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Formal Relationship

The optimal transition to a stationary population for concentrated
vitality rates

Gustav Feichtinger1

Stefan Wrzaczek2

Abstract

BACKGROUND
Several countries nowadays and in the past face a birth rates below replacement level. To
what extent should the fertility of this shrinking population be increased during a given
planning period such that it approaches stationarity at the end as close as possible? Both
immediate adaptation to the replacement level as well as delaying it to the end of the
planning period are suboptimal.

METHODS
Distributed parameter optimal control theory provides an appropriate tool to ascertain the
efficient intertemporal trade-off between costly birth control and zero population growth.

RESULTS
It turns out that the optimal adaptation rate of the net reproduction rate (NRR) balances
between unacceptable adjustment costs for fertility and huge deviations of the terminal
age composition from the desired stationary one. The optimal adaptation rate is mono-
tonically increasing with a curvature that depends on the growth rates of the NRR, the
fertile population, and the value of newborns.

CONTRIBUTION
The paper analytically characterizes the shape of the transition to a stationary population
in an optimal way.
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1. Relationship

Keyfitz (2009) asks how much a rapidly growing population continues to increase when
the net reproduction rate (NRR) falls immediately to bare replacement. This momentum
of demographic growth arises because the age distribution of such a population is favor-
able to increase. However, since nowadays the fertility of many industrialized countries
is at a subreplacement level and their populations are shrinking, the problem is opposite:
To avoid a more extensive population decrease, how must the NRR be increased on its
way to stationarity? Due to the inertia of age-structures, even an instantaneous increase
in fertility to replacement level cannot prevent an additional population decrease. Since
the application of population policy measures needs time, we assume a planning period
in which the fertility can be gradually adapted to reach a NRR equal to 1 at its end as
well as a stationary age-structure as close as possible. However, the meaning of “gradual
adaptation” remains an open question. Does it refer to a uniform increase or a higher
change at the beginning of the planning interval or at its end? The answer leads us to
optimality.

Consider a one-sex age-structured population (females) that is closed with respect to
migration. In what follows, we deal with population policy questions, fertility being the
only control instrument.

Although birth control is affected by socioeconomic, cultural, political, and other
measures, in the present context we assume that births can be adapted directly. Assum-
ing a continuous deterministic framework and denoting the NRR at time t as R(t), its
development over time is described by the ordinary differential equation:

Ṙ(t) = k(t)R(t), R(0) = R0, (1)

with the adaptation rate k(t) and initial NRR of R0. Extending Coale (1972, chapter
4), who considers populations with a constant negative rate, k(t) denotes a variable,
which can be chosen by a central planner. Negative values of k(t) decrease reproduc-
tion, whereas positive ones lead to an increasing NRR.

Two simplifying assumptions allow to obtain analytical results in the following in-
tertemporal optimization procedure: firstly, a unique age of females, µ, at which they
give birth to their girls,3 and secondly, rectangular mortality, meaning that each individ-
ual survives to a maximal age of ω years. The population density P (t, a) (aged a at time
t) evolves according to the McKendrick–von Foerster partial differential equation (see

3 Note that this assumption made by Coale (1972, chapter 4) and his followers is crucial for the analysis of
populations whose fertility declines at a constant rate.
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Keyfitz and Kezfitz 1997)

Pt(t, a) + Pa(t, a) = 0, (2)

where the zero at the right-hand side of (2) results from the rectangular mortality as-
sumption. P (0, a) = P0(a) (for a ∈ [0,ω]) denotes the initial age distribution, and
P (t, 0) = B(t) = P (t,µ) the number of newborns at t.

To simplify the analysis we assume further that negative and positive adaptation rates
k(t) are equally costly with decreasing marginal efficiency reflected by convex (i.e., in
our case quadratic) costs C1k

2(t), where C1 is a model parameter. The decision maker
has two objectives over a fixed-time horizon T . The first intention is to end up with a
NRR of 1 as a hard constraint in the sense that R(T ) = 1 has to be met no matter what
the costs.

