Volume 53 - Article 21 | Pages 629–660  

Analysing migrant fertility using machine learning techniques: An application of random survival forest to longitudinal data from France

By Isaure Delaporte, Andrew Ibbetson, Hill Kulu

References

Adham, D., Abbasgholizadeh, N., and Abazari, M. (2017). Prognostic factors for survival in patients with gastric cancer using a random survival forest. Asian Pacific Journal of Cancer Prevention 18(1): 129.

Weblink:
Download reference:

Amit, Y. and Geman, D. (1997). Shape quantization and recognition with randomized trees. Neural Computation 9(7): 1545–1588.

Weblink:
Download reference:

Andersson, G. (2004). Childbearing after migration: Fertility patterns of foreign-born women in Sweden. International Migration Review 38(2): 747–774.

Weblink:
Download reference:

Andersson, G. and Scott, K. (2007). Childbearing dynamics of couples in a universalistic welfare state: The role of labor-market status, country of origin, and gender. Demographic Research 17(30): 897–938.

Weblink:
Download reference:

Arpino, B., Le Moglie, M., and Mencarini, L. (2021). What tears couples apart: A machine learning analysis of union dissolution in Germany. Demography 59(1): 161–186.

Weblink:
Download reference:

Baudin, T. (2015). Religion and fertility: The French connection. Demographic Research 32(13): 397–420.

Weblink:
Download reference:

Berghammer, C. (2009). Religious socialisation and fertility: Transition to third birth in the Netherlands/Socialisation religieuse et fécondité: L’arrivée du troisième enfant aux Pays-Bas. European Journal of Population/Revue européenne de Démographie 25: 297–324.

Weblink:
Download reference:

Best, K., Gilligan, J., Baroud, H., Carrico, A., Donato, K., and Mallick, B. (2022). Applying machine learning to social datasets: A study of migration in southwestern Bangladesh using random forests. Regional Environmental Change 22(52): 1–12.

Weblink:
Download reference:

Best, K.B., Gilligan, J.M., Baroud, H., Carrico, A.R., Donato, K.M., Ackerly, B.A., and Mallick, B. (2021). Random forest analysis of two household surveys can identify important predictors of migration in Bangladesh. Journal of Computational Social Science 4(1): 77–100.

Weblink:
Download reference:

Billari, F.C., Fürnkranz, J., and Prskawetz, A. (2006). Timing, sequencing, and quantum of life course events: A machine learning approach. European Journal of Population/Revue Européenne de Démographie 22(1): 37–65.

Weblink:
Download reference:

Breiman, L. (2001). Random forests. Machine Learning 45: 5–32.

Weblink:
Download reference:

Breiman, L., Friedman, J., Olshen, R.A., and Stone, C.J. (1984). Classification and regression trees. Belmont, CA: Thomson Wadsworth.

Download reference:

Cafri, G., Li, L., Paxton, E.W., and Fan, J. (2018). Predicting risk for adverse health events using random forest. Journal of Applied Statistics 45(12): 2279–2294.

Weblink:
Download reference:

Cleves, M., Gutierrez, M., Gould, W., and Marchenko, Y. (2010). An introduction to survival analysis using Stata. College Station: Stata Press.

Download reference:

De Rose, A. and Pallara, A. (1997). Survival trees: An alternative non-parametric multivariate technique for life history analysis. European Journal of Population/Revue européenne de Démographie 13(3): 223–241.

Weblink:
Download reference:

Delaporte, I. and Kulu, H. (2022). Interaction between childbearing and partnership trajectories among immigrants and their descendants in France: An application of multichannel sequence analysis. Population Studies 77(1): 55–70.

Weblink:
Download reference:

Dudoit, S., Shaffer, J.P., and Boldrick, J.C. (2003). Multiple hypothesis testing in microarray experiments. Statistical Science 18(1): 71–103.

Weblink:
Download reference:

Ehrlinger, J. (2016). ggRandomForests: Exploring random forest survival. arXiv:1612.08974.

Download reference:

Erman, J. (2022). Cohort, policy, and process: The implications for migrant fertility in West Germany. Demography 59(1): 221–246.

Weblink:
Download reference:

Fawagreh, K., Gaber, M.M., and Elyan, E. (2014). Random forests: from early developments to recent advancements. Systems Science & Control Engineering 2(1): 602–609.

Weblink:
Download reference:

Garip, F. (2020). What failure to predict life outcomes can teach us. Proceedings of the National Academy of Sciences 117(15): 8234–8235.

Weblink:
Download reference:

Hamidi, O., Tapak, M., Poorolajal, J., Amini, P., and Tapak, L. (2017). Application of random survival forest for competing risks in prediction of cumulative incidence function for progression to AIDS. Epidemiology, Biostatistics and Public Health 14(4).

