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Research Article

Algorithm for decomposition of differences between
aggregate demographic measures and its application to life

expectancies, healthy life expectancies, parity-progression ratios and
total fertility rates.

Evgueni M. Andreev1

Vladimir M. Shkolnikov2

Alexander Z. Begun3

Abstract

A general algorithm for the decomposition of differences between two values of an
aggregate demographic measure in respect to age and other dimensions is proposed. It
assumes that the aggregate measure is computed from similar matrices of discrete
demographic data for two populations under comparison. The algorithm estimates the
effects of replacement for each elementary cell of one matrix by respective cell of
another matrix. Application of the algorithm easily leads to the known formula for the
age-decomposition of differences between two life expectancies. It also allows to
develop new formulae for differences between healthy life expectancies. In the latter
case, each age-component is split further into effects of mortality and effects of health.
The application of the algorithm enables a numerical decomposition of the differences
between total fertility rates and between parity progression ratios by age of the mother
and parity. Empirical examples are based on mortality data from the USA, the UK,
West Germany, and Poland and on fertility data from Russia.
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1. Introduction

In the 1980s, interest in decomposition appeared in relation to the particular problem of
the decomposition of differences between two life expectancies. Nowadays, researchers
are trying to develop general approaches which would solve the decomposition problem
for wider classes of demographic measures (Das Gupta, 1994, Das Gupta, 1999, Vaupel
and Canudas Romo, 2002, Shkolnikov, Andreev and Begun, 2001). The present study
contributes to this line of research.

A variety of aggregate measures can be computed from demographic tables. Each
of them aggregates a vector or a matrix of elementary rates of demographic events into
one number. When analyzing changes in an aggregate demographic measure in time or
its variations across countries, it is useful to be able to decompose observed changes or
differences by age and other demographic dimensions such as birth order, cause of
death, or population group. Decomposition aims at estimating contributions of
differences between elementary rates of demographic events to the overall difference
between two values of the aggregate measure.

This task is easier when analyzing for differences between two linear aggregates of
elementary rates like two age-standardized rates or two total fertility rates. However,
some of the aggregate measures are linked to elementary rates in a complex way. For
example, life expectancy at birth is a functional of the vector of age-specific death rates,
which has to be computed by complex acccumulation of these rates by means of the life
table. The conventional TFR is simply the sum of age-specific fertility rates. However,
TFR computed from age- and parity-specific fertility rates (denoted hereafter as
TFR_P) is a complex measure, which has to be computed by means of the parity
progression table.

A discrete method for decomposition of a difference between two life expectancies
was independently developed in the 1980s by three different researchers from Russia,
the USA, and France (Andreev, 1982, Arriaga, 1984, Pressat, 1985). The formulae for
decomposition by Andreev and Pressat are exactly equivalent. Arriaga’s formula is
written in a slightly different form, but it is essentially equivalent to the formulae by
Andreev and Pressat (Shkolnikov et al., 2001). A continuous version of the method for
decomposition of differences between life expectancies by age was developed by
Pollard (1982).

It appears that existing formulae for age-decomposition of the difference between
life expectancies are just particular forms of a general algorithm, which includes the
stepwise replacement of elements from one vector of age-specific mortality rates by
respective elements of another vector (Shkolnikov, Andreev and Begun, 2001). In a
more general case, elements of one multidimensional matrix should be replaced by
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respective elements of another matrix. This approach has its roots in the general idea of
standardization (Kitagawa, 1964).

The first section of the present paper is devoted to the decomposition of
differences between life expectancies and between healthy life expectancies. First, we
show how the conventional formula for decomposition of differences between life
expectancies derives from the general replacement algorithm. Second, the same
approach is applied to the age-decomposition of differences between health
expectancies. These measures combine data on mortality with data on health. Each
measure is calculated from two independent vectors, that is, of age-specific mortality
rates and of the age-specific prevalences of "good" health. Correspondingly, each
elementary age-component of the difference between two health expectancies is to be
split further into the effects of mortality and of health.

The second section deals with two aggregate measures of fertility based on the
parity-progression table, namely parity-progression ratios and the total fertility rate.
Both indicators are based on the matrix of elementary fertility rates by age of the
mother and parity. We show that the results of an exact decomposition according to the
algorithm of stepwise replacement differ from those returned by simpler methods.

