to 78.15 years.

Figure 3: The age distribution of deaths in the real population, the constant-
birth population, and the period life table population for Swedish
men in 2019 and 2020

Source: Own calculations based on data from HMD (2023) and Destatis (2023).

The standardized age distribution of deaths controls for differences in the initial size
of birth cohorts. For the age distribution of deaths in the constant-birth model shown in
Figure 3, we assumed one birth for each birth cohort. The total number of deaths
increased from 0.75 to 0.83 between 2019 and 2020, reflecting the increase in age-
specific mortality rates. Similar to the observed age distribution of deaths (left panel), the
curve changes its magnitude and shifts slightly upward on the age axes. Calculating
MADstd from the standardized age distributions of deaths in the constant-birth model
yields 78.93 and 79.33 years for 2019 and 2020, respectively.

In the period life table, every member of the hypothetical population dies and the
total number of life table deaths always equals the life table radix; i.e., the assumed
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number of new-borns. In our empirical example we set the radix to 1 to be consistent with
MADstd.

Figure 4: Ratios of age-specific mortality rates 𝒎(𝒙) for Swedish women and
men between 2019 and 2020

Source: Data obtained from HMD (2023).

Accordingly, the life table death count does not change between 2019 and 2020. As
can be seen in the right panel of Figure 3, the more recent curve shifts slightly to the left,
indicating a lower average age at death in 2020 (80.59 years in 2020 and 81.33 years in
2019). The reason for the different impact of the increase in mortality on 𝑒0 as compared
to MADstd is that the 𝑆(𝑥, 𝑡) function is less sensitive than the 𝑙(𝑥, 𝑡) function to an
increase in period mortality rates from one year to another. As explained above, 𝑆(𝑥, 𝑡)
includes a large number of historical death rates, whereas 𝑙(𝑥, 𝑡) is based on one set of
actual age-specific mortality rates only, and thus reacts more strongly to the change in
period mortality (Rodriguez 2006; Wilmoth 2005; Guillot 2003).
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Table 3: Observed mean age at death, MAD, standardized mean age at death,
MADstd, and period life expectancy at birth, e0, for women and men
in five selected populations, 2019 and 2020

Year 2019 Year 2020 Difference 2020-2019

Women MAD MADstd e0 MAD MADstd e0 MAD MADstd e0

Denmark 80.68 81.49 83.38 80.66 81.57 83.47 –0.02 +0.08 +0.09
England & Wales 80.85 81.39 83.45 81.12 81.64 82.57 +0.27 +0.25 –0.88
France 83.15 83.75 85.52 83.55 84.11 85.11 +0.41 +0.36 –0.41
Sweden 82.44 83.16 84.68 82.84 83.58 84.26 +0.41 +0.42 –0.42
Switzerland 82.92 84.25 85.52 83.36 84.65 85.04 +0.44 +0.40 –0.48

Men
Denmark 75.65 76.74 79.43 76.07 77.11 79.58 +0.42 +0.37 +0.14
England & Wales 76.09 76.88 79.80 76.48 77.24 78.60 +0.39 +0.36 –1.21
France 75.92 76.64 79.75 76.57 77.30 79.19 +0.65 +0.66 –0.57
Sweden 77.74 78.93 81.33 78.15 79.33 80.59 +0.42 +0.40 –0.74
Switzerland 77.30 79.47 81.87 78.00 80.05 80.99 +0.70 +0.58 –0.88

Source: Own calculations based on data from HMD (2023) and Destatis (2023).

The decomposition of the change in the three mortality measures between 2019 and
2020 reveals that the decrease in 𝑒0 can be attributed to the negative covariance (or
correlation) between age and the change in age structure of the life table population. The
correlation between age and the relative time derivatives of 𝑁(𝑥, 𝑡), 𝑆(𝑥, 𝑡), and 𝑙(𝑥, 𝑡)
are shown in Figure 5, while the values for the covariance are presented in Table 4. Note
that we used the approximation of derivatives as suggested by Vaupel and Canudas-
Romo (2002: 12).