Due to the inertia of age structures, the population at end time T is not stationary.
Thus, we additionally demand a terminal age-structure as close as possible to the station-
ary one (as implied by the life table) as a second goal. Note that this is a soft constraint.

Thus, we look for the optimal trade-off between (quadratic) costs for birth control
and a target R(T ) = 1, as well as the (quadratic) deviation from the uniform distribution
c̄(a) (due to the rectangular survival assumption):

V(R0) :=

∫ T

0

C1k(t)
2dt+ C2

∫ ω

0

(c(T , a)− c̄(a))
2 da, (3)

where c(T , a) := P (T ,a)∫ ω
0

P (T ,a)da (for a ∈ [0,ω]).

In mathematical terms V(R0) denotes the objective function, C1k
2(t) the objective

functional, and C2(c(T , a) − l(a))2 the salvage value function, where C2 measures the
unit cost of the mismatch of the final stationary age distribution. Together with the differ-
ential equations (1) and (2) as constraints, the decision maker faces the following finite
time optimal control problem:
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min
k(t)

V(R0) (4a)

s.t. Pt(t, a) + Pa(t, a) = 0, P (0, a) = P0(a) (4b)
P (t, 0) = B(t) (4c)

Ṙ(t) = k(t)R(t), R(0) = R0,R(T ) = 1 (4d)
Ṅ(t) = B(t)−D(t), N(0) = N0 (4e)

B(t) =

∫ ω

0

δ(a− µ)P (t, a)R(t)da (4f)

D(t) =

∫ ω

0

δ(a− ω)P (t, a)da, (4g)

where N(t) and D(t) define the total population and deaths at t that are necessary to
fit c(t, a) in the form of a standard optimal control model. δ(x) denotes the Dirac delta
function (introduced for mathematical convenience to apply the Maximum Principle).

To reach the terminal goal R(T ) = 1, according to (4d) it is intuitively clear that
the adaptation rate k(t) has to be positive. The question remains how to distribute these
efforts for a fertility increase over time to guarantee an optimal trade-off between adapta-
tion costs and a penalty for deviating from the stationary age-structure.

Relation - shape of adaptation. Assume that an optimal solution for (4) exists and let
k∗(t) denote the optimal efforts to adapt the NRR. If fertility and mortality are concen-
trated at µ and ω, respectively, k∗(t) is positive and strictly decreasing if R0 < 1 over the
entire time horizon, that is,

k∗(t) > 0

k̇∗(t) < 0
for R0 < 1, t ∈ [0,T ]. (5)

The curvature can be expressed as the product of the slope of k∗(t) and the sum of the
growth rates of the NRR, the fertile population, and the value of newborns, that is,

k̈(t) =

(
Ṙ(t)

R(t)
+

Pt(t,µ)

P (t,µ)
+

ξt(t, 0)

λ̄N + ξ(t, 0)

)
k̇(t), (6)
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with

Ṙ(t)

R(t)
> 0,

Pt(t,µ)

P (t,µ)
⋛ 0,

ξt(t, 0)

λ̄N + ξ(t, 0)
< 0. (7)

If the growth rate of the NRR is smaller than the sum of the growth rates of the fertile
population and the value of a newborn, k∗(t) is convex (locally, i.e., pointwise) at t ∈
[0,T ] and concave otherwise.