Weblink:
Download reference:

Hanson, H.A., Martin, C., O’Neil, B., Leiser, C.L., Mayer, E.N., Smith, K.R., and Lowrance, W.T. (2019). The relative importance of race compared to health care and social factors in predicting prostate cancer mortality: A random forest approach. The Journal of Urology 202(6): 1209–1216.

Weblink:
Download reference:

Hays, J.J. and Guzzo, K.B. (2022). Does sibling composition in childhood contribute to adult fertility behaviors? Journal of Marriage and Family 84(1): 53–79.

Weblink:
Download reference:

Ho, T.K. (ed.) (1995). Random decision forests. Montreal, QC: IEEE (Proceedings of 3rd international conference on document analysis and recognition).

Weblink:
Download reference:

Ho, T.K. (1998). The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(8): 832–844.

Weblink:
Download reference:

Hsich, E., Gorodeski, E.Z., Blackstone, E.H., Ishwaran, H., and Lauer, M.S. (2011). Identifying important risk factors for survival in patient with systolic heart failure using random survival forests. Circulation: Cardiovascular Quality and Outcomes 4(1): 39–45.

Weblink:
Download reference:

Ishwaran, H. (2007). Variable importance in binary regression trees and forests. Electronic Journal of Statistics 1: 519–537.

Weblink:
Download reference:

Ishwaran, H., Gerds, T.A., Kogalur, U.B., Moore, R.D., Gange, S.J., and Lau, B.M. (2014). Random survival forests for competing risks. Biostatistics 15(4): 757–773.

Weblink:
Download reference:

Ishwaran, H. and Kogalur, U.B. (2014). RandomForestSRC: Random forests for survival, regression and classification (RF-SRC). R package version (0).

Download reference:

Ishwaran, H. and Kogalur, U.B. (2008). RandomSurvivalForest 3.2. 2. R package.

Weblink:
Download reference:

Ishwaran, H., Kogalur, U.B., Blackstone, E.H., and Lauer, M.S. (2008). Random survival forests. Annals of Applied Statistics 2(3): 841–860.

Weblink:
Download reference:

Ishwaran, H., Kogalur, U.B., Chen, X., and Minn, A.J. (2011). Random survival forests for high‐dimensional data. Statistical Analysis and Data Mining: The ASA Data Science Journal 4(1): 115–132.

Weblink:
Download reference:

Ishwaran, H., Kogalur, U.B., Gorodeski, E.Z., Minn, A.J., and Lauer, M.S. (2010). High-dimensional variable selection for survival data. Journal of the American Statistical Association 105(489): 205–217.

Weblink:
Download reference:

Jiang, S. (2019). Prediction based on Random Survival Forest. American Journal of Biomedical Science and Research 6(2).

Weblink:
Download reference:

Kashyap, R., Rinderknecht, R.G., Akbaritabar, A., Alburez-Gutierrez, D., Gil-Clavel, S., Grow, A., Kim, J., Leasure, D.R., Lohmann, S., Negraia, D.V., Perrotta, D., Rampazzo, F., Tsai, C.J., Verhagen, M.D., Zagheni, E., and Zhao, X. (2022). Digital and computational demography. SocArXiv.

Weblink:
Download reference:

Keramati, A., Lu, P., Iranitalab, A., Pan, D., and Huang, Y. (2020). A crash severity analysis at highway-rail grade crossings: The random survival forest method. Accident Analysis and Prevention 144: 105683.

Weblink:
Download reference:

Krapf, S. and Wolf, K. (2016). Persisting differences or adaptation to German fertility patterns? First and second birth behavior of the 1.5 and second generation Turkish migrants in Germany. In: Hank, K. and Kreyenfeld, M. (eds.). Social Demography – Forschung an der Schnittstelle von Soziologie und Demographie. Wiesbaden: Springer VS: 137–164.

Weblink:
Download reference:

Kulu, H. and González-Ferrer, A. (2014). Family dynamics among immigrants and their descendants in Europe: Current research and opportunities. European Journal of Population 30(4): 411–435.

Weblink:
Download reference:

Kulu, H. and Hannemann, T. (2016). Why does fertility remain high among certain UK-born ethnic minority women? Demographic Research 35(49): 1441–1488.

Weblink:
Download reference:

Kulu, H., Hannemann, T., Pailhé, A., Neels, K., Krapf, S., González-Ferrer, A., and Andersson, G. (2017). Fertility by birth order among the descendants of immigrants in selected European countries. Population and Development Review 43(1): 31–60.

Weblink:
Download reference:

Kulu, H. and Milewski, N. (2007). Family change and migration in the life course: An introduction. Demographic Research 17(19): 567–590.