In our case, it is difficult to separate the change in 𝑒0 or MADstd into the effects of
changes in mortality rates vs. population structure because 𝑙(𝑥, 𝑡) and 𝑆(𝑥, 𝑡) are actually
functions of age-specific mortality rates themselves. Still, the exercise can help us to
understand why MAD and MADstd increase in 2020, whereas 𝑒0 decreases: both the
observed age structure and the standardized age distribution have shifted to older ages,
as indicated by the positive covariance between �́� and age. This results in an increase in
the average age at death.
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Table 4: Decomposition of the change in the mean age at death, MAD,
standardized mean age at death, MADstd, and period life expectancy
at birth, e0, for women and men in Sweden and Switzerland between
2019 and 2020

Women Men
MAD MADstd e0 MAD MADstd e0

Sweden
𝐴(2019) 82.44 83.16 84.68 77.74 78.93 81.33
𝐴(2020) 82.84 83.58 84.26 78.15 79.33 80.59
�̇�(2019.5) +0.41 +0.42 –0.42 +0.42 +0.40 –0.74
𝐶𝑜𝑣(𝑥, �́�) +0.35 +0.31 +0.27 +0.28 +0.26 +0.23
𝐶𝑜𝑣(𝑥, �́�) +0.05 +0.11 –0.69 +0.13 +0.14 –0.97
𝐶𝑜𝑣(𝑥, �́�) + 𝐶𝑜𝑣(𝑥, �́�) +0.40 +0.42 –0.42 +0.42 +0.40 –0.74

Switzerland
𝐴(2019) 82.92 84.25 85.52 77.30 79.47 81.87
𝐴(2020) 83.36 84.65 85.04 78.00 80.05 80.99
�̇�(2019.5) +0.44 +0.40 –0.48 +0.70 +0.58 –0.88
𝐶𝑜𝑣(𝑥, �́�) +0.33 +0.26 +0.23 +0.48 +0.41 +0.37
𝐶𝑜𝑣(𝑥, �́�) +0.11 +0.13 –0.71 +0.22 +0.18 –1.25
𝐶𝑜𝑣(𝑥, �́�) + 𝐶𝑜𝑣(𝑥, �́�) +0.43 +0.39 –0.48 +0.70 +0.58 –0.88

Source: Own calculations based on data from HMD (2023).

Figure 5: Change in age structures 𝑵(𝒙), 𝑺(𝒙), and 𝒍(𝒙) for Swedish women
and men between 2019 and 2020

Source: Own calculations based on data from HMD (2023).
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By contrast, in the life table the increase in period mortality rates in 2020 makes the
age structure younger. As a consequence, the covariance between �́� and age is negative
and 𝑒0 decreases between the two points in time. The covariance between �́� and age is
consistently positive, and thus less important for explaining the increase vs. decrease in
the three measures between 2019 and 2020. The reason why the magnitude of this
covariance differs between the three measures – even though they all use the same ages
x and age-specific mortality rates 𝜇(𝑥, 𝑡) – is the different weighting in the covariance
function (see Equation A2 in the Appendix).

4. Discussion

In this paper we have defined MAD, MADstd, and 𝑒0 as weighted averages with three
different weighting functions: the observed death distribution, the standardized death
distribution, and the life table death distribution. The work of Vaupel and Canudas-Romo
(2002) and Vaupel and Zhang (2012) provided the formal basis for relating cross-
sectional differences and time changes to differences in the underlying age structures of
the three measures.

Our results reveal that 𝑒0 consistently exceeds MAD and MADstd due to higher
proportions of older individuals in the hypothetical life table population as compared to
the real population and the hypothetical constant-birth population. MADstd is less than 𝑒0
as long as mortality rates decrease over time. When mortality rates remain unchanged for
a long time (about 100 years) MADstd will equal 𝑒0 (Bongaarts and Feeney 2003).
Consequently, the size of the gap between MADstd and 𝑒0 depends on the difference
between the mortality schedule implied by period mortality rates and the past mortality
experience of cohorts. In Sweden and Switzerland, MADstd almost reached the level of
𝑒0 in the year 2020 among women. This is because both populations show comparatively
low historical mortality rates, which makes the difference between the 𝑆(𝑥, 𝑡) and 𝑙(𝑥, 𝑡)
functions smaller than in other populations. The gap between the two functions became
even smaller when period mortality rates increased in 2020. Trends in MAD are less
related to mortality changes. When we look at levels and trends in the 𝑁(𝑥, 𝑡) function,
the age structure is mostly driven by fertility changes. Consequently, the proportion of
deaths is related to the size of the cohorts, with particularly strong effects from the baby
boomer generation. Therefore, MAD is lower than MADstd and 𝑒0 because MAD involves
higher weights on mortality rates in middle ages. As soon as the baby boomer generation
reaches older ages, their high weight shifts the age structure to older ages and MAD
increases markedly.