The decomposition of the curvature as a product of the slope and the sum of growth
rates (as explicitly written in (6)) has the following intuition. The curvature denotes
(from a mathematical point of view) the slope of k∗(t). In that respect the three men-
tioned growth rates are disentangling three effects driving the population dynamics and
the (value of the) deviation from c̄(a) at T . Let us discuss the effects one after the other.
The NRR directly relates to the number of newborns at t (as product with the fertile pop-
ulation) and additionally must fulfill the hard constraint to end up at 1 at T . The fertile
population is mirroring the effect of the NRR. The value of a newborn corresponds to the
marginal effect to the deviation from c̄(a) at T , which is a soft constraint in the sense that
deviations are allowed but (in terms of the objective function) costly.4

The reason why the curvature of k(t) can change the sign lies in the time-lag of
problem (4), which is due to the time that elapses from the birth date of a newborn to
reaching the fertile age itself, which is µ years. To build an intuition on the parameter
dependence (note that µ, C1, and C2 are the only parameters of model (4)) of the relation
let us consider the hypothetical situation of µ = 0. In this case a change in the growth
rate of the NRR has an immediate effect on the growth rate of the fertile population (i.e.,
the time-lag is zero), yielding Pt(t,µ)

P (t,µ) > 0 for R0 < 1. Sufficiently high-cost parameters
C1 and C2 imply that c̄(a) (uniform for rectangular mortality) is approached as flat as
possible, yielding a nearly uniform final age-distribution (because of parameter C2) and
without any fluctuations during the transitional period (because of C1). The latter one is
possible as the time-lag is zero. Continuity of the optimal control model (4) implies that
convex k(t) (for R0 < 1) is more likely for younger fertility ages and high C1.

4 Note that meeting c(T , a) = c̄(a) (for all a ∈ [0,ω]) as a hard constraint would probably not be possible
within a finite time horizon due to the time-lagged effect of the NRR on the density of the population.
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2. Proof

Model (4) is an age-structured optimal control model (see Feichtinger et al. 2003) in-
tegrating age-structured state variables (P (t, a)) as well as concentrated state variables
(R(t) and N(t)).5

The Hamiltonian reads

H = − 1

ω
C1k

2(t) + ξ(t, a) · 0 + 1

ω
λR(t)k(t)R(t) +

1

ω
λN (t)(B(t)−D(t))

+ηB(t)δµP (t, a)R(t) + ηD(t)δωP (t, a), (8)

with ξ(t, a), λR(t), and λN (t) denoting the adjoint variables (dynamic shadow price)
of (distributed and concentrated) state variables P (t, a), R(t), and N(t), respectively.
ηB(t) and ηD(t) are the adjoint variables of the aggregated state variables B(t) and D(t).
Derivation yields the following first order condition:6

ω · Hk = −2C1k(t) + λR(t)R(t) = 0 =⇒ k∗(t) =
λR(t)R(t)

2C1
, (9)

where the asterisk denotes the optimal value of k(t).
Following the Maximum Principle, the shadow prices (referred to as adjoint or

costate variables in optimal control theory) evolve according to the following dynamics:

ξt(t, a) + ξa(t, a) = −ηB(t)δµR(t)− ηD(t)δω

λ̇R(t) = −λR(t)k(t)−
∫ ω

0

ηB(t)δµP (t, a)da

λ̇N (t) = 0

ηB(t) = ξ(t, 0) + λN (t)

ηD(t) = −λN (t) (10)

5 For the age-structured Maximum Principle, including concentrated state variables (which is not presented in
standard literature) see Feichtinger and Wrzaczek (2023), where also a sketch of a proof based on the variational
principle of needle variations is presented.
6 Since k(t) is not bounded Hk = 0 applies.
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together with the transversality conditions

ξ(t,ω) = 0

ξ(T , a) = − 2C2

N(T )

∫ ω

0

(c(T , a)− c̄(a)) da

λN (T ) =
2C2

N(T )

∫ ω

0

c(T , a) (c(T , a)− c̄(a)) da

λR(T ) no transversality condition, (11)

where we define λ̄N := 2C2

N(T )

∫ ω

0
c(T , a) (c(T , a)− c̄(a)) da and

ξ̄ := − 2C2

N(T )

∫ ω

0
(c(T , a)− c̄(a)) da. Using λ̇N (t) = 0, the transversality conditions as

well as the definition of the Dirac delta function, we simplify the first two equations of
(10) and obtain

