Volume 27 - Article 26 | Pages 743–774
Estimates of Age-Specific Reductions in HIV Prevalence in Uganda: Bayesian Melding Estimation and Probabilistic Population Forecast with an HIV-enabled Cohort Component Projection Model
By Samuel J. Clark, Jason Thomas, Le Bao
References
Alkema, L., Raftery, A.E., and Clark, S.J. (2007). Probabilistic Projections of HIV prevalence using Bayesian Melding. Annals of Applied Statistics 1(1): 229-248.
Anderson, R.M. (1988). The role of mathematical models in the study of HIV transmission and the epidemiology of AIDS. JAIDS Journal of Acquired Immune Deficiency Syndromes 1(3): 241-256.
Asamoah-Odei, E., Calleja, J.M.G., and Boerma, J.T. (2004). HIV prevalence and trends in sub-Saharan Africa: No decline and large subregional differences. The Lancet 364(9428): 35-40.
Bongaarts, J., Buettner, T., Heilig, G., and Pelletier, F. (2008). Has the HIV epidemic peaked? Population and Development Review 34(2): 199-244.
Bowley, A.L. (1924). Births and population in Great Britain. Economic Journal 34(134): 188-192.
Cannan, E. (1895). The probability of a cessation of the growth of population in England and Wales during the next century. Economic Journal 5(20): 505-515.
Cassels, S., Clark, S.J., and Morris, M. (2008). Mathematical models for HIV transmission dynamics: Tools for social and behavioral science research. JAIDS Journal of Acquired Immune Deficiency Syndromes 47: 34-39.
Chin, J.. A Beginner's Guide for Understanding and Using the Epimodel - Version 2: A Computer Program for Esimation and Projection of AIDS Cases and Deaths. Berkeley : School of Public Health, University of California.
Chin, J. and Lwanga, S.K. (1991). Estimation and projection of adult AIDS cases: A simple epidemiological model. Bulletin of the World Health Organization 69(4): 399-406.
Dorn, H.F. (1950). Pitfalls in population forecasts and projections. Journal of the American Statistical Association 45(251): 311-334.
Ghys, P., Kufa, E., and George, M. (2006). Measuring trends in prevalence and incidence of HIV infection in countries with generalised epidemics. Sexually Transmitted Infections 82(1): i52-i56.
Granich, R.M., Gilks, C.F., Dye, C., De Cock, K.M., and Williams, B.G. (2009). Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission: A mathematical model. The Lancet 373(9657): 48-57.
Grassly, N.C., Morgan, M., Walker, N., Garnett, G., Stanecki, K.A., Stover, J., Brown, T., and Ghys, P.D. (2004). Uncertainty in estimates of HIV/AIDS: The estimation and application of plausibility bounds. Sexually Transmitted Infections 80(1): i31-i38.
Gregson, S., Anderson, R.M., Ndlovu, J., Zhuwau, T., and Chandiwana, S.K. (1997). Recent upturn in mortality in rural Zimbabwe: Evidence for an early demographic impact of HIV-1 infection. AIDS 11(10): 1269-1280.
Hallett, T., Zaba, B., Todd, J., Lopman, B., Mwita, W., Biraro, S., Gregson, S., and Boerma, J. (2008). Estimating incidence from prevalence in generalised HIV epidemics: Methods and validation. PLoS Med 5(4): e80.
Hallett, T.B., Aberle-Grasse, J., Bello, G., Boulos, L.-M., Cayemittes, M.P.A., Cheluget, B., Chipeta, J., Dorrington, R., Dube, S., Ekra, A.K., Garcia-Calleja, J.M., Garnett, G.P., Greby, S., Gregson, S., Grove, J.T., Hader, S., Hanson, J., Hladik, W., Ismail, S., Kassim, S., Kirungi, W., Kouassi, L., Mahomva, A., Marum, L., Maurice, C., Nolan, M., Rehle, T., Stover, J., and Walker, N. (2006). Declines in HIV prevalence can be associated with changing sexual behaviour in Uganda, urban Kenya, Zimbabwe, and urban Haiti. Sexually Transmitted Infections 82(suppl 1): i1-i18.
