Volume 31 - Article 14 | Pages 381–420
Software for multistate analysis
By Frans Willekens, Hein Putter
References
A., Lièvre, Brouard, N., and Heathcote, Ch. (2003). Estimating health expectancies from cross-longitudinal surveys. Mathematical Population Studies 10(4): 211–248.
A., Van den Hout, Jagger, C., and Matthews, F.E. (2009). Estimating life expectancy in health and ill health using a hidden Markov model. Journal of the Royal Statistical Society: Series C (Applied Statistics) 58: 449–465.
A., Van den Hout, Ogurtsova, E., Gampe, J., and Matthews, F.E. (2014). Investigating healthy life expectancy using a multi-state model in the presence of missing data and misclassification. Demographic Research 30(42): 1219–1244.
Aalen, O.O. (1975). Statistical inference for a family of counting processes. [PhD thesis]. Berkeley: University of California.
Aalen, O.O., Borgan, Ø., and Gjessing, H.K. (2008). Survival and event history analysis. A process point of view. New York: Springer.
Abbott, A. (2001). Time matters. On theory and method. Chicago: The University of Chicago Press.
Alioum, A. and Commenges, D. (2001). MKVPCI: a computer program for Markov models with piecewise constant intensities and covariates. Computer Methods and Programs in Biomedicine 64(2): 109–119.
Allignol, A. (2012). The mvna package. Nelson-Aalen estimator of the cumulative hazard in multistate models. CRAN repository.
Allignol, A., Beyersmann, J., and Schumacher, M. (2008). mvna: An R package for the Nelson-Aalen estimator in multistate models. R Newsletter 8(2): 48–50.
Allignol, A., Schumacher, M., and Beyersmann, J. (2011). Empirical transition matrix of multistate models: the etm package. Journal of Statistical Software 38(4): 15.
Andersen, P.K., Borgan, O., Gill, R.D., and Keiding, N. (1993). Statistical models based on counting processes. New York: Springer.
Andersen, P.K. and Gill, R.D. (1982). Cox’s regression model for counting processes. A large sample study. Annals of Statistics 10: 1100–1120.
Andersen, P.K. and Keiding, N. (2002). Multi-state models for event history analysis. Statistical Methods in Medical Research 11: 91–115.
Barendregt, J.J., Baan, C.A., and L. Bonneux, L. (2000). An indirect estimate of the incidence of non-insulin-dependent diabetes mellitus. Epidemiology 11: 274–279.
Barendregt, J.J., van Oortmarssen, G.J., Vos, T., and Murray, C.J.L. (2003). A generic model for the assessment of disease epidemiology: the computational basis of DisModII. Population Health Metrics 1(4): 1–8.
Beyersmann, J., Latouche, A., Buchholz, A., and Schumacher, M. (2009). Simulating competing risk data in survival analysis. Statistics in Medicine 28(6): 956–971.
Beyersmann, J., Schumacher, M., and Allignol, A. (2012). Competing risks and multistate models with R. New York: Springer.
Bijwaard, G. (2014). Multistate event history analysis with frailty. Demographic Research 30(58): 1591–1620.
Birkin, M., Wu, B., and Rees, Ph. (2009). Moses: dynamic spatial microsimulation with demographic interactions. In: Zaidl, A., Harding, A., and Williamson, P. (eds.). New frontiers in microsimulation modelling. Farnham (Surrey): Ashgate: 53–78.
Blossfeld, H.P., Golsh, K., and Rohwer, G. (2007). Event history analysis with Stata. Mahwah, N.J.: Lawrence Erlbaum.
Blossfeld, H.P., Hamerle, A., and Mayer, K.U. (1989). Event history analysis. Statistical theory and application in the social sciences. Hillsdale, N.J.: Lawrence Erlbaum.
Blossfeld, H.P. and Rohwer, G. (2002). Techniques of event history modeling. New approaches to causal analysis. Mahwah, N.J.: Lawrence Erlbaum.
Bongaarts, J. (1987). The projection of family composition over the life course with family status life tables. In: Bongaarts, J., Burch, T.K., and Wachter, K.W. (eds.). Family demography. Methods and their application. Oxford: Clarendon Press: 189–212.
Broström, G. (2012b). Event history analysis with R. Chapman and Hall.
Broström, G. (2012a). The eha package. CRAN repository.
Brouard, N. and Lièvre, A. (2009). IMaCh: a maximum-likelihood computer program using interpolation of Markov chains [electronic resource].
