Volume 51 - Article 16 | Pages 553–576  

Tools for analysing fuzzy clusters of sequences data

By Raffaella Piccarreta, Emanuela Struffolino

References

Abadpour, A. (2016). Notes of fuzzy clustering.

Weblink:
Download reference:

Abbott, A. (1995). Sequence analysis: New methods for old ideas. Annual Review of Sociology 21(1): 93–113.

Weblink:
Download reference:

Aisenbrey, S. and Fasang, A. (2017). The interplay of work and family trajectories over the life course: Germany and the United States in comparison. American Journal of Sociology 122(5): 1448–1484.

Weblink:
Download reference:

Brew, B., Weitzman, A., Musick, K., and Kusunoki, Y. (2020). Young women’s joint relationship, sex, and contraceptive trajectories. Demographic Research 42(34): 933–984.

Weblink:
Download reference:

Devillanova, C., Raitano, M., and Struffolino, E. (2019). Longitudinal employment trajectories and health in middle life: Insights from linked administrative and survey data. Demographic Research 40(47): 1375–1412.

Weblink:
Download reference:

Di Giulio, P., Impicciatore, R., and Sironi, M. (2019). The changing pattern of cohabitation. Demographic Research 40(42): 1211–1248.

Weblink:
Download reference:

Gabadinho, A., Ritschard, G., Studer, M., and Müller, N.S. (2011). Mining sequence data in R with the TraMineR package: A user’s guide. Geneva: University of Geneva.

Download reference:

Gauthier, J.-A., Widmer, E.D., Bucher, P., and Notredame, C. (2010). Multichannel sequence analysis applied to social science data. Sociological Methodology 40(1).

Weblink:
Download reference:

Helske, S., Helske, J., and Chihaya, G.K. (2023). From sequences to variables: Rethinking the relationship between sequences and outcomes. Sociological Methodology 54(1).

Weblink:
Download reference:

Jalovaara, M. and Fasang, A.E. (2020). Family life courses, gender, and mid-life earnings. European Sociological Review 36(2): 159–178.

Weblink:
Download reference:

Kaufman, L. and Rousseeuw, P. (1990). Finding groups in data: an introduction to cluster analysis. Hoboken, NJ: John Wiley & Sons.

Weblink:
Download reference:

Liao, T.F., Bolano, D., Brzinsky-Fay, C., Cornwell, B., Fasang, A.E., Helske, S., Piccarreta, R., Raab, M., Ritschard, G., and Struffolino, E. (2022). Sequence analysis: Its past, present, and future. Social Science Research 107(102772).

Weblink:
Download reference:

Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., and Hornik, K. (2005). Cluster analysis basics and extensions.

Weblink:
Download reference:

Menardi, G. (2011). Density-based silhouette diagnostics for clustering methods. Statistics and Computing 21: 295–308.

Weblink:
Download reference:

Mikolai, J. and Kulu, H. (2019). Union dissolution and housing trajectories in Britain. Demographic Research 41(7): 161–196.

Weblink:
Download reference:

Murphy, K., Murphy, T.B., Piccarreta, R., and Gormley, I.C. (2021). Clustering longitudinal life-course sequences using mixtures of exponential-distance models. Journal of the Royal Statistical Society Series A: Statistics in Society 184(4): 1414–1451.

Weblink:
Download reference:

Pal, N.R. and Bezdek, J.C. (1995). On cluster validity for the fuzzy c-means model. IEEE Transactions on Fuzzy Systems 3(3): 370–379.

Weblink:
Download reference:

Piccarreta, R. (2017). Joint sequence analysis: Association and clustering. Sociological Methods and Research 46(2): 252–287.

Weblink:
Download reference:

Piccarreta, R. and Struffolino, E. (2024). Identifying and qualifying deviant cases in clusters of sequences: The why and the how. European Journal of Population 40(1).

Weblink:
Download reference:

Piccarreta, R. and Studer, M. (2019). Holistic analysis of the life course: Methodological challenges and new perspectives. Advances in Life Course Research 41: 100251.

Weblink:
Download reference:

Pollock, G. (2007). Holistic trajectories: A study of combined employment, housing and family careers by using multiple-sequence analysis. Journal of the Royal Statistical Society 170(1): 167–183 (Series A (Statistics in Society).

Weblink:
Download reference:

R Core Team (2022). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

Weblink:
Download reference:

Raab, M. and Struffolino, E. (2022). Sequence analysis. Thousand Oaks, CA: Sage.

Weblink:
Download reference:

Rawashdeh, M. and Ralescu, A. (2012). Crisp and fuzzy cluster validity: Generalized intra-inter silhouette index. In: 2012 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS). Berkeley, CA: IEEE.

Weblink:
Download reference:

Ritschard, G., Liao, T.F., and Struffolino, E. (2023). Strategies for multidomain sequence analysis in social research. Sociological Methodology 53(2).

Weblink:
Download reference:

Rousseeuw, P.J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics 20: 53–65.

Weblink:
Download reference:

Rowold, C., Struffolino, E., and Fasang, A. (2023). Life-course-sensitive analysis of group inequalities in old age: Combining sequence analysis with the Kitagawa–Oaxaca–Blinder decomposition. Sociological Methods and Research online first online first.

Weblink:
Download reference:

Salem, L., Crocker, A.G., Charette, Y., Earls, C.M., Nicholls, T.L., and Seto, M.C. (2016). Housing trajectories of forensic psychiatric patients. Behavioral Sciences and the Law 34(2–3): 352–365.

Weblink:
Download reference:

Scherer, S. (2001). Early career patterns: A comparison of Great Britain and West Germany. European Sociological Review 17(2): 119–144.

Weblink:
Download reference:

Studer, M. (2018). Divisive property-based and fuzzy clustering for sequence analysis. In: Ritschard, G. and Studer, M. (eds.). Sequence analysis and related approaches. Innovative methods and applications. Cham: Springer.

Weblink:
Download reference:

Studer, M. (2021). Validating sequence analysis typologies using parametric bootstrap. Sociological Methodology 51(2): 290–318.

Weblink:
Download reference:

Studer, M. (2013). WeightedCluster library manual: A practical guide to creating typologies of trajectories in the social sciences with R. Lausanne: LIVES, LIVES Working Papers, NCCR LIVES 24.

Weblink:
Download reference:

Studer, M. and Ritschard, G. (2016). What matters in differences between life trajectories: A comparative review of sequence dissimilarity measures. Journal of the Royal Statistical Society 179(2): 481–511 (Series A (Statistics in Society).

Weblink:
Download reference:

Warren, J.R., Luo, L., Halpern-Manners, A., Raymo, J.M., and Palloni, A. (2015). Do different methods for modeling age-graded trajectories yield consistent and valid results? American Journal of Sociology 120(6): 1809–1856.

Weblink:
Download reference:

Yu, J., Cheng, Q., and Huang, H. (2004). Analysis of the weighting exponent in the FCM. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 34(1): 634–639.

Weblink:
Download reference:

Zhou, K., Fu, C., and Yang, S. (2014). Fuzziness parameter selection in fuzzy c-means: The perspective of cluster validation. Science China Information Sciences 57(11): 1–8.

Weblink:
Download reference:

Back to the article