In sections 1 we solve the decomposition problems by developing formulae for the
components. In section 2 we describe a procedure for their numerical estimation.

2. Decomposition of differences between two life expectancies
and between two healthy life expectancies

Life expectancies

Consider two life expectancies at birth and computed

in a conventional way from two vectors of age-specific mortality rates 11
xmM =  and

22
xmM = , x=0, 1, 2, ... ω . Transition from life expectancy 1

0e  to life expectancy 2
0e

corresponds to a transformation of vector 1M  into vector 2M . Such a transformation
can be completed by a stepwise replacement in an age-by-age mode of the elements of
the first vector by respective elements of the second vector.

Let ][ xM  be the vector, consisting of elementary mortality rates 2
1 ym  at ages

xy <  and 1
1 ym  at ages xy ≥  (Note 1). The difference 1

0
][

0
12

|0 )( eMe x
x −=−δ  is a

contribution of ages from xy <  to the overall difference 1
0

2
0 ee − . Using definitions of

the standard life tables functions, it can be presented as
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1
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where ∫=
x

x dttlL
0

|0 )( . The first additive term in (1) is the length-of-life effect of

replacement 1→2 at ages under x, the second additive term is the effect of 1→2
replacement at ages under x on life expectancy after age x.

The contribution of elementary age interval )1,[ +xx  can be expressed as
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Formula (2) is a form of the general algorithm of stepwise replacement for a one-
dimensional decomposition of a difference between two aggregate measures by age.

Substitution of (2) in (1) yields
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Thus, the overall difference between two life expectancies is
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where 1+ωl  and 1+ωe  are assumed to be 0.

In a similar way, one can decompose the difference 2
0

1
0 ee −  by making 2→1

replacements instead of 1→2 replacements:
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Components 12−
xδ  are somewhat different from components 21−− xδ . That is to say

that the decomposition of differences between life expectancies depends on the
permutation of vectors under comparison. Both E.Andreev (1982) and R.Pressat (1985)
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(3)

noticed this important feature. They suggested averaging as a way to obtain

symmetrical components i.e. )(
2

1 2112 −− −⋅= xxx δδδ .

The latter expression exactly replicates the formulae by E. Andreev (1982) and R.
Pressat (1985).

Numerous empirical examples of decompositions of differences between life
expectancies can be found elsewhere (Shkolnikov et al., 2001).

Replacement running from young to old ages looks natural and meaningful.
Nevertheless, it is not obvious why the replacement algorithm goes this way. Generally
speaking, it could be organized differently. For example, it could run from old to young
ages (Pollard, 1988) or in a random manner.

The most general procedure for the replacement of one element should include
12 −ω  replacements. For every age x the replacement should be performed with all

possible combinations of 1
yM  and 2

zM , at ages y and z other than age x. The final

contribution of age x should be calculated as the average of 12 −ω  components.
This procedure is extremely laborious given high numbers of age groups (about 20

for abridged life tables and about 100 for complete ones). Several numerical
experiments (not shown here) suggest that results of "complete" decomposition of
differences between life expectancies are close to the results returned by formula (3).
So, there are reasons to avoid laborious calculations if we agree to follow the existing
tradition of making replacements in ascending order of ages. It guarantees consistency
regarding the existing formulae for the decomposition of differences between life
expectancies by age and, as we show below, allows to develop similar decomposition
formulae for the age-decomposition for other aggregate measures such as Gini
coefficients or healthy life expectancies.
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Health expectancies

Health expectancy indicators can be built in several ways (Cambois, Robine and
Brouard, 1999, Robine, Romieu and Cambois, 1999). So far, the "observed prevalence
life table method" by D.Sullivan (1964) is the most widely used method. According to
this method, health expectancy is defined as

x
x

xLh π
ω

⋅= ∑
=0

10 , (4)

where xπ  is the share of person-years lived in "good" health within the elementary age

interval [x, x+1). Usually the health-weights xπ  are obtained from nationally

representative surveys including questions on self-perceived health, self-perceived
disability, ill-health or physical performance scales (Wilkins and Adams, 1983, Robine,
Romieu and Cambois, 1999, Doblhammer and Kityr, 2001, Crimmins and Saito, 2001).