Cai, L., Hayward, M., Saito, Y., Lubitz, J., Hagedorn, A., and Crimmins, E. (2010). Estimation of multi-state life table functions and their variances using the SPACE program. Demographic Research 22(6): 129–158.
Cai, L., Schenker, N., and Lubitz, J. (2006). Analysis of functional status transitions by using a semi-Markov process model in the presence of left-censored spell. Journal of the Royal Statistical Society: Series C (Applied Statistics) 55(4): 477–491.
Carstensen, B. and Plummer, M. (2011). Using Lexis objects for multi-state models in R. Journal of Statistical Software 38(6): 1–18.
Carstensen, B., Plummer, M., Laara, E., and Hills, M. (2013). Epi: A package for statistical analysis in epidemiology. R package version 1.1.49 [electronic resource].
Dabrowska, D.M., Sun, G.W., and Horowitz, M.M. (1994). Cox regression in a Markov renewal model: an application to the analysis of bone marrow transplant data. Journal of the American Statistical Association 89(427): 867–877.
de Wreede, L.C., Fiocco, M., and Putter, H. (2011). mstate: An R package for the analysis of competing risks and multi-state models. Journal of Statistical Software 38: 7.
de Wreede, L.C., Fiocco, M., and Putter, H. (2010). The mstate package for estimation and prediction in non- and semi-parametric multi-state and competing risks models. Computer Methods and Programs in Biomedicine 99: 261–274.
Décarie, Y., Boissoneault, M., and Légaré, J. (2012). An inventory of Canadian microsimulation models. Hamilton, Ontario: McMaster University, Social and Economic Dimensions of an Aging Population (SEDAP), SEDAP Research Paper No. 298.
Diehr, P., Derleth, A., Newman, A.B., and Cai, L. (2007b). The effect of different public health interventions on longevityy, morbidity, and years of healthy life. BMC Public Health 7: 52.
Diehr, P., Derleth, A., Newman, A.B., and Cai, L. (2007a). The number of sick persons in a cohort. Research on Aging 29(6): 555–575.
Drewe, P., Eichperger, L., Keilman, N. , Van Poppel, F., and Willekens, F. (1991). Multiregional population projection in the Netherlands. In: Pumain, D. (ed.). Spatial analysis and population dynamics. Montrouge and London: Libbey: 59–74.
Ferguson, N. (2011). Methods and software for nonparametric estimation in multistate models. [PhD dissertation]. Louisville, Kentucky: University of Louisville.
Ferguson, N., Datta, S., and Brock, G. (2012). msSurv: An R Package for Nonparametric Estimation of Multistate Models. Journal of Statistical Software 50(14): 1–24.
Ferguson, N., Datta, S., and Brock, G. (2013). msSurv: nonparametric estimation of multistate models. CRAN repository.
Fiocco, M., Putter, H., and van Houwelingen, H.C. (2008). Reduced-rank proportional hazards regression and simulation-based prediction for multi-state models. Statistics in Medicine 27: 4340–4358.
Flinn, C. and Heckman, J. (1982). New methods for analyzing structural models of labor force dynamis. Journal of Econometrics 18: 115–168.
Gampe, J. and Zinn, S. (2011). The MicMac post-processor. Manual. Rostock: Max Planck Institute for Demographic Research.
Goldstein, R. and Harrell, F. (2005). Survival analysis, software. In: Armitage, P. and Colton, T. (eds.). Encyclopedia of Biostatistics. Chichester: Wiley.
Heckman, J. and Singer, B. (1985). Social science duration analysis. In: Heckman, J. and Singer, B. (eds.). Longitudinal analysis of labor market data. Cambridge: Cambridge University Press: 39–110.
Heckman, J.J. and Walker, J.R. (1990). The relationship between wages and income and the timing and spacing of births: evidence from Swedish longitudinal data. Econometrica 58(6): 1411–1441.
Himmelspach, J. (2012). Tutorial on building M&S software based on reuse. In: Laroque, C., Himmelspach, J., Pasupathy, R., Rose, O., and Uhrmacher, A.M. (eds.). Proceedings of the 2012 Winter Simulation Conference. Article 167. .
Himmelspach, J. and Uhrmacher, A.M. (2007). Plug’n simulate. In: ’07, ANSS (ed.). Proceedings of the 40th Annual Simulation Symposium. Washington, DC: 137–143.
Jackson, C. (2014). msm: Multi-state Markov and hidden Markov models in continuous time. CRAN repository.
