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Reflexion

Life Expectancy at Current Rates vs. Current Conditions:
A Reflexion Stimulated by  Bongaarts and Feeney’s

“How Long Do We Live?”

James W. Vaupel 1

Abstract

Life expectancy is overestimated if mortality is declining and underestimated if
mortality is increasing. This is the fundamental claim made by Bongaarts and Feeney
(2002) in their article "How Long Do We Live?", where they base their claim on
arguments about "tempo effects on mortality".

This Reflexion explains why this claim is true in most heterogeneous populations.
It suggests that demographers should be careful about distinguishing between life
expectancy under current conditions, which is difficult and problematic to assess, and
life expectancy at current rates, which can be estimated using standard methods.
Finally, it speculates that there may be a deep connection between tempo and
heterogeneity.
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1. Introduction

Life expectancy is overestimated if mortality is declining and underestimated if
mortality is increasing. The faster mortality is falling or rising, the more life expectancy
is over or underestimated. This is the fundamental claim made by Bongaarts and Feeney
(2002) in their article “How Long Do We Live?” (Note 1). They base their claim on
arguments about “tempo effects on mortality”. Demographers who demand precise
definitions, stochastic-process fundamentals and cogent proofs will not be persuaded by
Bongaarts and Feeney’s loose analogies and sparkling intuitions. Their fundamental
claim, however, can be shown to be correct, albeit from a radically different perspective
and only if life expectancy is defined in a particular way. If life expectancy is defined as
average age at death at current death rates, then life expectancy is simply calculated
from the rates: there is no possibility of distortion. Life expectancy is defined, however,
as “average age at death under current mortality conditions” by Bongaarts and Feeney
as well as many other demographers. When death rates are changing, life expectancy
calculated from current death rates will deviate from this life expectancy under current
conditions in the way Bongaarts and Feeney claim in heterogeneous populations.

In this Reflexion I explain why Bongaarts and Feeney’s claim is true in most
heterogeneous populations. I suggest that demographers should be careful about
distinguishing between life expectancy under current conditions, which is difficult and
problematic to assess, and life expectancy at current rates, which can be estimated using
standard methods. Finally, I speculate that there may be a deep connection between
tempo and heterogeneity.

2. Heterogeneity in Frailty

All populations are heterogeneous. Two individuals of the same age and sex in the same
population can face very different chances of death. Some individuals are frailer than
others and the frail tend to die first.

A simple but useful model of heterogeneity in frailty was developed almost a
quarter of a century ago by Kenneth G. Manton, Eric Stallard and me (Vaupel, Manton,
Stallard 1979). Let ),,( zyxµ  be the force of mortality (hazard of death) for an

individual of frailty z at age x and time y . Suppose

),,(),,( yxzzyx oµµ =  (1)
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where ),( yxoµ  is the “baseline” force of mortality for a “standard” individual of frailty

one. Suppose z is Gamma distributed at age zero (which could be birth or some later

age after which the model is assumed to hold) with mean 1 and variance 2σ . Then
simple rearrangement of Vaupel, Manton and Stallard’s (1979) formula (11) yields

2

),(),(),( σµµ yxsyxyx c
o= , (2)

where ),( yxµ  is the force of mortality for the population and ),( yxsc  denotes cohort

survivorship for the population:

∫ +−−=
x

c daaxyayxs
0

]),(exp[),( µ . (3)

Note that ),( yxµ  is a function of ),( yxsc , whereas ),( yxsc  is a function of the values

of ),( axya +−µ  for ages a  up to x .  Hence,

∫ +−−=
xo daaxyayxyx

0

2 ].),(exp[),(),( µσµµ  (4)

This equation clearly indicates that the level of current population mortality at any age

after age zero is a function not only of current conditions, as captured by ),( yxoµ , but

also of the historical mortality experience of the cohort.
Let ),(~ yxµ  be the force of mortality that would be suffered by a hypothetical

cohort that lived under the mortality conditions prevailing at time y , as defined by

),( yxoµ . Then, analogously to the result in (2), the frailty model implies

2

),(~),(),(~ σµµ yxsyxyx p
o= , (5)

where period survivorship is given by

∫−=
x

p dayayxs
0

),(~exp[),(~ µ . (6)

It follows that
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2
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. (7)

To the extent that period survivorship is higher than cohort survivorship, the force of
mortality under current mortality conditions, µ~ , will be higher than µ , the current

force of mortality.
In Vaupel, Manton and Stallard (1979) a version of this formula is developed and

applied to Swedish data. In 1975 Swedish female life expectancy at current death rates

was 78.15. If 2σ  is 0.25, then the corresponding life expectancy under current

conditions would be 77.52, almost eight months less. If 2σ  is 1.0, then life expectancy
falls to 76.36.