Hallett, T.B., Singh, K., Smith, J.A., White, R.G., Abu-Raddad, L.J., and Garnett, G.P. (2008). Understanding the impact of male circumcision interventions on the spread of HIV in southern Africa. PLoS One 3(5): e2212 (\textcolorbluedoi:10.1371/journal.pone.0002212).
Hallett, T.B., White, P.J., and Garnett, G.P. (2007). Appropriate evaluation of HIV prevention interventions: From experiment to full-scale implementation. Sexually transmitted infections 83(suppl 1): i55-i60.
Hesterberg, Tim (1995). Weighted average importance sampling and defensive mixture distributions. Technometrics 37(2): 185-194.
Heuveline, P. (2003). HIV and population dynamics: A general model and maximum-likelihood standards for East Africa. Demography 40(2): 217-245.
Jeffreys, H. (1939). Theory of Probability. Oxford: Oxford University Press.
Kamali, Anatoli, Carpenter, Lucy Mary, Whitworth, James Alexander Grover, Pool, Robert, Ruberantwari, Anthony, and Ojwiya, Amato (2000). Seven-year trends in HIV-1 infection rates, and changes in sexual beaviour, among adults in rural Uganda. AIDS 14(4): 427-434.
Kass, R. E. and Raftery, Adrian E. (1995). Bayes Factors. Journal of the American Statistical Association 90(430): 773-795.
Keyfitz, Nathan and Caswell, Hal (2005). Applied Mathematical Demograph. New York: Springer.
LaTeX Project (2010). LaTeX - A Document Preparation System. LaTeX Project.
Leslie, P.H. (1945). On the use of matrices in certain population mathematics. Biometrika 33(3): 183-212.
Mbulaiteye, S.M., Mahe, C., Whitworth, J.A.G., Ruberantwari, A., Nakiyingi, J.S., Ojwiya, A., and Kamali, A. (2002). Declining HIV-1 incidence and associated prevalence over 10 years in a rural population in south-west Uganda: A cohort study. The Lancet 360: 41-46.
McDougal, J.S., Parekh, B.S., Peterson, M.L., Branson, B.M., Dobbs, T., Ackers, M., and Gurwith, M. (2006). Comparison of HIV type 1 incidence observed during longitudinal follow-up with incidence estimated by cross-sectional analysis using the BED capture enzyme immunoassay. AIDS Research and Human Retroviruses 22(10): 945-952.
McNeil Jr., Donald G. (2010). African studies give women hope in HIV fight.
McWalter, T.A. and Welte, A. (2009). A comparison of biomarker based incidence estimators. PLoS One 4(10): e7368.
McWalter, T.A. and Welte, A. (2010). Relating recent infection prevalence to incidence with a sub-population of assay non-progressors. Journal of mathematical biology 60(5): 687-710.
Palloni, A. (2001). Increment-Decrement life tables. In: Preston, S.H., Heuveline, P., and Guillot, M. (eds.). Demography: Measuring and modeling population processes. Oxford: Blackwell: 256-271.
Palloni, A. (1996). The demography of HIV/AIDS. Population Index 62(4): 601-652.
Parekh, B.S., Kennedy, M.S., Dobbs, T., Pau, C.-P., Byers, R., Green, T., Hu, D.J., Vanichseni, S., Young, N.L., Choopanya, K., Mastro, T.D., and McDougal, J.S. (2004). Quantitative detection of increasing HIV type 1 antibodies after seroconversion: A simple assay for detecting recent HIV infection and estimating incidence. AIDS Research and Human Retroviruses 18(4): 295-307.
Pearl, R. and Reed, L.J. (1920). On the rate of growth of the population of the United States since 1790 and its mathematical representation. Proceedings of the National Academy of Science 6(6): 275-288.
Poole, D. and Raftery, A.E. (2000). Inference for deterministic simulation models: The Bayesian Melding approach. Journal of the American Statistical Association 95(452): 1244-1255.
Pritchett, H.S. (1891). A formula for predicting the population of the United States. Publications of the American Statistical Association 2(14): 278-286.
R Development Core Team (2006). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing,. (Manual).