Jackson, C. (2014). Multi-state modelling with R: the msm package. Vignette distributed with the msm package. CRAN repository.
Jackson, C. (2011). Multi-state models for panel data: the msm package for R. Journal of Statistical Software 38(8): 28.
Kalbfleisch, J. and Lawless, J.F. (1985). The analysis of panel data under a Markov assumption. Journal of the American Statistical Association 80: 863–871.
Keiding, N. (2014). Event history analysis. Annual Reviews of Statistics and its Application 1: 333–360.
Kupiszewski, M. (ed.) (2013). International migration and the future of populations and labour in Europe. New York: Springer.
Kupiszewski, M. and Kupiszewska, D. (2010). Demographic and Migratory Flows affecting European Regions and Cities. Multilevel scenario model. DEMIFER project report (Deliverable 4). Luxembourg: European Observation Network for Territorial Development and Cohesion (European Spatial Planning Observatory Network, ESPON).
Kupiszewski, M. and Kupiszewska, D. (2011). MULTIPOLES: A revised multiregional model for improved capture of international migration. In: Stillwell, J. and Clarke, M. (eds.). Population dynamics and projection methods. New York: Springer: 41–60.
Laditka, S. and Wolf, D.A. (1998). New methods for modeling and calculating active life expectancy. Journal of Aging and Health 10: 214–241.
Laird, N. and Olivier, D. (1981). Covariance analysis of censored survival data using log-linear analysis techniques. Journal of the American Statistical Association 76(374): 231–240.
Lillard, L.A. (1993). Simultaneous equations for hazards: marriage duration and fertility timing. Journal of Econometrics 56(1/2): 189–217.
Lillard, L.A. and Panis, C.W.A. (2003). Multilevel multiprocess modeling. aML Version 2. User’s guide and reference manual. Los Angeles: EconWare.
Lumley, T. (2004). The survival package. The newsletter of the R project 4/1(June 2004): 26–28.
Lumley, T. (2007). The survival package. CRAN repository.
Lynch, S.M. and Brown, J.S. (2005b). A new approach to estimating life tables with covariates and constructing interval estimates of life table quantiles. Sociological Methodology 35: 177–225.
Lynch, S.M. and Brown, J.S. (2005a). Gibbs sampler for multistate life table software (GSMLT v.90) [electronic resource].
Lynch, S.M. and Brown, J.S. (2010). Obtaining multistate life table distributions for highly refined subpopulations from cross-sectional data: a Bayesian extension of Sullivan’s method. Demography 47(4): 1053–1077.
Majer, I.M., Stevens, R., Nusselder, W.J., Mackenbach, J.P., and van Baal, P.H.M. (2012). Modeling and forecasting health expectancy: theoretical framework and application. Demography 50(2): 673–697.
Marshall, G., Guo, W., and Jones, R.H. (1995). MARKOV: A computer program for multi-state Markov models with covariables. Computer Methods and Programs in Biomedicine 47(2): 147–156.
Meira-Machado, L., Una-Álvarez, J., and Cadarso-Suárez, C. (2006). Nonparametric estimation of transition probabilities in a non-Markov illness-death model. Lifetime Data Analysis 12: 325–344.
Meira-Machado, L.M., Cadarso-Suárez, C., and de Una-Alvarez, J. (2007). tdc.msm: an R library for the analysis of multi-state survival data. Computer Methods and Programs in Biomedicine 86: 131–140.
Meira-Machado, L.M., de Uña-Álvarez, J., Cadarso-Suárez, C., and Andersen, P.K. (2009). Multi-state models for the analysis of time-to-event data. Statistical Methods in Medical Research 18(2): 195–222.
Meira-Machado, L.M. and Roca-Pardinas, J. (2011). p3state.sms: analyzing survival data from an illness-death model. Journal of Statistical Software 38(3): 1–18.
Meira-Machado, L.M. and Roca-Pardinas, J. (2012). Package “p3state.msm”. CRAN repository.
Mills, M. (2011). Introducing survival and event history analysis. London: Sage.
Muhidin, S. (2002). The population of Indonesia: regional demographic scenarios using a multiregional method and multiple data sources. Amsterdam: Rozenberg Publishers.
Murray, C.J. and Lopez, A.D. (1997). Regional patterns of disability-free life expectancy and disability-adjusted life expectancy: Global Burden of Disease Study. Lancet 349: 1347–1352.