The Vaupel-Manton-Stallard frailty model is simplistic and the application to
Swedish data is a special case. Nonetheless, the model and this application illustrate the
general point. The current force of mortality at some age and time is a function of both
current mortality conditions and the historical conditions that cohorts have experienced.
A wide variety of other models of heterogeneous populations in which there are
persistent differences among individuals in their age-specific susceptibility to death
yield the same general conclusion (Vaupel and Yashin 1985; Yashin, Manton and
Vaupel 1985; Vaupel, Yashin and Manton 1988). An individual’s frailty does not have
to be fixed at birth but can change with age. Individuals can suffer debilitation,
hormesis and recovery. To illustrate how general the basic result is, it is useful to
consider another simple model.

3. Heterogeneity through Resuscitation

Anatoli Yashin and I developed a variety of simple, multi-state stochastic-process
models for studying the impact of heterogeneity (Vaupel and Yashin 1986, 1987).
Building on this line of thinking, a particularly simple variant of illustrative value can
be developed as follows. Consider a population closed to migration that has
experienced a constant mortality regime and a steady stream of B births per year for
more than a century. The age-distribution in such a stationary population will follow the
lifetable survivorship pattern. And the size of such a population will simply be B  times

the life expectancy oe . Suppose at some instant of time the existing age-trajectory of
mortality, described by )(xµ , shifts as shown in Fig. 1. The idea is that a proportion

)(xπ  of the individuals who would have died at age x  have their lives “saved”. Note
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that these resuscitated individuals suffer some force of mortality )(x+µ at subsequent

ages that may be different from )(x−µ .  Also note that the population is no longer

stationary after the change. The population will grow as the resuscitated population
grows. Eventually, however, the annual number of deaths will balance the annual
number of births, restoring stationarity.

Figure 1:

BEFORE CHANGE  AFTER  CHANGE

      Births    Births

            The Resuscitated

                                                                                      )()( xx µπ

               )(xµ                           )())(1()( xxx µπµ −=−                   )(x+µ

Before the mortality shift, life expectancy is oe . Immediately following the shift,
period life expectancy at current death rates can be calculated from the values of

)(x−µ : call this life expectancy −e .

As the population of resuscitated individuals (in the right box of Fig. 1) builds up,
the force of mortality for the entire population will be a weighted average of the forces
of mortality in the two boxes. Let ),( yxp be the proportion of the population at age x

that is in the resuscitated box at time y  after the mortality shift. Then the force of the

mortality for the entire population will be

)(),()()),(1(),( xyxpxyxpyx +− +−= µµµ .

At any time y , life expectancy at current rates can be calculated using these values of

the force of mortality.
Over time, as the resuscitated population grows toward its equilibrium level, the

values of ),( yxµ will approach equilibrium values )(~ xµ .  Life expectancy under

current conditions should, from the time of the mortality change onward, be calculated
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on the basis of the values of )(~ xµ .  This life expectancy e~  is the mean length of life

experienced by all cohorts born after the mortality change. Hence, over the entire period
from the time of the mortality change until the time when the new equilibrium is
reached, life expectancy at current rates will differ from life expectancy under current
conditions.

Consider a simple example. Suppose xex 1.00002.)( =µ , which implies a life

expectancy of about 79.4 years. Suppose ,5.)x( =π  all x , so that xex 1.00001.)( =−µ .

For such a Gompertz trajectory life expectancy would be about 86.3 years. Finally,
suppose ,5.)( =+ xµ  all x . This constant hazard implies an expectation of life of 2

years. When the new equilibrium is reached, half the population will benefit from these
extra two years of resuscitated life. The entire population will spend, on average, 79.4
years in the first box (because the hazard of exit from the first box is just )(xµ .)

Hence, in equilibrium life expectancy will be 79.4+(.5)(2)=80.4 years. In this simple
example, then, life expectancy at current rates will jump from 79.4 to 86.3 years right
after the mortality change and then will gradually decline to 80.4 years. Life expectancy
under current conditions, however, will be 79.4 years before the change and 80.4 years
at all times after the change.

In this simple example and in the general case as well, there are two changes. The

first is the immediate shift from )(xµ to )(x−µ and from oe to −e . The second is the

gradual change from )(x−µ  to )(~ xµ and from −e  to the equilibrium life expectancy e~ .

