Volume 53 - Article 7 | Pages 187–218  

The impact of population heterogeneity on the age trajectory of neonatal mortality: A study of US births 2008–2014

By Jonas Schöley

References

Apgar, V. (1953). A proposal for a new method of evaluation of the newborn infant. Current Researches in Anesthesia and Analgesia 32(4): 260–267.

Weblink:
Download reference:

Avraam, D., Arnold, S., Jones, D., and Vasiev, B. (2014). Time-evolution of age-dependent mortality patterns in mathematical model of heterogeneous human population. Experimental Gerontology 60: 18–30.

Weblink:
Download reference:

Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67(1): 1–48.

Weblink:
Download reference:

Beard, R.E. (1959). Appendix: Note on some mathematical mortality models. In: Wolstenholme, G.E.W. and O’Connor, M. (eds.). The lifespan of animals. CIBA Foundation Colloquium on Ageing. Boston: Little, Brown: 302–311.

Weblink:
Download reference:

Bell, E.F., Hintz, S.R., Hansen, N.I., Bann, C.M., Wyckoff, M.H., DeMauro, S.B., Walsh, M.C., Vohr, B.R., Stoll, B.J., Carlo, W.A., Van Meurs, K.P., Rysavy, M.A., Patel, R.M., Merhar, S.L., S´anchez, P.J., Laptook, A.R., Hibbs, A.M., Cotten, C.M., D’Angio, C.T., Winter, S., Fuller, J., Das, A., and Network, Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research (2022). Mortality, inhospital morbidity, care practices, and 2-year outcomes for extremely preterm infants in the US, 2013–2018. JAMA 327(3).

Weblink:
Download reference:

Bohk-Ewald, C., Rau, R., and Cohen, J.E. (2015). Taylor’s power law in human mortality. Demographic Research 33(21): 589–610.

Weblink:
Download reference:

Boole, G. (1880). Calculus of finite differences. New York: Chelsea Publishing Company.

Download reference:

Casey, B.M., McIntire, D.D., and Leveno, K.J. (2001). The continuing value of the Apgar score for the assessment of newborn infants. The New England Journal of Medicine 344(7): 467–471.

Weblink:
Download reference:

Cohen, J.E., Bohk-Ewald, C., and Rau, R. (2018). Gompertz, Makeham, and Siler models explain Taylor’s law in human mortality data. Demographic Research 38(29): 773–841.

Weblink:
Download reference:

Cohen, J.E., Xu, M., and Brunborg, H. (2013). Taylor’s law applies to spatial variation in a human population. Genus 69(1): 25–60.

Download reference:

Colchero, F. and Kiyakoglu, B.Y. (2019). Beyond the proportional frailty model: Bayesian estimation of individual heterogeneity on mortality parameters. Biometrical Journal 62(1): 124–135.

Weblink:
Download reference:

Gelman, A. and Hill, J. (2007). Data analysis using regression and multilevel/ hierarchical models. Analytical methods for social research. Cambridge: Cambridge University Press.

Weblink:
Download reference:

Hoem, J.M. (1990). Identifiability in hazard models with unobserved heterogeneity: The compatibility of two apparently contradictory results. Theoretical Population Biology 37(1): 124–128.

Weblink:
Download reference:

Hougaard, P. (1984). Life table methods for heterogeneous populations: Distributions describing the heterogeneity. Biometrika 71(1): 75–83.

Weblink:
Download reference:

Hougaard, P. (1986). Survival models for heterogeneous populations derived from stable distributions. Biometrika 73(2): 387–396.

Weblink:
Download reference:

Hsieh, J.J. (1985). Construction of expanded infant life tables: A method based on a new mortality law. Mathematical Biosciences 76(2): 221–242.

Weblink:
Download reference:

Hug, L., Alexander, M., You, D., and Alkema, L. (2019). National, regional, and global levels and trends in neonatal mortality between 1990 and 2017, with scenario-based projections to 2030: A systematic analysis. The Lancet Global Health 7(6): 710–720.

Weblink:
Download reference:

Kitagawa, E.M. (1955). Components of a difference between two rates. Journal of the American Statistical Association 50(272): 1168–1194.

