Volume 53 - Article 26 | Pages 821–896  

A parametric survival model for child mortality using complex survey data

By Taylor Okonek, Katie Wilson, Jon Wakefield

References

Alexander, M., Zagheni, E., and Barbieri, M. (2017). A flexible Bayesian model for estimating subnational mortality. Demography 54(6): 2025–2041.

Weblink:
Download reference:

Alkema, L. and New, J.R. (2014). Global estimation of child mortality using a Bayesian B-spline bias-reduction model. The Annals of Applied Statistics 8(4): 2122–2149.

Weblink:
Download reference:

Allison, P.D. (2014). Event history and survival analysis: Regression for longitudinal event data. Thousand Oaks: SAGE publications.

Weblink:
Download reference:

Barbieri, M., Wilmoth, J.R., Shkolnikov, V.M., Glei, D., Jasilionis, D., Jdanov, D., Boe, C., Riffe, T., Grigoriev, P., and Winant, C. (2015). Data resource profile: The Human Mortality Database (HMD). International Journal of Epidemiology 44(5): 1549–1556.

Weblink:
Download reference:

Binder, D.A. (1992). Fitting Cox’s proportional hazards models from survey data. Biometrika 79(1): 139–147.

Weblink:
Download reference:

Binder, D.A. (1983). On the variances of asymptotically normal estimators from complex surveys. International Statistical Review 51(3): 279–292.

Weblink:
Download reference:

Breslow, N.E. and Wellner, J.A. (2008). AZ-theorem with estimated nuisance parameters and correction note for ‘Weighted likelihood for semiparametric models and two-phase stratified samples, with application to Cox regression’. Scandinavian Journal of Statistics 35(1): 186–192.

Weblink:
Download reference:

Breslow, N.E. and Wellner, J.A. (2007). Weighted likelihood for semiparametric models and two-phase stratified samples, with application to Cox regression. Scandinavian Journal of Statistics 34(1): 86–102.

Weblink:
Download reference:

Carstensen, B. (2007). Age-period-cohort models for the Lexis diagram. Statistics in Medicine 26(15): 3018–3045.

Weblink:
Download reference:

Clark, S.J. (2019). A general age-specific mortality model with an example indexed by child mortality or both child and adult mortality. Demography 56(3): 1131–1159.

Weblink:
Download reference:

Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B 39(1): 1–22.

Download reference:

Eilerts, H., Prieto, J.R., Eaton, J.W., and Reniers, G. (2021). Age patterns of under-5 mortality in sub-Saharan Africa during 1990–2018: A comparison of estimates from demographic surveillance with full birth histories and the historic record. Demographic Research 44(18): 415–442.

Weblink:
Download reference:

Groeneboom, P. and Wellner, J.A. (1992). Information bounds and nonparamet-ric maximum likelihood estimation. Basel: Springer Science & Business Media.

Weblink:
Download reference:

Guillot, M., Romero Prieto, J., Verhulst, A., and Gerland, P. (2022). Modeling age patterns of under-5 mortality: Results from a log-quadratic model applied to high-quality vital registration data. Demography 59(1): 321–347.

Weblink:
Download reference:

Heligman, L. and Pollard, J.H. (1980). The age pattern of mortality. Journal of the Institute of Actuaries 107(1): 49–80.

Weblink:
Download reference:

Hill, K. (1995). Age patterns of child mortality in the developing world. Population Bulletin of the United Nations 39: 112–132.

Download reference:

Kaplan, E.L. and Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association 53(282): 457–481.

Weblink:
Download reference:

Lawn, J.E., Osrin, D., Adler, A., and Cousens, S. (2008). Four million neonatal deaths: Counting and attribution of cause of death. Paediatric and Perinatal Epidemiology 22(5): 410–416.