According to (4), two vectors are needed for calculating the health expectancy.
These are the vector of age-specific mortality rates M  and the vector of age-specific
health-weights Π . Correspondingly, decomposition of the difference between two
health expectancies should include additional splitting of each age-component into
effects of mortality and health.

According to the algorithm of stepwise replacement, the component of the overall

difference in 0h  due to the difference between mortality rates at age x is

)]},(),([()],(),({[(
2

1 ]1[][
0

]1[]1[
0

][][
0

][]1[
0

12 ++++− Π−Π+Π−Π= xxxxxxxx
x MhMhMhMhλ (5)

The component of the overall difference in 0h  due to the difference in health-weights

at age x is

)]},(),([)],(),({[
2

1 ][]1[
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]1[]1[
0

][][
0

]1[][
0

12 xxxxxxxx
x MhMhMhMh Π−Π+Π−Π= ++++−γ (6)

Expressions (5) and (6) allow to estimate components 12−
xλ  and 12−

xγ  numerically. It is

also possible to develop formulae for them. Let
i
x

i
xi

x l

L
P 1

1 =  (i=1,2). Then formula (4)

can be re-written as
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The first term corresponds to ages younger than x, the second term corresponds to age
[x, x+1) and the third term corresponds to ages older than x. The second term is equal to
the number of person-years in good health lived at age x. It also consists of three

components: xl  depends on mortality at ages younger than x, xP1  depends on

mortality at age x and xπ  depends on the prevalence of good health at age x.

1 ���������	�
����	���������������������x produces changes in the second and the
third terms of (7). 1 ���������	�
�������������������������x produces change in the
second term of (7).

Insertion of (7) in (5) and (6) leads to
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In a similar way the health-related component at age x is
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Age-components xλ of the difference between health expectancies derived from (10)

are equivalent to age-components of the difference between life expectancies xδ  from

(3) if 121 == xx ππ  for all ages x=0,1,2, ..., ω .

The example in Figure 1 shows age-mortality-health-specific components of the
difference between female health expectancies at age 20 in West Germany and Poland.
Health-weights are calculated from the data on self-perceived health, extracted from the
second and third wave of the World Value Surveys (Inglehart et al., 2000). For each

five-year age group weights xπ  are the sums of the original proportions of women with

"fair", "good" and "very good" self-perceived health. For both countries the mortality
rates for the year 1995 are used. From these data health expectancies at age 20 are
computed for West Germany and Poland and their difference is decomposed by age
according to (8) and (9).

Figure 1 suggests that contributions due to differences in self-perceived health are
much greater than those due to differences in mortality. Indeed, 7.2 years of the overall
difference of 8.9 years are attributable to differences in health. Although the maximum
age-specific contributions are produced for ages from 65 to 75, they are very significant
as early as at the age of 50.

It is worth understanding that the mortality age-components of the difference

between health expectancies xλ  are different from age-components xδ  of the

difference between respective life expectancies if for some ages x 1≠xπ . Indeed, in

the example given above, female life expectancies at age 20 in West Germany and
Poland were 61 and 58 years, respectively. The difference of 3 years is significantly
higher than the total effect of mortality in the West Germany-Poland difference between
health expectancies, which is equal to 1.7 years.
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Figure 1: Decomposition of the difference between female health expectancies at
age 20 between West Germany and Poland for the mid-1990s.
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3. Decomposition of differences between two parity progression
ratios and two TFRs computed from age-parity-specific
fertility rates

The general replacement algorithm can be applied to differences between aggregate
fertility measures based on parity-progression tables. In this section we apply the
general algorithm of stepwise replacement to estimate the age- and parity-specific
components of differences between two parity-progression ratios and of differences
between two total fertility rates.
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A conventional TFR based on age-specific fertility rates is adjusted for population
age structure but ignores differences between sequences of births. The TFR_P based on
age-parity-specific fertility rates is adjusted both for age and parity. This type of period
fertility measure is valuable for analytical purposes (Kohler and Ortega, 2002,
Barkalov, 1999, Darsky and Scherbov, 1990).

Let us consider an example of changes in Russian fertility in the first half of the
1990s. The TFR in this country dropped from 2 in 1989 to 1.4 in 1993-94 (Table 1).
Table 1 shows also that in these years the difference between the TFR and the TFR_P in
Russia increased.