Weblink:
Download reference:

Levitis, D.A. (2011). Before senescence: The evolutionary demography of ontogenesis. Proceedings of the Royal Society B 278(1707): 801–809.

Weblink:
Download reference:

Levitis, D.A. and Martínez, D.E. (2013). The two halves of U-shaped mortality. Frontiers in Genetics 4(31): 1–6.

Weblink:
Download reference:

Malloy, M.H. and Wang, L.K. (2022). The limits of viability of extremely preterm infants. Baylor University Medical Center Proceedings 35(5): 731–735.

Weblink:
Download reference:

Missov, T.I. and Vaupel, J.W. (2015). Mortality implications of mortality plateaus. SIAM Review 57(1): 61–70.

Weblink:
Download reference:

Naccarato, A. and Benassi, F. (2018). On the relationship between mean and variance of world’s human population density: A study using Taylor’s power law. Letters in Spatial and Resource Sciences 11: 307–314.

Weblink:
Download reference:

National Center for Health Statistics (2016). U.S. data.

Download reference:

Park, J.H., Chang, Y.S., Ahn, S.Y., Sung, S.I., and Park, W.S. (2018). Predicting mortality in extremely low birth weight infants: Comparison between gestational age, birth weight, Apgar score, CRIB II score, initial and lowest serum albumin levels. PLoS ONE 13(2): e0192232.

Weblink:
Download reference:

Pollack, M.M., Koch, M.A., Bartel, D.A., Rapoport, I., Dhanireddy, R., El-Mohandes, A.A.E., Harkavy, K., and Subramanian, K.N.S. (2000). A comparison of neonatal mortality risk prediction models in very low birth weight infants. Pediatrics 105(5): 1051–1057.

Weblink:
Download reference:

Poppe, G.P.M. and Wijers, C.M.J. (1990). More efficient computation of the complex error function. ACM Transactions on Mathematical Software (TOMS) 16(1): 38–46.

Download reference:

Remund, A. (2015). Jeunesses vulnérables? Mesures, composantes et causes de la surmortalité des jeunes adultes. Geneva: Université de Genève.

Weblink:
Download reference:

Steinsaltz, D.R. and Wachter, K.W. (2006). Understanding mortality rate deceleration and heterogeneity. Mathematical Population Studies 13(1): 19–37.

Weblink:
Download reference:

Taylor, L.R. (1961). Aggregation, variance and the mean. Nature 189(4766): 732–735.

Download reference:

Trussell, J. and Richards, T. (1985). Correcting for unmeasured heterogeneity in hazard models using the Heckman–Singer procedure. Sociological Methodology 15: 242–276.

Weblink:
Download reference:

Vaupel, J.W. and Carey, J.R. (1993). Compositional interpretations of medfly mortality. Science 260(5114): 1666–1667.

Weblink:
Download reference:

Vaupel, J.W., Manton, K.G., and Stallard, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography 16(3): 439–454.

Weblink:
Download reference:

Vaupel, J.W. and Missov, T.I. (2014). Unobserved population heterogeneity: A review of formal relationships. Demographic Research 31(22): 659–686.

Weblink:
Download reference:

Vaupel, J.W. and Yashin, A.I. (1985). Heterogeneity’s ruses: Some surprising effects of selection on population dynamics. The American Statistician 39(3): 176–185.

Weblink:
Download reference:

Vaupel, J.W. and Yashin, A.I. (1983). The deviant dynamics of death in heterogeneous populations. In: Laxenburg: International Institute for Applied Systems Analysis. .

Weblink:
Download reference:

Vaupel, J.W. and Zhang, Z. (2010). Attrition in heterogeneous cohorts. Demographic Research 23(26): 737–748.

Weblink:
Download reference:

Wienke, A. (2011). Frailty models in survival analysis. Biostatistics series. Boca Raton: Chapman and Hall.

Download reference:

Yashin, A.I., Iachine, I.A., and Begun, A.S. (2000). Mortality modeling: A review. Mathematical Population Studies 8(4): 305–332.

Weblink:
Download reference:

Back to the article