If some people who would have died at age 0 can, under the new regime, endure
to ω , the highest age attained, then equilibrium is reached after ω  years. If no life is
extended for more than ε  years, then equilibrium is reached in ε  years. A cohort of
newborns born at the time of the mortality shift and all subsequent cohorts would
experience the trajectory )(~ xµ  with average lifespan e~ .  Hence, e~  is life expectancy

under current conditions whereas life expectancy at current rates gradually changes

from −e to e~ .
In the simplest case, when )()( xx −+ = µµ  for all x , there is no effect due to

disequilibrium because the force of mortality is )(x−µ for both the resuscitated and

those not rescued from demise. At all times after the mortality shift,

),( yxµ = )(x−µ = )(~ xµ .

Reliability engineers use the phrase “perfect repair” to describe the rescue of
failing equipment when the equipment is restored to the same condition as equipment
that was not about to fail. Generally, perfect repair cannot be achieved, for equipment
or for humans (and other organisms). Those who are about to perish are usually frailer
than their contemporaries and even if their lives can be saved, their health and vitality
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cannot be restored to the level of more robust contemporaries not threatened with

imminent demise. Note that when )()( xx −+ = µµ  the resuscitated are not merely

restored to the old force of mortality )(xµ : they benefit from the new, lower force of

mortality )(x−µ . So this is pluperfect repair, more-than-perfect repair that incorporates

mortality improvements.

If )(x+µ is bigger than )(x−µ , which would be true in the reasonable case when

the resuscitated are frailer than those not about to die, then there is both an immediate

shift and a lingering disequilibrium effect. If the values of )(x+µ are large, then the

mortality decline will not increase equilibrium life expectancy very much—and
equilibrium will be approached quickly. The disequilibrium effect will be almost as big
as the shift effect and of the opposite sign. The shift effect will be negative and could be
considered to be a distortion because it will appear as if mortality has considerably
declined. The positive disequilibrium effect will offset this.

There may be some cases, however, when )(x+µ is smaller than )(x−µ . Suppose

that the population is heterogeneous and that the mortality improvement mostly helps
the robust rather than the frail. This could be the case for a population with
subpopulations of men and women; smokers and non-smokers; rich, educated people
and poor, uneducated people. If health progress largely helped women, non-smokers, or
the well-off, then the resuscitated might enjoy better life chances than the average non-
resuscitated person. In this case, the shift effect would be negative and the

disequilibrium effect would also be negative. Life expectancy −e  would be longer than
oe and e~  would be longer than −e .

In general, regardless of whether )(x+µ is bigger or smaller than )(x−µ , the shift

effect results in a discrepancy between life expectancy at current rates and life
expectancy under current conditions. The size of this discrepancy depends on the extent
to which the mortality change puts the population in a disequilibrium in which the
current age-trajectory of mortality is different from the trajectory in equilibrium.  There
is “mortality momentum” as age-specific death rates move towards their equilibrium
levels. This momentum can be viewed as being a consequence of the changing
composition of the population, i.e., changing heterogeneity.

When mortality is changing there are two kinds of people (Note 2).  When
mortality is declining this is easily seen in the context of Fig. 1: some people are in the
box on the left and the resuscitated people are in the box on the right. Note that the
population is heterogeneous because some people are resuscitated. Everyone is born
into the first box, so the population is homogeneous at birth. The differences among
people are not innate or, at least, they are not apparent at birth. The differences are
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acquired or revealed by resuscitation. When mortality is increasing, Fig. 1 cannot be
used but two kinds of people can still be distinguished. There are people who will die
now who would otherwise have died later. And there are people who will not die now.

For simplicity, consider the case of declining mortality as illustrated by Fig. 1.
Before the mortality change, everyone is in the same box. Just after the change,
resuscitated individuals start flowing into the right box. To begin with, the population in
this box is zero but this population gradually builds up to an equilibrium level. In
equilibrium, the inflow of people into the box is counterbalanced by the outflow of
deaths from the box. The people in the second box have different life chances than

people in the first box, as long as )()( xx −+ ≠ µµ for at least some ages x .  That is, the

population is heterogeneous. Furthermore, the degree of heterogeneity right after the
mortality shift is different from the degree of heterogeneity in equilibrium. This
heterogeneity and the change in it produces the difference between life expectancy
under current conditions and life expectancy at current rates.

The above discussion focuses on a very simple case in which there is a one-time
mortality shift. It can be generalized to more realistic situations in which mortality is
changing continuously over time. It can also be generalized in other ways. For instance,
the force of mortality for the resuscitated could depend not only on age but also on time
since resuscitation and on the heterogeneous structure of the population with regard to
various risk factors.

