Volume 4 - Article 6 | Pages 163–184  

Toward a General Model for Populations with Changing Rates

By Robert Schoen


Formal demography has yet to move beyond assuming that demographic rates are constant over time, an assumption that is both unrealistic and constraining. To generalize the fixed rate stable model to the changing rate dynamic model, this paper explores the mathematical regularities that underlie the behavior of all populations. At any time, the composition of a population can be expressed in terms of current circumstances, using the rates of a "latent" stable model.
Closed form solutions for the equations governing dynamic multistate models are not always possible, but are presented for certain special cases. Those solutions provide opportunities for specifying dynamic models of potentially great value, especially for analyses of cyclical and hierarchical populations.

Author's Affiliation

Other articles by the same author/authors in Demographic Research

Analyzing hyperstable population models
Volume 49 - Article 37

A dynamic birth-death model via Intrinsic Linkage
Volume 28 - Article 35

Age-specific growth, reproductive values, and intrinsic r
Volume 24 - Article 33

The metastable birth trajectory
Volume 21 - Article 25

A behaviorally-based approach to measuring inequality
Volume 19 - Article 49

Changing mortality and average cohort life expectancy
Volume 13 - Article 5

Age-specific contributions to changes in the period and cohort life expectancy
Volume 13 - Article 3

Intrinsically dynamic population models
Volume 12 - Article 3

A diminishing population whose every cohort more than replaces itself
Volume 9 - Article 6

Estimating multistate transition rates from population distributions
Volume 9 - Article 1

On the Impact of Spatial Momentum
Volume 6 - Article 3

Most recent similar articles in Demographic Research

Racial classification as a multistate process
Volume 50 - Article 17    | Keywords: Brazil, demography, increments to life, life expectancy, life table, mortality, multistate, race/ethnicity

Longevity à la mode: A discretized derivative tests method for accurate estimation of the adult modal age at death
Volume 50 - Article 11    | Keywords: longevity, mathematical demography, modal age at death

Dynamics of the coefficient of variation of the age at death distribution
Volume 49 - Article 38    | Keywords: lifespan inequality, mathematical demography, sensitivity analysis, threshold age

Population aging caused by a rise in the sex ratio at birth
Volume 43 - Article 32    | Keywords: models, population aging, sex ratio at birth, stable population

The threshold age of the lifetable entropy
Volume 41 - Article 4    | Keywords: lifespan variation, mathematical demography, mortality, pace of aging

Download to Citation Manager


Google Scholar

Article ID