To make appropriate mortality comparisons between populations and period,
longevity measures should be standardized for the effects of fertility and migration. We
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have shown that MADstd and 𝑒0 can be seen as standardized in this respect, and therefore
they provide valuable tools for comparing mortality levels between populations or across
time. It might also be preferable that a longevity measure suggests an average age at death
that can serve as an orientation or benchmark age for individuals living and dying today.
A person reaching his/her 80th birthday might be interested in the average lifespan of
his/her peers. An approach that provides such insights is lagged cohort life expectancy
(LCLE) (Guillot and Payne 2019; Guillot and Kim 2011). Guillot and Payne (2019: 406)
describe LCLE as follows: “Instead of plotting cohort life expectancy against the cohort’s
year of birth, c, as typically done, cohort life expectancy is lagged by its own value and
plotted against the cohort’s mean year at death, t(c)”. For instance, LCLE for French
women in 2000 is about 72 years, indicating that the cohort born 72 years ago (in 1928)
reaches its average age at death in the year 2000. Because LCLE provides a reference age
that separates early deaths from late deaths, scholars have compared LCLE to other
longevity measures such as 𝑒0 and CAL (see Guillot and Kim 2011). The current 𝑒0 level
suggests a substantially later average age at death than LCLE, as it reflects only recently
observed mortality rates (𝑒0 is 82.8 years for French women in 2000). Even though CAL
and LCLE are conceptually close to each other, they are still different longevity measures
(CAL is 76.66 years). The gap between MADstd and LCLE is even larger than CAL vs.
LCLE because the MADstd value is usually higher than CAL and hence closer to 𝑒0
(MADstd is 79.88 years). A table with empirical values for MADstd, CAL, LCLE, and 𝑒0
can be found in the Appendix.

Finally, we have analysed how the three mortality measures analysed in this paper
reflect a sudden increase in period mortality rates. Our results are in line with previous
findings, showing that only 𝑒0 decreases in the year with higher period mortality rates
(Wilmoth 2005; Rodriguez 2006). However, what is often overlooked is that the
magnitude of the change in 𝑒0 depends not only on the magnitude of changes in age-
specific mortality rates between two periods but also on the initial level of 𝑒0. The initial
level of 𝑒0 and the corresponding 𝑙(𝑥, 𝑡) function provide weights for changes in age-
specific mortality rates (Pollard 1982; Arriaga 1984; Vaupel 1986; Vaupel and Canudas-
Romo 2003; Goldstein and Lee 2020; Modig, Rau, and Ahlbom 2020). In other words, a
population with a higher 𝑒0 is affected differently by an identical change in period
mortality rates between two periods than a population with a lower 𝑒0 level. This can
have concrete consequences for life expectancy in situations like the recent Covid-19
pandemic. If we assume, for example, that Swedish men would have experienced their
𝑒0 level of 1989 in the year 2019 (74.78 years) and the population had experienced exactly
the same change in period mortality rates between 2019 and 2020 (measured through the
ratios of mortality rates depicted in Figure 4), the decrease in 𝑒0 would have been 0.9
years instead of the actual 0.7 years.
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To avoid the effects of weights on measuring mortality differentials, it has also been
suggested that the geometric mean of age-specific mortality rates be used (Schoen 1970,
1976). The index called del (∇) summarizes age-specific mortality rates but gives equal
weight to each age group. We used ∇ to quantify the change in mortality rates shown in
Figure 4 and found that Swedish women and men experienced similar relative differences
in age-specific mortality rates between 2019 and 2020. The comparison of 𝑒0 and ∇ shows
that populations ranked in terms of their 𝑒0 losses do not necessarily reflect which
population experienced the highest or lowest changes in age-specific mortality rates (see
Appendix). However, results for the four selected countries indicate rather small
differences between ∇ and 𝑒0; i.e., 𝑒0 and ∇ reflect the increase in period mortality rates
observed between 2019 and 2020 similarly.