4. Empirical Examples

Experiments, involving nematode worms and Drosophila as well as medflies, have
been conducted to study the consequences for a cohort of a stress that increases
mortality for a short period (Khazaeli, Xiu and Curtsinger 1995; Yashin et al. 2002;
Vaupel, Yashin and Manton 1988). Typically, death rates soar and then fall sharply to
below-normal levels when the stress ends. Similarly, mortality crises caused by famines
or epidemics in historical populations have often been followed by periods of low
mortality (Livi Bacci 2000). One explanation is that a crisis speeds up the death of the
frail and then, when the adverse conditions subside, the population consists of robust
survivors.  Russia between 1985 and 1994 experienced sharp fluctuations in life
expectancy, due at least in part to an anti-alcohol campaign that reduced deaths,
followed by a relaxation of restrictions on alcohol. In a heterogeneous population of
those who abused alcohol and those who did not, the death of heavy drinkers was
postponed during the period of enforced abstinence (Shkolnikov and Cornia 2000; also
see Avdeev, Blum, Zakharov, and Andreev 1998).
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5. Conclusion

The Vaupel-Manton-Stallard frailty model, the Vaupel-Yashin resuscitation model and
these empirical examples illustrate the general point.  If (1) cohort survivorship to some
age is different from the survivorship that would be experienced by a hypothetical
cohort living under current mortality conditions and (2) the level of survivorship to that
age influences the composition of individuals at that age with regard to their chances of
death, then the current force of mortality, µ , will differ from µ~ , the force of mortality

that would be observed in a cohort that lived under current mortality conditions. Hence,
life expectancy under current mortality conditions, calculated using central death rates
or probabilities of death related to µ~ , will differ from life expectancy at current

mortality rates, calculated using central death rates or probabilities of death related
to µ . The more current conditions differ from historic conditions, the more life

expectancy under current conditions will differ from life expectancy at current rates.
The difference depends on the action of selection (i.e., the differential survival of the
frail), debilitation, hormesis, and changing risk factors: different models will yield
different estimates. As illustrated above, if mortality is declining life expectancy under
current conditions can be higher than life expectancy at current rates, in some kinds of
special circumstances. Under a wide variety of plausible conditions, however,
Bongaarts and Feeney’s opposite claim will hold.

Demographers should be more careful about distinguishing between life
expectancy at current death rates and life expectancy under current mortality conditions.
The first measure is what demographers conventionally calculate. The second measure
is more appropriate as a measure of the prevailing health regime but much more
difficult and problematic to estimate. The current cohort of newborns has a different
composition from historical cohorts. The current cohort will acquire a different
composition as a result of changes in survivorship and various risk factors related, say,
to educational attainment, disease experience, diet, smoking behavior, genes, etc.,
etc.—even if current levels of mortality remain the same for individuals with any
specific set of characteristics. Hence, compositional differences between the present
cohort and past cohorts will result in changes in population death rates. Demographers
would like to have a summary measure of current mortality (and health) conditions: life
expectancy at current rates is not such a measure. It can, however, be calculated in a
straightforward way and it undoubtedly sheds some partial light on current conditions. I
do not claim that life expectancy under current conditions is a “better” measure than life
expectancy at current rates. I merely point out that these two measures are different and
demographers should distinguish between them. The one is easy to calculate; the other
(if it can be estimated) may be more informative for some purposes.
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Bongaarts and Feeney propose an alternative measure of life expectancy that
corrects for “tempo distortions”. Is their measure a better indicator of current mortality
conditions? This is a difficult question that requires careful definitions, meticulous
analysis, and rigorous mathematics based on probabilistic underpinnings. John
Bongaarts has told me that he believes that tempo and heterogeneity are completely
different concepts and that tempo effects can distort mortality in homogeneous
populations. He may be right about this. Other scholars have told me that they think the
notion of tempo effects on mortality is a red herring, a pink elephant, a bête noire, a
siren’s song. They may be right about this. My conjecture is that there may turn out to
be a deep relationship between “tempo distortions of mortality”—when that concept is
clearly defined—and heterogeneity, probably of the acquired or revealed sort in
resuscitation models. Anatoli Yashin and I have begun to try to think about this. We are
not at all sure, however, that this duality will turn out to be a valid, useful notion. How
best to assess the level of mortality under current conditions is an intriguing, puzzling
question for demographers to ponder, a question at the historic core of demography.
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Notes

1.  In an email to me on April 2, 2002, John Bongaarts wrote: “The key insight from
the BF paper is … that e0 is a function of the rate of change in the mean age at
death.”

2.  It is easy to prove that there are two kinds of people: there are people who think
there are two kinds of people and people who do not.  This proof has been
attributed to the English essayist Charles Lamb and to the American humorist
Robert Benchley. It is sometimes referred to as Barth’s Distinction. The proof can
be found at various internet sites but I have been unable to find a citation to a
written source.
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