Ogurtsova, E., Gampe, J., and Zinn, S. (2010). Practical population forecasting by microsimulation: application of the MicMac software. Paper presented at the Work session on demographic projections, Lisbon, 28-30 April 2010.
Ogurtsova, K., Gampe, J., and Zinn, S. (2009). The MicMac pre-processor. Manual. Rostock: Max Planck Institute for Demographic Research.
Palloni, A. (2001). Increment-decrement life tables. In: Preston, S.H., Heuveline, P., and Guillot, M. (eds.). Demography. Measuring and modelling population processes. Oxford: Blackwell: 256–272.
Putter, H. (2011). Special issue about competing risks and multistate models. Journal of Statistical Software 38(1).
Putter, H. (2014). Tutorial in biostatistics: competing risks and multi-state models. Analysis using the mstate package [electronic resource].
Putter, H., de Wreede, L., and Fiocco, M. (2012). Package ‘mstate’. CRAN repository.
Putter, H., Fiocco, M., and Geskus, R.B. (2007). Tutorial in biostatistics: competing risks and multi-state models. Statistics in Medicine 26: 2389–2430.
Putter, H. and van Houwelingen, H.C. (2011). Frailties in multi-state models: Are they identifiable? Do we need them? Statistical Methods in Medical Research .
Rajulton, F. (2001). Analysis of life histories: a state-space approach. Canadian Journal of Population 28(2): 341–359.
Rajulton, F. (1985). Heterogeneous marital behavior in Belgium, 1970 and 1977: an application of the semi-Markov model to period data. Mathematical Biosciences 73: 197–225.
Rajulton, F. (1992). Life history analysis: guidelines for using the program LIFEHIST (PC version). Population Studies Centre Discussion Paper No. 92–95. University of Western Ontario, Population Studies Centre.
Rajulton, F. and Lee, H.Y. (1988). A semi-Markovian approach to using event history data in multi-regional demography. Mathematical Population Studies 1(3): 289–315.
Rees, P. (1981). Accounts based models for multiregional population analysis: methods, program and users' manual. Working Paper 295. Leeds, UK: School of Geography, University of Leeds.
Rees, P. and Wilson, A. (1977). Spatial Population Analysis. London: Edward Arnold.
Rogers, A. (1995). Multiregional demography. Principles, methods and extensions. Chichester: Wiley.
Rowe, G.T. and Moore, K.D. (2009). Simulating employment careers in the LifePaths model: validation across multiple time scales. In: Zaidi, A., Harding, A., and Williamson, P. (eds.). New frontiers in microsimulation modelling. Surrey: Ashgate: 333–349.
Scherbov, S. and Grechucha, V. (1988). DIAL – A system for modelling multidimensional demographic processes. Working Paper WP-88-36. Laxenburg, Austria: International Institute for Applied Systems Analysis.
Scherbov, S., Yashin, A., and Grechucha, V. (1986). Dialog system for modeling multidimensional demographic processes. Working Paper WP-86-29. Laxenburg, Austria: International Institute for Applied Systems Analysis.
Schoen, R. (1988). Modeling multigroup populations. New York: Plenum Press.
Schoumaker, B. (2013). A Stata module for computing fertility rates and TFRs from birth histories: tfr2. Demographic Research 28(38): 1093–1144.
Singer, B. and Spilerman, S. (1976). The representation of social processes by Markov models. American Journal of Sociology 82: 1–54.
Spielauer, M. (2009). General characteristics of ModGen applications: exploring the model Riskpaths. Statistics Canada, Modeling Division.
Spielauer, M. (2006). The “Life Course” model, a competing risk cohort microsimulation model: source code and basic concepts of the generic microsimulation programming language Modgen. MPIDR Working Paper WP 2006-046. Rostock: Max Planck Institute for Demographic Research.
Spitoni, C., Verduijn, M., and Putter, H. (2010). Estimation and asymptotic theory for transition probabilities in Markov renewal multi-state models. International Journal of Biostatistics 8(1): Article 23.
Statistics, Canada (2009). Modgen 10.1.0 Developer’s Guide [electronic resource].
Steinberg, D. (1991). Competing risk multi-spell survival analysis: the CTM procedure. SAS Institute Inc. Proceedings of the Sixteenth Annual SAS Users Group International Conference, Sugi-91-267, SAS Institute, Cary, NC.