5. Conclusions

The constant-birth population model provides an alternative way to obtain a standardized
mortality indicator, referred to as MADstd. The measure is closely related to CAL. While
CAL is not an average age at death but instead refers to the relative size of the constant-
birth population, MADstd is the average age at death in the constant-birth population.
Hence it makes sense to focus on MADstd instead of CAL because it allows a comparison
with other average ages at death, such as the observed MAD and 𝑒0.

Given that the observed MAD value is affected by changes in births and migration
flows, our comparison has focused mainly on differences between the two standardized
mortality measures, MADstd and 𝑒0. Ultimately, the difference can be attributed to the
underlying weighting functions, 𝑆(𝑥, 𝑡) vs. 𝑙(𝑥, 𝑡). The former depends on the past
mortality experience of cohorts which are present in the population in a certain period.
For instance, individuals living in Sweden or Switzerland were subjected to lower
mortality rates over the course of their lives than people in Germany or England and
Wales. MADstd reflects the differences in historical mortality, making it valuable for
evaluating a population’s mortality level in terms of its lifelong mortality risks.

Yet MADstd and 𝑒0 are based on hypothetical population models, making it difficult
to infer from them the average age at death for any real birth cohort. In fact, neither
measure corresponds to LCLE. MADstd and 𝑒0 are usually higher than the average age at
death for birth cohorts dying today. In contrast to 𝑒0, MADstd is not suitable for detecting
the most recent changes in period mortality and is therefore less useful for any public
health authority that needs to implement health measures in a timely fashion. In sum,
MADstd provides an alternative way to obtain a standardized mortality measure, but
cannot be seen as a substitute for 𝑒0 because the two measures reflect mortality
experiences that are based on different time frames.
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Appendix

Derivation of the lagged cohort life expectancy (LCLE)

Let 𝑒0𝑐(𝑡) be the life expectancy at birth for the cohort born in year t. The average year at
death for this cohort is 𝑐 = 𝑡 + 𝑒0𝑐(𝑡). In the LCLE approach, cohort life expectancy is
not plotted against its year of birth t, but lagged by its own value and plotted against the
cohort’s mean year at death, c (Guillot and Payne 2019). It is possible to estimate LCLE
for recent years but it requires making assumptions about future mortality rates; i.e.,
forecasting age-specific mortality rates in order to estimate 𝑒0𝑐(𝑡) for more recent birth
cohorts. For this paper, it is sufficient to compare LCLE to other longevity measures for
years with available data. For instance, the youngest Danish cohort with available 𝑒0𝑐 in
the HMD was born in 1931. Women of this cohort lived on average 71.18 years, men
lived 66.66 years. Hence the mean year at death for women is 2002.18 (1931 + 71.18)
and for men 1997.66 (1931 + 66.66). These are the most recent LCLE values we can
provide for Denmark based on observed data.

Table A-1: Period life expectancy at birth e0, cross-sectional average length of
life CAL, standardized mean age at death MADstd, and lagged cohort
life expectancy LCLE, women, various countries

Year 𝒆𝟎 CAL MADstd LCLE Exact year c

Denmark 1998 78.87 75.59 77.37 71.18 1998.18
1999 78.87 75.74 77.78 71.41 1999.41
2000 79.11 75.92 77.80
2001 79.20 76.10 78.11 71.59 2000.59

England and Wales 1998 79.86 75.55 77.84 71.31 1998.31
1999 79.92 75.80 78.07
2000 80.35 76.06 78.09 71.56 1999.56
2001 80.57 76.33 78.30 72.29 2001.29