R Foundation for Statistical Computing (2010). The R Project for Statistical Computing. R Foundation for Statistical Computing,. http://www.R-project.org.
Raftery, A. E. and Bao, L. (2010). Estimating and projecting trends in HIV/AIDS generalized epidemics using incremental mixture importance sampling. Biometrics 66(4): 1162-1173.
Raftery, A.E. (1995). Bayesian model selection in social research. Sociological Methodology 25: 111-163.
Rubin, D.B. (1988). Using the SIR Algorithm to Simulate Posterior Distributions. In: Bernardo, J.M. , Degroot, D.H. , Degroot, M.H., Lindley, D.V., and Smith, A.F.M. (eds.). Bayesian Statistics 3. Oxford: Oxford University Press: 395-402.
Rubin, Donald B. (1987). A Noniterative Sampling/Importance Resampling Alternative to the Data Augmentation Algorithm for Creating a Few Imputation When Fractions of Missing Information are Modest: The SIR Algorithm. Journal of the American Statistical Association 82(398): 543-546.
Salomon, J.A. and Murray, C.J.L. (2001). Modelling HIV/AIDS epidemics in sub-Saharan Africa using seroprevalence data from antenatal clinics. Bulletin of the World Health Organization 79(7): 596-607.
Schoen, R. (1975). Constructing increment-decrement life tables. Demography 12(2): 313-324.
Steele, R. J., Raftery, A. E., and Emond, M. J. (2003). Computing normalizing constants for finite mixture models via incremental mixture importance sampling (IMIS). Seattle, WA: University of Washington, Department of Statistics ((Technical Report No. 436)).
Steele, R.J., Raftery, A.E., and Edmonds, M.J. (2006). Computing normalizing constants for finite mixture models via incremental mixture importance sampling (IMIS). Journal of Computational and Graphical Statistics 15(3): 712-734.
Stoneburner, R.L., Low-Beer, D., Tembo, G.S., Mertens, T.E., and Asiimwe-Okiror, G. (1996). Human Immunodeficiency Virus infection dynamics in East Africa deduced from surveillance data. American Journal of Epidemiology 144(7): 682-695.
Thomas, Jason R. and Clark, Samuel J. (2011). More on the cohort-component model of population projection in the context of HIV/AIDS: A Leslie matrix representation and new estimation methods. Demographic Research 25: 39-102.
UNAIDS (2009). 2009 AIDS Epidemic Update. Geneva: UNAIDS.
UNAIDS (2009). Monitoring the declaration of commitment on HIV/AIDS: Guidelines on construction of core indicators : 2010 reporting. Geneva: UNAIDS.
United Nations (1998). The demographic impact of HIV/AIDS. New York: United Nations, Department of Economic and Social Affairs ((Report on the Technical Meeting, Tuesday, 10 November 1998)).
United Nations (2007). World population prospects: The 2006 revision. New York: United Nations, Department of Economic and Social Affairs ((ST/ESA/SER.A/261/ES)).
Wambura, M., Urassa, M., Isingo, R., Ndege, M., Marston, M., Slaymaker, E., J.Mngara, J.Changalucha, Boerma, T.J., and Zaba, B. (2007). HIV prevalence and incidence in rural Tanzania: Results from 10 years of follow-up in an open-cohort study. Journal of Acquired Immune Deficiency Syndrome 46(5): 616-623.
Wawer, M.J., Serwadda, D., Gray, R.H., Sewankambo, N.K., Li, C., F.Nalugoda, T.Lutalo, and Konde-Lule, J.K. (1997). Trends in HIV-1 prevalence may not reflect trends in incidence in mature epidemics: Data from the Rakai population-based cohort, Uganda. AIDS 11(8): 1023-1030.
Whelpton, P.K. (1936). An empirical method of calculating future population. Journal of the American Statistical Association 31(195): 457-473.
World Health Organization (2008). Towards universal access: Scaling up priority HIV/AIDS interventions in the health sector. Geneva: WHO ((Progress Report 2010)).
Zaba, B., Boerma, T., and White, R. (2000). Monitoring the AIDS epidemic using HIV prevalence data among young women attending antenatal clinics: Prospects and problems. AIDS 14(11): 1633-1645.