Table 1: Total fertility rates computed without and with data on parity in Russia
in 1989-1994.

Year TFR TFR_P

1989 2.01 1.97

1990 1.89 1.87

1991 1.73 1.75

1992 1.55 1.62

1993 1.39 1.45

1994 1.40 1.46

Sources: Andreev and Barkalov, 1999
Goskomstat, 2001

The parity-progression table is a type of a multi-status demographic table based on the

matrix parxfF ,= , in which each elementary fertility rate parxf ,  is a ratio of the

number of par-order births to the mid-year population of women aged x with par-1
children. In matrix F, ages are presented as rows and birth orders are presented as
columns. Age runs across the interval of reproductive ages [ ]βα , , while parity varies

from 0 to the highest birth order p.
The parity-progression table can be computed from matrix F (Whelpton, 1946,

Chiang and Van Den Berg, 1982, Lutz, 1989, Andreev and Barkalov, 1999, Kohler and
Ortega, 2002). The computational procedure, used in the present study, is given in the
Appendix.
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The total parity-specific birth numbers are defined as == 00 ,lB α  1000 for par=0

and ∑
=

=
β

αx
parxpar bB ,

for par>0, where parxb ,  are age-parity-specific birth numbers

from the parity-progression table.
Two aggregate fertility measures, which will be used for our next decomposition

exercises, are the

parity-progression ratio

parparpar BBa /1+=  (10)

and the total fertility rate

)........(_ 12101000
1

0 −
=

+++⋅=⋅= ∑ p

p

par
par aaaaaaaBBBPTFR (11)

Formulae (10), (11) and Appendix define apar and TFR_P as functionals of the matrix of
elementary fertility rates F.

At first glance, (10) and (11) suggests that the decompositions of difference
between values of TFR_P in respect to age x or parity par can be accomplished in a

simple way from •,xb  values and para  values, respectively. N.Barkalov (1999)

developed a formula for the components of differences between two TFR_P values.

This formula corresponds to the stepwise replacement of 1
para  by 2

para  in (11) running

from lower to higher parities, although the way of its development by the author was

different. It appears, however, that para  depends not only on 1, +parxf , but also on

fertility rates of lower parities kxf ,  (k<par+1). We will show later that numerical

results of this method of decomposition are somewhat different from the exact results of
the general replacement algorithm.

The general replacement algorithm for decomposition of differences between

para  values or TFR_P values includes replacements of all elementary fertility rates in

matrix 1F  by respective elements of matrix 2F  and vice versa. The external cycle of
replacement runs across ages, while the internal cycle runs across parities. As in the
previous section, the replacement runs in ascending order by age. It means that the
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replacement of the elements of row x 1
, parxf  by elements 2

, parxf  begins only after all

elements 1
, paryf  are already replaced by the elements 2

, paryf  for rows y<x. Certainly,

the replacement could be organized differently with parity being the "first" dimension
and age being the "second" one (see section 3).

The effect of replacement of a given element 1
, parxf  by 2

, parxf  on para  and on

TFR_P should be calculated 2par-1 times according to the number of different

combinations of 1
,kxf  with 2

,lxf  in remaining cells of the same row x ( plpk << ,  and

parlk ≠≠ ). Finally, the component produced by age x and parity par in replacement

1→2 is the average of all 2par-1 effects.
As in section 1, in order to obtain symmetrical components the whole set of

replacements should be completed twice in two directions (1→2 and 2→1).
Let us consider another example. Data from the Russian census of 1989 and the

micro-census of 1994 allow us to estimate the composition of female population by age
and parity. These data combined with annual statistics on births by parity and age of the
mother allow us to calculate fertility rates by parity (1, 2, ..., 5+) and age of the mother
(15, 16, 17, ..., 54). Thus, we have to operate with two matrices (40 x 5) of elementary

fertility rates 1F  and 2F . Values of the parity progression ratios, computed from the
matrices of 1989 and 1994, show a structure of the rapid drop in Russian fertility
between 1989 and 1994 (Table 2).

Table 2: Changes in parity progression ratios and in total fertility rate between
1989 and 1994.