Weblink:
Download reference:

Li, Z., Hsiao, Y., Godwin, J., Martin, B.D., Wakefield, J., and Clark, S.J. (2019). Changes in the spatial distribution of the under-five mortality rate: Small-area analysis of 122 DHS surveys in 262 subregions of 35 countries in Africa. PloS One 14(1): e0210645.

Weblink:
Download reference:

Lin, D. (2000). On fitting Cox’s proportional hazards models to survey data. Biometrika 87(1): 37–47.

Weblink:
Download reference:

Lumley, T. and Scott, A. (2015). AIC and BIC for modeling with complex survey data. Journal of Survey Statistics and Methodology 3(1): 1–18.

Weblink:
Download reference:

Mercer, L.D., Wakefield, J., Pantazis, A., Lutambi, A.M., Masanja, H., and Clark, S. (2015). Space-time smoothing of complex survey data: Small area estimation for child mortality. The Annals of Applied Statistics 9(4): 1889–1905.

Weblink:
Download reference:

Pedersen, J. and Liu, J. (2012). Child mortality estimation: Appropriate time periods for child mortality estimates from full birth histories. PLoS Medicine 9(8).

Weblink:
Download reference:

Prentice, R.L. (1974). A log gamma model and its maximum likelihood estimation. Biometrika 61(3): 539–544.

Weblink:
Download reference:

Rao, J.N., Molina, I., Sons. Rao, J.N.K., and Wu, C.F.J. (2015). Small area estimation. Journal of the American Statistical Association 83(401): 231–241.

Weblink:
Download reference:

Romero Prieto, J., Verhulst, A., and Guillot, M. (2021). Estimating the infant mortality rate from DHS birth histories in the presence of age heaping. PLoS One 16(11): e0259304.

Weblink:
Download reference:

Schöley, J. (ed.) (2019). The age-trajectory of infant mortality in the United States: Parametric models and generative mechanisms. Austin, TX (Annual Meeting of the Population Association of America).

Download reference:

Sun, J. (2001). Variance estimation of a survival function for interval-censored survival data. Statistics in Medicine 20(8): 1249–1257.

Weblink:
Download reference:

Turnbull, B.W. (1976). The empirical distribution function with arbitrarily grouped, censored and truncated data. Journal of the Royal Statistical Society: Series B 38(3): 290–295.

Download reference:

Verhulst, A., Prieto, J.R., Alam, N., Eilerts-Spinelli, H., Erchick, D.J., Gerland, P., Katz, J., Lankoande, B., Liu, L., Pison, G., Reniers, G., Subedi, S., Villavicencio, F., and Guillot, M. (2022). Divergent age patterns of under-5 mortality in south Asia and sub-Saharan Africa: A modelling study. The Lancet Global Health 10(11): e1566–e1574.

Weblink:
Download reference:

Wakefield, J., Okonek, T., and Pedersen, J. (2020). Small area estimation for disease prevalence mapping. International Statistical Review 88(2): 398–418.

Weblink:
Download reference:

Wang, Z., Gardiner, J., and Ramamoorthi, R. (1994). Identifiability in interval censorship models. Statistics and Probability Letters 21(3): 215–221.

Weblink:
Download reference:

Wilmoth, J., Zureick, S., Canudas-Romo, V., Inoue, M., and Sawyer, C. (2012). A flexible two-dimensional mortality model for use in indirect estimation. Population Studies 66(1): 1–28.

Weblink:
Download reference:

Wu, Y., Li, Z.R., Mayala, B.K., Wang, H., Gao, P., Paige, J., Fuglstad, G.A., Moe, C., Godwin, J., Donohue, R.E., Croft, T.N., and Wakefield, J. (2021). Spatial modeling for subnational administrative level 2 small-area estimation. Rockville, Maryland, USA: ICF, DHS Spatial Analysis Reports.

Download reference:

Yanagisawa, H. (2023). Proper scoring rules for survival analysis. Proceedings of Machine Learning Research, Proceedings of the 40th International Conference on Machine Learning.

Back to the article