Volume 51 - Article 42 | Pages 1351–1370
Fertility quantum and tempo with cubic age-specific birth rates
References
Arias, E. and Xu, J.Q. (2018). United States life tables 2015. National Vital Statistics Reports 67(7).
Bloom, D.E. (1982). What’s happening to the age at first birth in the United States? A study of recent cohorts. Demography 19(3): 351–370.
Bongaarts, J. and Feeney, G. (1998). On the quantum and tempo of fertility. Population and Development Review 24(2): 271–291.
Coale, A.J. and McNeil, D.R. (1972). The distribution by age at first marriage in a female cohort. Journal of the American Statistical Association 67(340): 743–749.
Coale, A.J. and Trussell, T.J. (1974). Model fertility schedules: Variations in the age-structure of childbearing in human populations. Population Index 40: 185–258.
Duchene, J. and Gillet-de Stefano, S. (1974). Ajustement analytique des courbes de fécondité générale. Population et Famille 32: 53–93.
Hadwiger, H. (1940). Eine analytische Reproduktionsfuncktion für biologische Gesamtheiten. Skandinavisk Aktuarietidskrift 23(3–4): 101–113.
Hobcraft, J., Menken, J., and Preston, S. (1982). Age, period and cohort effects in demography: A review. Population Index 48(1): 4–43.
Hoem, J.M., Madsen, D., Nielsen, J.L., Ohlsen, E.M., Hansen, H.O., and Rennermalm, B. (1981). Experiments in modeling recent Danish fertility curves. Demography 18(2): 231–244.
Keyfitz, N. (1977). Introduction to the mathematics of population. Reading, MA: Addison–Wesley.
Keyfitz, N. (1971). On the momentum of population growth. Demography 8(1): 71–80.
Keyfitz, N. and Flieger, W. (1990). World population growth and aging. Chicago, IL: University of Chicago Press.
Lotka, A.J. (1939). Théorie analytique des associations biologiques. Part II. Analyse démographique avec application particulière à l’espèce humaine. Actualités Scientifique et Industrielles 780.
McCann, J.C. (1973). A more accurate short method for approximating Lotka’s r. Demography 10(4): 567–570.
Ní Bhrolcháin, M. (1992). Period paramount? A critique of the cohort approach to fertility. Population and Development Review 18(4): 599–629.
Osterman, M.J.K., Hamilton, B.E., Martin, J.A., Driscoll, A.K., and Valenzuela, C.P. (2022). Births: Final data for 2020. National Vital Statistics Reports 70(17).
Pressat, R. (1995). Eléments de démographie mathématique. Paris: Association Internationale des Demographes de Langue Francaise.
Preston, S.H., Heuveline, P., and Guillot, M. (2001). Demography: Measuring and modeling population processes. Malden, MA: Blackwell.
Ryder, N.B. (1964). The process of demographic translation. Demography 1(1): 74–82.
Schoen, R. (2023). Analyzing hyperstable models. Demographic Research 49(37): 1021–1062.
Schoen, R. (2006). Dynamic population models. Dordrecht: Springer.
Schoen, R. (2022). Relating period and cohort fertility. Demography 59(3): 877–894.
Wicksell, S.D. (1931). Nuptiality, fertility, and reproductivity. Skandinavisk Aktuarietidskrift 1931(3): 125–157.
Zeng, Y. and Land, K.C. (2002). Adjusting period tempo changes with an extension of Ryder’s basic translation equation. Demography 39(2): 269–285.