1989
1−para  and 

1994
1−para TFR_P1989 and

TFR_P1994
Year

1 2 3 4 5+

1989 0.948 0.767 0.293 0.269 0.519 1974

1994 0.895 0.530 0.161 0.182 0.317 1464

1994-1989 -0.053 -0.237 -0.132 -0.087 -0.202 -510

Replacement of a single element of matrix 1F  by the respective element of matrix 2F
(or vice versa) includes 16 (24) calculations of changes in para (par=1,2,...,5+) and in
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TFR_P. For example, replacement of the upper-left element 1
1,15f , corresponding to

age 15 and parity 1, by the element 2
1,15f  includes replacements of this element in all

possible combinations with rates 1
,15 kf  and 2

,15 lf  in the remaining 4 cells of the same

row with lk ≠  and ∈lk, [2,3,4,5+]. These calculations return 16 magnitudes of

changes in the output measures ( para  and TFR_P) produced by the replacements.

Finally, the averages of these 16 values should be computed for each para  and TFR_P.

Tables 3a, 3b, and 3c show age- and parity-specific contributions to the overall

changes in 21 ,aa and 3a in Russia between 1989 and 1994. In general, decreases in

progressions to a given parity par are mostly due to decreases in fertility rates for the
same parity par. However, changing fertility rates at lower parities (par-1 or even par-
2) also produce some effects on progression to parity par. These effects are more
significant for higher parities (e.g. progressions to the third and the fourth births).

Figure 2 shows the structure by age and parity of the decrease in TFR_P in Russia
between 1989 and 1994. The greatest contributions are produced by decreases in second
births by mothers at ages from 23 to 29.

Table 3a: Components of decline in progression to second births by age and parity,
Russia, 1989-1994.

Age group 1a  progression to second births

1989: 0.77
1994: 0.53
Difference: -0.24

All parities 1 2

15-19 0.00 0.00 0.00
20-24 -0.06 -0.01 -0.05
25-29 -0.08 0.00 -0.08
30-34 -0.07 0.00 -0.07
35-39 -0.02 0.00 -0.03
40-54 0.00 0.00 0.00
All ages -0.24 -0.01 -0.23
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Table 3b: Components of decline in progression to third births by age and parity,
Russia, 1989-1994.

Age group 2a progression to third births

1989: 0.29
1994: 0.16
Difference: -0.13

All parities 1 2 3

15-19 0.00 0.00 0.00 0.00
20-24 -0.04 0.00 -0.03 -0.01
25-29 -0.04 0.00 -0.01 -0.03
30-34 -0.03 0.00 0.01 -0.04
35-39 -0.02 0.00 0.01 -0.03
40-54 0.00 0.00 0.00 0.00
All ages -0.13 0.00 -0.02 -0.11

Table 3c: Components of decline in progression to fourth births by age and parity,
Russia, 1989-1994.

Age group 3a  progression to fourth births

1989: 0.27
1994: 0.18
Difference: -0.09

All parities 1 2 3 4

15-19 0.00 0.00 0.00 0.00 0.00
20-24 -0.03 0.00 -0.02 -0.01 0.00
25-29 -0.02 0.00 0.00 -0.01 -0.02
30-34 -0.01 0.00 0.01 0.01 -0.03
35-39 -0.01 0.00 0.00 0.02 -0.03
40-44 -0.01 0.00 0.00 0.00 -0.01
45-54 0.00 0.00 0.00 0.00 0.00
All ages -0.09 0.00 -0.01 0.02 -0.10
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As we mentioned before, formulae (10) and (11) give the impression that
decompositions can be made in simpler ways. Indeed, according to (11), TFR_P is the

total of all age- and parity-specific birth numbers parxb , . Thus, it seems that age-

components of the change in TFR_P could be calculated simply as

∑∑
==

•• −=−
p

par
parx

p

par
parxxx bbbb

1

1
,

1

2
,

1
,

2
,

. This approach ignores the dependence of i
parxb ,

values from fertility rates at parities lower than par. The result of such a calculation is
substantially biased in comparison to the exact age-components returned by the general
replacement algorithm (Figure 3).