ξt(t, a) + ξa(t, a) =

 −
(
ξ(t, 0) + λ̄N

)
R(t) for a = µ

λ̄N for a = ω
0 else

λ̇R(t) = −λR(t)k(t)−
(
ξ(t, 0) + λ̄N

)
P (t,µ). (12)

While λ̄N is a constant according to the final age-structure of the population, ξ(t, 0) can
be understood as the marginal value (i.e., the dynamic shadow price) of a newborn at time
t that develops over time. By backward integration and using the definition of the Dirac
delta function, we arrive at different expressions for ξ(t, 0) within (i) individuals born
before T − ω (referred to as region 1), (ii) individuals born thereafter but before T − µ
(region 2), and finally (iii) individuals born after T − µ (region 3).7 Figure 1 gives an
overview of the different regions within the Lexis diagram (showing time on the abscissa
and age on the ordinate). Individuals still alive at T are weighted by ξ̄ (from ξ(T , a) = ξ̄),
all others (dying before T ) by 0 (from ξ(t,ω) = 0). During the individual life, ξ(t, a)
remains constant except at childbearing age a = µ (crossing the dashed line in Figure 1),
where the expected reproduction enters as the sum of the effect to the total population and
the generalized Fisher’s reproductive value (see Fisher 1930 and Wrzaczek et al. 2010 or
Feichtinger et al. 2011 for an extensive discussion).

Application of this derivation yields the following values for ξ(t, 0) within the three

7 Note that the crossing from region 1 to 2 and from region 2 to 3 are have zero measure.

http://www.demographic-research.org 177

http://www.demographic-research.org


Feichtinger & Wrzaczek: The optimal transition to a stationary population for concentrated vitality rates

Figure 1: Derivation of the (shadow) value of newborns within the Lexis
diagram

𝜔𝜔

Region 1:
𝜉𝜉1(𝑡𝑡, 0)

𝜇𝜇

Region 3:
𝜉𝜉3(𝑡𝑡, 0)

Region 2:
𝜉𝜉2(𝑡𝑡, 0)

𝜉𝜉 𝑡𝑡,𝜔𝜔 = 0

𝜉𝜉 𝑇𝑇, 𝑎𝑎 = ̅𝜉𝜉

− 𝜉𝜉 𝑡𝑡, 0 + �̅�𝜆𝑁𝑁 𝑅𝑅(𝑡𝑡)

regions (superscript referring to the corresponding region) as

ξ1(t, 0) = ξ(t+ µ, 0)R(t+ µ) + λ̄NR(t+ µ)− λ̄N

ξ2(t, 0) = ξ(t+ µ, 0)R(t+ µ) + λ̄NR(t+ µ) + ξ̄

ξ3(t, 0) = ξ̄. (13)

Solving λ̇R(t) on the other hand gives

λR(t) = λR(T )e
∫ T
t

k(s′)ds′ +

∫ T

t

e
∫ s′
t

k(s′′)ds′′ (λ̄N + ξ(s′, 0)
)
P (s′,µ)ds′,(14)

which shows that the sign of λR(t) is determined by the signs of λ̄N + ξ(s′, 0) (noting
that population is nonnegative).

To analyze the evolution of the adaptation efforts to the NRR over time, we take the
time derivative of (9) and obtain the so-called Euler equation

k̇(t) = −R(t)P (t,µ)

2C1

(
λ̄N + ξ(t, 0)

)
, (15)

where we already used λN (t) = λ̄N . The curvature of k(t) is obtained by taking the
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second derivative, for which we obtain

k̈(t) =

 Ṙ(t)

R(t)︸ ︷︷ ︸
=:(a)

+
Pt(t,µ)

P (t,µ)︸ ︷︷ ︸
=:(b)

+
ξt(t, 0)

λ̄N + ξ(t, 0)︸ ︷︷ ︸
=:(c)

 k̇(t), (16)

which is the sum of the growth rates of (a) the NRR, (b) the fertile population, and (c) the
value of a newborn times k̇(t). (See Appendix A-1 for the complete derivation.)