France 2000 82.76 76.66 79.88 71.74 1999.74
2001 82.90 77.02 80.03
2002 83.00 77.34 80.32 72.55 2001.55
2003 82.92 77.66 80.77
2004 83.81 77.98 80.51 73.61 2003.61

Sweden 1999 81.87 78.45 80.21 74.61 1998.61
2000 81.99 78.67 80.23 74.85 1999.85
2001 82.03 78.90 80.47 74.85 2000.85
2002 82.07 79.11 80.76 75.33 2002.33

Switzerland 2005 83.67 79.95 81.67 76.63 2004.63
2006 83.81 80.22 81.69 77.13 2006.13
2007 83.93 80.48 81.98 77.44 2007.44
2008 84.14 80.73 82.32
2009 84.16 80.96 82.55 77.78 2008.78

Source: Own calculations based on data from HMD (2023).
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Table A-2: Period life expectancy at birth 𝒆𝟎, cross-sectional average length of
life CAL, standardized mean age at death MADstd, and lagged cohort
life expectancy LCLE, men, various countries

Year 𝒆𝟎 CAL MADstd LCLE Exact year c

Denmark 1991 72.47 68.91 70.98 64.63 1990.63
1992 72.56 69.08 71.35 65.28 1992.28
1993 72.60 69.26 71.71 65.40 1993.40
1994 72.78 69.41 71.46
1995 72.73 69.58 71.81 65.51 1994.51
1996 73.05 69.72 71.71 65.62 1995.62

England and Wales 1992 73.73 68.25 70.42 64.51 1991.51
1993 73.68 68.56 70.84 65.27 1993.27
1994 74.21 68.88 70.85
1995 74.14 69.20 71.15 66.31 1995.31

France 1990 72.72 65.62 68.05 62.18 1990.18
1991 72.87 65.99 68.14
1992 73.14 66.35 68.41 63.21 1992.21
1993 73.25 66.71 68.84
1994 73.64 67.07 69.01 64.16 1994.16

Sweden 1990 74.81 70.65 72.71 67.35 1990.35
1991 74.94 70.88 72.85
1992 75.36 71.12 73.21 67.87 1991.87
1993 75.49 71.37 73.60 68.06 1993.06
1994 76.08 71.62 73.51 68.33 1994.33
1995 76.17 71.89 74.01
1996 76.52 72.14 74.34 68.53 1995.53
1997 76.70 72.40 74.43 69.05 1997.05
1998 76.86 72.67 74.65
1999 77.07 72.93 74.91 69.51 1998.51
1999 77.07 72.93 74.91 69.46 1999.46
2000 77.38 73.18 75.03
2001 77.54 73.46 75.12 70.38 2001.38

Switzerland 1991 74.11 69.82 71.06 67.13 1991.13
1992 74.45 70.09 71.26
1993 74.90 70.37 71.92 67.89 1992.89
1994 75.14 70.65 71.99 67.93 1993.93
1995 75.29 70.92 72.43
1996 75.93 71.20 72.95 68.72 1995.72
1997 76.24 71.48 73.33 69.05 1997.05
1998 76.31 71.77 73.57
1999 76.78 72.05 73.94 69.66 1998.66
2000 76.91 72.33 73.95 69.96 1999.96
2001 77.35 72.64 74.26
2002 77.72 72.94 74.64 70.77 2001.77

Source: Own calculations based on data from HMD (2023).
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Derivation of the geometric mean of age-specific mortality rates (𝛁)

The del index (∇) was introduced by Schoen (1970) and is defined as

∇(t) = (∏ 𝑚(𝑥, 𝑡)𝑛
𝑖=1 )1/𝑛, (A1)

where 𝑚(𝑥, 𝑡) are the age-specific mortality rates in time t. Both 𝑒0 and ∇ are functions
of 𝑚(𝑥, 𝑡). However, the difference is that ∇ gives equal weight to each age. Following
Schoen (1970), we compare the ratio of ∇ to the ratio of life table crude death rate (1/𝑒0),
instead of focusing on absolute losses in 𝑒0 (Table A-3).