Weblink:
Download reference:

Kulu, H., Milewski, N., Hannemann, T., and Mikolai, J. (2019). A decade of life-course research on fertility of immigrants and their descendants in Europe. Demographic Research 40(46): 1345–1374.

Weblink:
Download reference:

Kulu, H. and T, Hannemann (2016). Introduction to research on immigrant and ethnic minority families in Europe. Demographic Research 35(2): 31–46.

Weblink:
Download reference:

Liaw, A. and Wiener, M. (2002). Classification and regression by randomForest. R news 2(3): 18–22.

Download reference:

Loh, W.Y. (2011). Classification and regression trees. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1(1): 14–23.

Weblink:
Download reference:

Miao, F., Cai, Y.P., Zhang, Y.T., and Li, C.Y. (eds.) (2015). Is random survival forest an alternative to Cox proportional model on predicting cardiovascular disease? Cham: Springer (6TH European conference of the international federation for medical and biological engineering).

Weblink:
Download reference:

Milewski, N. (2007). First child of immigrant workers and their descendants in West Germany: Interrelation of events, disruption, or adaptation? Demographic Research 17(29): 859–896.

Weblink:
Download reference:

Milewski, N. (2010). Immigrant fertility in West Germany: Is there a socialization effect in transitions to second and third births? European Journal of Population/Revue européenne de Démographie 26(3): 297–323.

Weblink:
Download reference:

Mussino, E. and Cantalini, S. (2022). Influences of origin and destination on migrant fertility in Europe. Population, Space and Place 28(7): 2567.

Weblink:
Download reference:

Mussino, E. and Strozza, S. (2012). Does citizenship still matter? Second birth risks of migrants from Albania, Morocco, and Romania in Italy. European Journal of Population/Revue européenne de Démographie 28(3): 269–302.

Weblink:
Download reference:

Pailhé, A. (2017). The convergence of second-generation immigrants’ fertility patterns in France: The role of sociocultural distance between parents’ and host country. Demographic Research 36(45): 1361–1398.

Weblink:
Download reference:

Rezaei, M., Tapak, L., Alimohammadian, M., Sadjadi, A., and Yaseri, M. (2020). Review of Random Survival Forest method. Journal of Biostatistics and Epidemiology 6(1): 59–68.

Weblink:
Download reference:

Rojas, E.A.G., Bernardi, L., and Schmid, F. (2018). First and second births among immigrants and their descendants in Switzerland. Demographic Research 38(11): 247–286.

Weblink:
Download reference:

Salganik, M.J., Lundberg, I., Kindel, A.T., Ahearn, C.E., Al-Ghoneim, K., Almaatouq, A., and McLanahan, S. (2020). Measuring the predictability of life outcomes with a scientific mass collaboration. Proceedings of the National Academy of Sciences 117(15): 8398–8403.

Weblink:
Download reference:

Scheffner, I., Gietzelt, M., Abeling, T., Marschollek, M., and Gwinner, W. (2020). Patient survival after kidney transplantation: Important role of graft-sustaining factors as determined by predictive modeling using random survival forest analysis. Transplantation 104(5): 1095–1107.

Weblink:
Download reference:

Spooner, A., Chen, E., Sowmya, A., Sachdev, P., Kochan, N.A., Trollor, J., and Brodaty, H. (2020). A comparison of machine learning methods for survival analysis of high-dimensional clinical data for dementia prediction. Scientific Reports 10(1): 20410.

Weblink:
Download reference:

Taylor, J.M.G. (2011). Random survival forests. Journal of Thoracic Oncology 6(12): 1974–1975.

Weblink:
Download reference:

Wang, H. and Li, G. (2017). A selective review on random survival forests for high dimensional data. Quantitative Bio-Science 36(2): 85.

Weblink:
Download reference:

Wang, P., Li, Y., and Reddy, C.K. (2019). Machine learning for survival analysis: A survey. ACM Computing Surveys 51(6): 1–36.

Weblink:
Download reference:

Whetten, A.B., Stevens, J.R., and Cann, D. (2021). The implementation of random survival forests in conflict management data: An examination of power sharing and third party mediation in post-conflict countries. PloS ONE 16(5): e0250963.

Weblink:
Download reference:

Wilson, B. (2020). Understanding how immigrant fertility differentials vary over the reproductive life course. European Journal of Population 36(3): 465–498.

Weblink:
Download reference:

Witten, D.M. and Tibshirani, R. (2010). Survival analysis with high-dimensional covariates. Statistical Methods in Medical Research 19(1): 29–51.

Weblink:
Download reference:

Ziegler, A. and König, I.R. (2014). Mining data with random forests: Current options for real‐world applications. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 4(1): 55–63.

Weblink:
Download reference:

Back to the article