T., Wilson (2011). Modelling with NEWDSS: producing state, regional and local area population projections for New South Wales. In: Stillwell, J. and Clarke, M. (eds.). Population dynamics and projection methods. Understanding population trends and processes. Dordrecht: Springer: 61–97.
Therneau, T.M. (1999). A package for survival analysis in S [electronic resource].
Therneau, T.M. and Crowson, C. (2014). Using time dependent covariates and time dependent coefficients in the Cox model.
Therneau, T.M. and Grambsch, P.M. (2000). Modeling survival data: extending the Cox model. New York: Springer.
Tiemeyer, P. and Ulmer, G. (1991). MSLT. A program for the computation of multistate life tables. Working Paper 91–134. Center for Demography and Ecology, University of Wisconsin.
Touraine, C., Joly, P., and Gerds, T.A. (2013). SmoothHazard: Fitting illness-death model for interval-censored data. R package version 1.0.9. CRAN Repository.
Townend, P., Xu, J., Birkin, N., Turner, A., and Wu, B. (2009). MoSeS: Modelling and simulation for e-social science. Philosophical Transactions of the Royal Society A (Mathematical, Physical and Engineering Sciences) 367.
Tuma, N.B. (1979). Invoking RATE. Menlo Park, CA: SRI International.
Tuma, N.B. and Hannan, M.T. (1984). Social dynamics: models and methods. Orlando, FL: Academic Press.
Van den Hout, A. (2013). ELECT: estimation of life expectancies using continuous-time multi-state survival models [electronic resource].
Van Houwelingen, H.C. and Putter, H. (2008). Dynamic prediction by landmarking as an alternative for multi-state modeling: an application to acute lymphoid leukemia data. Lifetime Data Analysis 14: 447–463.
Van Houwelingen, H.C. and Putter, H. (2011). Dynamic prediction in clinical survival analysis. Boca Raton: Chapman and Hall.
Van Imhoff, E. (2005). LIPRO 4.0. Tutorial. The Hague: NIDI.
Van Imhoff, E. (1990). The exponential multidimensional demographic projection model. Mathematical Population Studies 2(3): 171–182.
Van Imhoff, E. and Keilman, N. (1992). LIPRO 2.0: an application of a dynamic demographic projection model to household structure in the Netherlands. NIDI/CBGS Publications nr. 23. Amserdam/Lisse: Swets & Zeitlinger.
Van Imhoff, E. and Post, W. (1998). Microsimulation methods for population projection. Population. An English Selection 10: 97–138.
Vos, T. et al. (2012). Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859): 2163–2196.
Wangler, M. and Beyersmann, J. (2012). changeLos: change in LOS. CRAN Repository.
Weden, M. (2005). LXPCT_2: Stata module to calculate multistate life expectancies [electronic resource].
Willekens, F. (2012). Biograph: explore life histories. CRAN repository.
Willekens, F. (1979). Computer program for increment-decrement (multistate) life table analysis: a user's manual to LIFEINDEC. Working Paper WP-79–102. Laxenburg, Austria: International Institute for Applied Systems Analysis.
Willekens, F. (2011b). Microsimulation in population projection. Cahiers Québécois de Démographie 40(2): 267–297 (in French).
Willekens, F. (2014). Multistate analysis of life histories with R. New York: Springer (in print).
Willekens, F. (2011a). Population accounts. In: Stillwell, J. and Clarke, M. (eds.). Population dynamics and projection methods. Understanding Population Trends and Processes. Dordrecht, Netherlands: Springer: 29–40.
Willekens, F. and Rogers, A. (1978). Spatial population analysis: methods and computer programmes. Research Report RR-78-18. Laxenburg, Austria: International Institute for Applied Systems Analysis.
Willekens, F.J. (2005). Biographic forecasting: bridging the micro-macro gap in population forecasting. New Zealand Population Review 31(1): 77–124.
Willekens, F.J. (2009). Continuous-time microsimulation in longitudinal analysis. In: Zaidi, A., Harding, A., and Williamson, P. (eds.). New frontiers in microsimulation modelling. Surrey: Ashgate: 413–436.
Willekens, F.J. (1995). MUDEA. Version 2.0. Manual and tutorial. Faculty of Spatial Sciences, University of Groningen.
Willekens, F.J. (2007). Multistate model for biographic analysis and projection. Working Paper 2007/1. The Hague: NIDI.
Willekens, F.J. and Drewe, P. (1984). A Multiregional model for regional demographic projection. In: Ter Heide, H. and F. Willekens, F. (eds.). Demographic Research and spatial policy. London: Academic Press: 309–334.