Figure 2: Decomposition of decrease in the total fertility rate in Russia in
1989-1994 by age and parity.
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Figure 3: Age-components of decrease in TFR_P between 1989 and 1994 in Russia.
A comparison of the exact decomposition by the replacement algorithm
with a simplified decomposition according to differences in birth numbers
from parity progression table.
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A simplified decomposition of a difference between TFR_P values in respect to parity
can be accomplished in two different ways. The simplest is to imagine that the par-

component of difference between two values of TFR_P is 12
parpar BB − . This approach

ignores the dependence of higher-order birth numbers on lower-order births and results
in significantly biased parity-components (Table 4). The method by Barkalov,
mentioned above, returns the par-components, which are rather close but not equivalent
to exact components returned by the general replacement algorithm. (Table 4).
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Table 4: Components of decline in TFR_P by parity computed by three methods,
Russia, 1989-1994 (per 1000)

Parity Total
change

Method

1 2 3 4 5+

12
parpar BB −  

-53 -252 -136 -43 -25 510

Method by Barkalov: stepwise

replacement of para  in (13)

-97 -286 -107 -15 -5 510

General replacement algorithm:

stepwise replacement of parxf ,

-108 -289 -87 -18 -8 510

4. Final considerations

The algorithm of stepwise replacement is a universal tool for the decomposition of
differences between aggregate measures computed from demographic tables. The
number of examples in the present study could be increased. In particular, in an earlier
study (Shkolnikov, Andreev and Begun, 2001) we developed a new formulae for the
age-decomposition of differences between two Gini coefficients (measures of
variability in age at death). In this study we showed also how to decompose the age-
components further in respect to age and population composition by social group. Such
decomposition can be accomplished by means of the same general algorithm including
replacement of age-group-specific death rates and of age-specific population weights of
groups.

We would like to add two additional comments regarding two peculiar aspects of
the decomposition which were not addressed in sections 1 and 2, but should be kept in
mind when making decompositions and interpreting their results.

Path dependence. In the present paper, we always assume that population "jumps"
from state 1 to state 2 with no intermediate states in between. However, results of the
decomposition could depend on a particular pathway of transition from state 1 to state
2. For example, the age-parity components of change in the Russian TFR_P from 1989
to 1994 are somewhat different from the sums of age-parity components of subsequent
transitions 1989→1990, 1990→1991, 1991→1992, 1992→1993, and 1993→1994.

The best way to address this problem is to make all annual transitions and then to
sum them up. However, this solution is not really popular among researchers because
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differences between a direct transition (as 1989→1994) and the sequence of annual
transitions are usually small. However, there is no guarantee that such differences
would be small in all cases.

Age as a special dimension. In the present paper we treated age as a special
dimension in two respects. First, replacement ran from younger to older ages in order to
keep a consistency with earlier formulae by Andreev (1982), Arriaga (1984) and Pressat
(1985). This approach gives also an opportunity for developing new formulae for other
aggregate measures. Second, we were interested in splitting further each age-component
according to additional dimensions (effects of mortality and health or effects of parities
within each age group). This means that age always played the role of the first
dimension. The formulae developed in sections 1 and 2 correspond to this particular
approach.

Dependence on the sequence of replacement. The order of dimensions in the
course of replacement could also matter for results. For example, there are two ways to
replace the age-group-specific mortality rates and age-specific population-weights of
groups when decomposing a difference between two life expectancies from data on
mortality by age and population group. One can make a replacement of age-specific
mortality rates within each population group or to replace group-specific mortality rates
within one age group. Generally speaking, all replacement schemes are equally
acceptable. Ideally, the final components should be based on the averaging of effects
produced by all possible sequences of dimensions (Das Gupta, 1994, 1999). This
general principle works well for linear aggregates, but could lead to long computational
times for more complex measures, especially if the number of dimensions and the
number of categories within each dimension is large.
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Notes

1.  For the sake of simplicity, notation in all formulae of this paper are given for
complete demographic tables (tables with single-year age groups). All of them can
be easily re-written for abridged demographic tables.
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Appendix

We used the following scheme for computation of the period parity-progression tables:

=0l ,α  1000 and 0, =parlα  for par>0

)2/(2 ,,, parxparxparx ff +=ϕ

0,0,1, xxx lb ϕ⋅=  and parxparxparxparx blb ,1,,, )2/( ϕ⋅+= −  for par>0

1,0,0,1 xxx bll −=+  and parxparxparxparx bbll ,1,,,1 ++ +−=  for par>0



Demographic Research – Volume 7, Article 14

http://www.demographic-research.org522