For analyzing signs we start with adding λ̄N to (13) and obtain

λ̄N + ξ1(t, 0) =
(
ξ(t+ µ, 0) + λ̄N

)
R(t+ µ)

λ̄N + ξ2(t, 0) =
(
ξ(t+ µ, 0) + λ̄N

)
R(t+ µ) +

(
ξ̄ + λ̄N

)
λ̄N + ξ3(t, 0) =

(
ξ̄ + λ̄N

)
. (17)

Thus λ̄N + ξ3(t, 0) and λR(t) do not change the sign within [T − µ,T ]. For smaller
t (t ∈ [T − ω,T − µ)) we need to ensure that a possible different sign of λ̄N does not
change the sign of λ̄N+ξ3(t, 0) and (as a further unlikely consequence) the sign of λR(t).
This is because λ̄N will be dominated by ξ̄ if c(t, a) is sufficiently close to c̄(a), which
is guaranteed by a sufficiently high T (an assumption which is by no means necessary).
The analogous consideration carries over to t ∈ [0,T − ω). The explicit solution

R(T ) = R0e
∫ T
0

k(t)dt = 1 (18)

(together with continuity of the adjoint variable) further ensures that λR(T ) has the same
sign as λ̄N + ξ3(t, 0).

Finally, we have to put things together starting from R0 < 1:

• Sign of k(t): According to (9) the sign of k(t) is determined only by λR(t), which
does not change the sign. Due to the explicit solution (18), optimal adaptation
efforts are positive over the entire time horizon - that is, t ∈ [0,T ].

• Monotony (sign of k̇(t)): According to the Euler equation (15), the term λ̄N +
ξ(t, 0) determines the sign of k̇(t). Since this term does not change the sign during
the time horizon (for a sufficiently high T , as discussed in the previous paragraph),
k(t) decreases over the entire time horizon (negative k̇(t)) - that is, t ∈ [0,T ].

• Curvature (sign of k̈(t)): According to (16) the curvature has the sign of k̇(t)
(which is negative for R0 < 1) times the sum of (a), (b), and (c). The sign (a)
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is positive for all t due to the positive sign of k(t) for all t. For (c) we observe that
λ̄N + ξ(t, 0) is the aggregation of future terms having a positive sign. Therefore,
the derivative with respect to time is negative. The sign (b) is ambiguous. The sum
of these three terms therefore need not be constant over the time horizon. How-
ever, if (a) is smaller than the sum of (b) and (c), k(t) is convex at t (pointwise) and
concave otherwise.

These three points prove the assertion of the relation.

3. History and related results

In the highly stylized model we proposed, birth control causes convex costs. Whereas in
practice changes in reproductive behavior happen in a socioeconomic and cultural frame-
work (family planning, education of women, etc.), the proposed approach assumes that
fertility can be directly influenced. For some discussion regarding the dependence of fer-
tility on policy measures, see Sobotka et al. (2019) and Gauthier (2007). The issue of
influencing fertility may be difficult to study in isolation. It depends on the labor market,
welfare system, economic development, education, and gender equality but also culture
and norms. Moreover, the assumption that negative and positive efforts to adapt fertility
are equally costly is highly questionable. Negative k(t) - that is, decreasing reproduction
- requires different measures than positive adaptation efforts, such as supporting women
by establishing childcare facilities. Note that these heroic simplifications allow if-then-
statements of the following kind: If fertility can be adapted in a certain manner, then the
target of replacement and approximate stationarity are reached at the terminal time in an
optimal way.