Wilson, T. (2001). A new subnational population projection model for the United Kingdom. [PhD Thesis]. University of Leeds.
Wilson, T. and Rees, Ph. (2003). Why Scotland needs more than just a new migration policy. Scottisch Geographical Journal 119(3): 191–208.
Wohland, P., Rees, Ph., Norman, P., and Boden, P. (2012). Ethnic population projections for the UK, 2001-2051. Journal of Population Research 29(1): 45–89.
Wohland, P., Rees, Ph., Norman, P., Boden, P., and Jasinska, M. (2010). Ethnic population projections for the UK and local areas, 2001-2051. Working Paper 10/2. School of Geography, University of Leeds.
Wolf, D.A. (1986). Simulation methods for analyzing continuous-time event history models. Sociological Methodology 16: 283–308.
Wolf, D.A. (1988). The multi-state life table with duration dependence. Mathematical Population Studies 1(3): 217–245.
Wolf, D.A. and Gill, T.M. (2009). Modeling transition rates using panel current-status data: How serious is the bias? Demography 46(2): 371–386.
Wolfson, M. and Rowe, G. (2014). HeathPaths: using functional health trajectories to quantify the relative importance of selected health determinants. Demographic Research ((this volume).).
Wu, B. and Birkin, M. (2013b). Moses: a dynamic spatial microsimulation model for demographic planning. In: Tanton, R. and Edwards, K.L. (eds.). Spatial microsimulation: a reference guide for users. Springer: 171–194.
Wu, B. and Birkin, M. (2013a). Moses: planning for the next generation. International Review for Spatial Planning and Sustainable Development 1(1): 19–30.
Wu, B., Birkin, M., and Rees, Ph. (2011). A dynamic MSM with agent elements for spatial demographic forecasting. Social Science Computer Review 29: 145–160.
Yi, K.M., Honore, B., and Walker, J. (1987). CTM: a user’s guide. Chicago: NORC (National Opinion Research Center).
Zeng, Y. (1991). Family dynamics in China. A life table analysis. Madison, Wisconsin: The University of Wisconsin Press.
Zeng, Y., Land, K., Wang, Z., and Gu, D. (2013). Household and living arrangement projections at the subnational level: an extended cohort-component approach. Demography 50(3): 827–852.
Zeng, Y., Land, K., Wang, Z., and Gu, D. (2014). Household and living arrangement projections. The extended cohort-component method and applications to the U.S. and China. New York: Springer.
Zeng, Y., Land, K., Wang, Z., and Gu, D. (2006). U.S. family household momentum and dynamics: an extension and application of the ProFamy method. Population Research and Policy Review 25: 1–41.
Zeng, Y., Vaupel, J.W., and Wang, Z. (1997). A Multidimensional model for projecting family households – with an illustrative numerical application. Mathematical Population Studies 6(3): 187–216.
Zeng, Y., Vaupel, J.W., and Wang, Z. (1998). Household projection using conventional demographic data. Population and Development Review 24(Supplementary Issue: Frontiers of Population Forecasting): 59–87.
Zinn, S. (2010). A continuous-time microsimulation and first steps towards a multi-level approach in demography. [PhD dissertation]. Faculty of Information Science and Electrotechnics, University of Rostock.
Zinn, S. (2014b). Continuous-time microsimulation for population projections: the MicSim package for R. Submitted.
Zinn, S. (2014a). MicSim: performing continuous-time microsimulation. CRAN repository.
Zinn, S. and Gampe, J. (2011). The MicMacCore. Version 1.0. Rostock: Max Planck Institute for Demographic Research.
Zinn, S., Gampe, J., Himmelspach, J., and Uhrmacher, A.M. (2010). A DEVS model for demographic microsimulation. Proceedings of the Spring Simulation Multiconference 2010 : Article 146.
Zinn, S., Gampe, J., Himmelspach, J., and Uhrmacher, A.M. (2013). Building Mic-Core, a specialized M&S software to simulate multi-state demographic micro models, based on JAMES II, a general M&S framework. Journal of Artificial Societies and Social Simulation 16(3): 5.
Zinn, S., Gampe, J., Himmelspach, J., and Uhrmacher, A.M. (2009). Mic-Core: tool for microsimulation. In: Rossetti, M.D., Hill, R.R., Johansson, B., Dunkin, A., and Ingalls, R.G. (eds.). Proceedings of the 2009 Winter Simulation Conference. .