One could make the argument that age-specific mortality rates at younger ages with
lower numbers of deaths are highly fluctuating over time in low-mortality countries with
smaller population sizes, such as Switzerland. In addition, COVID-19 has particularly
affected mortality rates at older ages. For this reason, we provide the same analysis,
considering only mortality at age 50 and older (Table A-4). We used mortality rates for
5-year intervals, which were obtained from the HMD (2023).

Table A-3: Change in the geometric mean of age-specific mortality rates 𝛁 and
in the life table crude death rate 1/𝒆𝟎 between 2019 and 2020

Geometric Mean (𝛁) Life Table Crude Death Rate (1/𝒆𝟎)

2019 2020 Ratio 2019 2020 Ratio
Women
Denmark 0.0029 0.0027 0.9231 0.0120 0.0120 0.9989
France 0.0028 0.0028 0.9938 0.0117 0.0117 1.0048
England and Wales 0.0033 0.0033 1.0157 0.0120 0.0121 1.0107
Switzerland 0.0024 0.0026 1.0744 0.0117 0.0118 1.0056
Sweden 0.0028 0.0028 0.9906 0.0118 0.0119 1.0050
Men
Denmark 0.0045 0.0046 1.0235 0.0126 0.0126 0.9982
France 0.0050 0.0051 1.0118 0.0125 0.0126 1.0072
England and Wales 0.0048 0.0051 1.0635 0.0125 0.0127 1.0153
Switzerland 0.0038 0.0042 1.1009 0.0122 0.0123 1.0109
Sweden 0.0040 0.0043 1.0903 0.0123 0.0124 1.0092

Source: Own calculations based on data from HMD (2023).
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Table A-4: Change in the geometric mean of age-specific mortality rates 𝛁 and
in the life table crude death rate 1/𝒆𝟎 between 2019 and 2020,
considering only mortality at ages 50 and older

Geometric Mean (𝛁) Life Table Crude Death Rate (1/𝒆𝟎)

2019 2020 Ratio 2019 2020 Ratio
Women
Denmark 0.0315 0.0309 0.9803 0.0118 0.0118 0.9985
France 0.0250 0.0263 1.0519 0.0115 0.0116 1.0056
England and Wales 0.0300 0.0332 1.1072 0.0118 0.0119 1.0107
Switzerland 0.0246 0.0258 1.0454 0.0116 0.0116 1.0052
Sweden 0.0268 0.0281 1.0482 0.0117 0.0117 1.0056
Men
Denmark 0.0455 0.0448 0.9849 0.0123 0.0123 0.9977
France 0.0420 0.0450 1.0709 0.0122 0.0123 1.0081
England and Wales 0.0412 0.0466 1.1324 0.0122 0.0124 1.0148
Switzerland 0.0358 0.0393 1.1002 0.0120 0.0121 1.0096
Sweden 0.0372 0.0407 1.0940 0.0121 0.0122 1.0089

Source: Own calculations based on data from HMD (2023).

Approximation of derivatives in discrete time

We follow Vaupel and Canudas-Romo (2002: 12) and use the mid-point approximation
for finding the derivative of function 𝑣(𝑥, 𝑡). First, we estimate the mid-point value of
the function 𝑣(𝑥, 𝑡),

𝑣 ቀ𝑥, 𝑡 + ℎ
2
ቁ ≈ [𝑣(𝑥, 𝑡) ⋅ 𝑣(𝑥, 𝑡 + ℎ)]

1
2, (A2)

where h denotes the number of years in the analysed time interval. Then the relative
derivative for the function 𝑣(𝑥, 𝑡) is given by,

�́� ቀ𝑥, 𝑡 + ℎ
2
ቁ ≈

lnቂ𝑣(𝑥,𝑡+ℎ)
𝑣(𝑥,𝑡) ቃ

ℎ
. (A3)

Finally, the derivative of the function 𝑣(𝑥, 𝑡) is estimated by,

�̇� ቀ𝑥, 𝑡 + ℎ
2
ቁ = �́� ቀ𝑥, 𝑡 + ℎ

2
ቁ ⋅ 𝑣 ቀ𝑥, 𝑡 + ℎ

2
ቁ. (A4)
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