To motivate why finding the optimal transition to stationary population is not a triv-
ial question, consider two polar cases: (i) increase of the NRR immediately (i.e., as fast
as possible) and (ii) increase of the NRR just before the end of the planning period. In
case (i), an immediate increase of the NRR to replacement level, implies huge population
waves in the birth trajectory and the age composition of the population, which is in con-
trast to stationarity at T (for T not too large). To dampen these waves in the following
manner, it would be necessary to counteract by decreasing and increasing the NRR sev-
eral times alternately by costly adaptation efforts. In case (ii), a too-slow increase just at
the end does not create huge waves but implies that it is impossible to reach stationaritity
of the population due to the time-lag of newborns until they reach the fertile age. Optimal
adaptation efforts, therefore, have to balance both effects - that is, obtaining huge waves
versus reaching stationarity at low acceptable costs - by a gradual change of the NRR
with the properties shown in the relation on the shape of the adaptation.

Clearly, all these population dynamics could be carried out by the usual component
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method of demographic projection - that is, by numerical simulations. The great advan-
tage of the analytical approach used in the present context is, that we are able to get
insights on which properties of the fundamentals are responsible for the resulting optimal
paths. For this fact, we mention equation (6) for the curvature of the optimal fertility
adaptation rate.

4. Applications

Most Eastern–European countries complain about a declining population. Besides heavy
outmigration, subreplacement fertility is the second cause for this development. Both
aspects are negatively assessed by responsible politicians. A personal communication
of the former director of the Vienna Institute of Demography, Wolfgang Lutz, might be
seen as typical in this context. He was asked by the president of Serbia what can be
done to fight against depopulation in his country. In 2021, Serbia had a NRR of 0.73
and a negative natural rate of population growth (i.e., shrinking rate) of 0.97%. The
government of this Balkan republic was much concerned about the future prospects. The
purpose of the model in this note is to investigate how pronatalist measures for given
planning intervals should be set most efficiently.

This raises the question whether countries with shrinking populations could benefit
from our analysis. It is a fact that emigration is the essential reason for depopulation.
Actual population policy coping with shrinking should be clearly a mix between migra-
tion and birth control measures. Neglecting migration aspects and restricting to fertility
planning, our model calculations are not appropriate to deliver insights for specific pop-
ulation policy advice. Nevertheless, we are able to obtain information as to what extent
quantity and timing of fertility must change to approach stationarity of the population in
an efficient way within a given time horizon.

Let us finally comment on an additional aspect of the transition to stationarity.
Lotka’s ergodicity result shows among other things that a given population subject to
constant age-specific vitality rates exhibits temporary fluctuations in its size and age dis-
tribution. While the mathematics of those ups and downs has been studied in chapter 3 of
the seminal book by Coale (1972), fertility-dependent fluctuations of age pyramids have
found interest already earlier; see, for example, Bourgeois-Pichat and Taleb (1970) and
Bourgeois-Pichat (1971). In an extension the trade-off between temporary fluctuations
and the terminal population size will be considered.

Our analytic result is obviously due to the assumption of concentrated vitality rates.
However, extending (4) by unimodal distributions of the fertility and mortality rates will
most probably (i.e., it cannot be shown analytically, but rather be backed up with numer-
ical simulations) not change the assertion of the relation on the shape of the adaptation.
The discussion (on effect of the time–lag) at the end of Section 1 then corresponds to the
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mean age of the fertility distribution. For bimodal distributions as observed, for instance,
in some South American countries, we are skeptical since that also implies that the dy-
namics of ξ(t, a) (see (10)) changes the sign more than once. Already in a hypothetical
scenario of a fertility distribution with two isolated ages of fertility, the assertion of the
relation is violated because of a more complicated structure of the adjoint variables that
prevents several conclusions within the proof.

We conclude by pointing out the key of this paper, which is the combination of a
formal demographic relationship with optimal control theory. Several problems in the-
oretical demography can be formulated in terms of optimization, which is the path that
leads to our core result.
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Edition) 25(5): 957. doi:10.2307/1530303.

Coale, A.J. (1972). Growth and structure of human populations. A Mathematical Inves-
tigation. Princeton, NJ: Princeton University Press.

Feichtinger, G., Kuhn, M., Prskawetz, A., and Wrzaczek, S. (2011). The reproduc-
tive value as part of the shadow price of population. Demographic Research 24:
709–718. doi:10.4054/DemRes.2011.24.28.

Feichtinger, G., Tragler, G., and Veliov, V.M. (2003). Optimality conditions for age-
structured control systems. Journal of Mathematical Analysis and Applications
288(1): 47–68. doi:10.1016/j.jmaa.2003.07.001.

Feichtinger, G. and Wrzaczek, S. (2024). The optimal momentum of population growth
and decline. Theoretical Population Biology 155: 51-66.
doi:10.1016/j.tpb.2023.12.002.

Fisher, R.A. (1930). The genetical theory of natural selection. Oxford: Clarendon Press.
doi:10.5962/bhl.title.27468.

Gauthier, A.H. (2007). The impact of family policies on fertility in industrialized coun-
tries: A review of the literature. Population Research and Policy Review 26(3):
323–346. doi:10.1007/s11113-007-9033-x.

Keyfitz, B. and Keyfitz, N. (1997). The McKendrick partial differential equation and
its uses in epidemiology and population study. Mathematical and Computer Mod-
elling 26(6): 1–9. doi:10.1016/S0895-7177(97)00165-9.

Keyfitz, N. (1971). On the momentum of population growth. Demography 8(1): 71–80.
doi:10.2307/2060339.

Sobotka, T., Matysiak, A., and Brzozowska, Z. (2019). Policy responses to low fertility:
How effective are they? UNFPA working paper series, Working paper No. 1.

Wrzaczek, S., Kuhn, M., Prskawetz, A., and Feichtinger, G. (2010). The reproductive
value in distributed optimal control models. Theoretical Population Biology 77(3):
164–170. doi:10.1016/j.tpb.2010.01.003.

http://www.demographic-research.org 183

https://doi.org/10.2307/1530303
https://doi.org/10.4054/DemRes.2011.24.28
https://doi.org/10.1016/j.jmaa.2003.07.001
https://doi.org/10.1016/j.tpb.2023.12.002
https://doi.org/10.5962/bhl.title.27468
https://doi.org/10.1007/s11113-007-9033-x
https://doi.org/10.1016/S0895-7177(97)00165-9
https://doi.org/10.2307/2060339
https://doi.org/10.1016/j.tpb.2010.01.003
http://www.demographic-research.org


Feichtinger & Wrzaczek: The optimal transition to a stationary population for concentrated vitality rates

Appendix

1. Derivation of (16)

We start by manipulating the Euler equation (15)

k̇(t) = −R(t)P (t,µ)

2C1

(
λ̄N + ξ(t, 0)

)
= − 1

2C1

(
R(t)P (t,µ)

(
λ̄N + ξ(t, 0)

))
. (19)

By taking the derivative we get

k̈(t) = − 1

2C1

(
Ṙ(t)P (t,µ)

(
λ̄N + ξ(t, 0)

)
+R(t)Pt(t,µ)

(
λ̄N + ξ(t, 0)

)
+R(t)P (t,µ)ξt(t, 0)

)
= − 1

2C1

( Ṙ(t)

R(t)
R(t)P (t,µ)

(
λ̄N + ξ(t, 0)

)
+
Pt(t,µ)

P (t,µ)
R(t)P (t,µ)

(
λ̄N + ξ(t, 0)

)
+

ξt(t, 0)

λ̄N + ξ(t, 0)
R(t)P (t,µ)

(
λ̄N + ξ(t, 0)

) )
= −R(t)P (t,µ)

2C1

(
λ̄N + ξ(t, 0)

)( Ṙ(t)

R(t)
+

Pt(t,µ)

P (t,µ)
+

ξt(t, 0)

λ̄N + ξ(t, 0)

)

=

(
Ṙ(t)

R(t)
+

Pt(t,µ)

P (t,µ)
+

ξt(t, 0)

λ̄N + ξ(t, 0)

)
k̇(t). (20)
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