Volume 53 - Article 7 | Pages 187–218
The impact of population heterogeneity on the age trajectory of neonatal mortality: A study of US births 2008–2014
References
Apgar, V. (1953). A proposal for a new method of evaluation of the newborn infant. Current Researches in Anesthesia and Analgesia 32(4): 260–267.
Avraam, D., Arnold, S., Jones, D., and Vasiev, B. (2014). Time-evolution of age-dependent mortality patterns in mathematical model of heterogeneous human population. Experimental Gerontology 60: 18–30.
Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67(1): 1–48.
Beard, R.E. (1959). Appendix: Note on some mathematical mortality models. In: Wolstenholme, G.E.W. and O’Connor, M. (eds.). The lifespan of animals. CIBA Foundation Colloquium on Ageing. Boston: Little, Brown: 302–311.
Bell, E.F., Hintz, S.R., Hansen, N.I., Bann, C.M., Wyckoff, M.H., DeMauro, S.B., Walsh, M.C., Vohr, B.R., Stoll, B.J., Carlo, W.A., Van Meurs, K.P., Rysavy, M.A., Patel, R.M., Merhar, S.L., S´anchez, P.J., Laptook, A.R., Hibbs, A.M., Cotten, C.M., D’Angio, C.T., Winter, S., Fuller, J., Das, A., and Network, Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research (2022). Mortality, inhospital morbidity, care practices, and 2-year outcomes for extremely preterm infants in the US, 2013–2018. JAMA 327(3).
Bohk-Ewald, C., Rau, R., and Cohen, J.E. (2015). Taylor’s power law in human mortality. Demographic Research 33(21): 589–610.
Boole, G. (1880). Calculus of finite differences. New York: Chelsea Publishing Company.
Casey, B.M., McIntire, D.D., and Leveno, K.J. (2001). The continuing value of the Apgar score for the assessment of newborn infants. The New England Journal of Medicine 344(7): 467–471.
Cohen, J.E., Bohk-Ewald, C., and Rau, R. (2018). Gompertz, Makeham, and Siler models explain Taylor’s law in human mortality data. Demographic Research 38(29): 773–841.
Cohen, J.E., Xu, M., and Brunborg, H. (2013). Taylor’s law applies to spatial variation in a human population. Genus 69(1): 25–60.
Colchero, F. and Kiyakoglu, B.Y. (2019). Beyond the proportional frailty model: Bayesian estimation of individual heterogeneity on mortality parameters. Biometrical Journal 62(1): 124–135.
Gelman, A. and Hill, J. (2007). Data analysis using regression and multilevel/ hierarchical models. Analytical methods for social research. Cambridge: Cambridge University Press.
Hoem, J.M. (1990). Identifiability in hazard models with unobserved heterogeneity: The compatibility of two apparently contradictory results. Theoretical Population Biology 37(1): 124–128.
Hougaard, P. (1984). Life table methods for heterogeneous populations: Distributions describing the heterogeneity. Biometrika 71(1): 75–83.
Hougaard, P. (1986). Survival models for heterogeneous populations derived from stable distributions. Biometrika 73(2): 387–396.
Hsieh, J.J. (1985). Construction of expanded infant life tables: A method based on a new mortality law. Mathematical Biosciences 76(2): 221–242.
Hug, L., Alexander, M., You, D., and Alkema, L. (2019). National, regional, and global levels and trends in neonatal mortality between 1990 and 2017, with scenario-based projections to 2030: A systematic analysis. The Lancet Global Health 7(6): 710–720.
Kitagawa, E.M. (1955). Components of a difference between two rates. Journal of the American Statistical Association 50(272): 1168–1194.
Levitis, D.A. (2011). Before senescence: The evolutionary demography of ontogenesis. Proceedings of the Royal Society B 278(1707): 801–809.
Levitis, D.A. and Martínez, D.E. (2013). The two halves of U-shaped mortality. Frontiers in Genetics 4(31): 1–6.
Malloy, M.H. and Wang, L.K. (2022). The limits of viability of extremely preterm infants. Baylor University Medical Center Proceedings 35(5): 731–735.
Missov, T.I. and Vaupel, J.W. (2015). Mortality implications of mortality plateaus. SIAM Review 57(1): 61–70.
Naccarato, A. and Benassi, F. (2018). On the relationship between mean and variance of world’s human population density: A study using Taylor’s power law. Letters in Spatial and Resource Sciences 11: 307–314.
National Center for Health Statistics (2016). U.S. data.
Park, J.H., Chang, Y.S., Ahn, S.Y., Sung, S.I., and Park, W.S. (2018). Predicting mortality in extremely low birth weight infants: Comparison between gestational age, birth weight, Apgar score, CRIB II score, initial and lowest serum albumin levels. PLoS ONE 13(2): e0192232.
Pollack, M.M., Koch, M.A., Bartel, D.A., Rapoport, I., Dhanireddy, R., El-Mohandes, A.A.E., Harkavy, K., and Subramanian, K.N.S. (2000). A comparison of neonatal mortality risk prediction models in very low birth weight infants. Pediatrics 105(5): 1051–1057.
Poppe, G.P.M. and Wijers, C.M.J. (1990). More efficient computation of the complex error function. ACM Transactions on Mathematical Software (TOMS) 16(1): 38–46.
Remund, A. (2015). Jeunesses vulnérables? Mesures, composantes et causes de la surmortalité des jeunes adultes. Geneva: Université de Genève.
Steinsaltz, D.R. and Wachter, K.W. (2006). Understanding mortality rate deceleration and heterogeneity. Mathematical Population Studies 13(1): 19–37.
Taylor, L.R. (1961). Aggregation, variance and the mean. Nature 189(4766): 732–735.
Trussell, J. and Richards, T. (1985). Correcting for unmeasured heterogeneity in hazard models using the Heckman–Singer procedure. Sociological Methodology 15: 242–276.
Vaupel, J.W. and Carey, J.R. (1993). Compositional interpretations of medfly mortality. Science 260(5114): 1666–1667.
Vaupel, J.W., Manton, K.G., and Stallard, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography 16(3): 439–454.
Vaupel, J.W. and Missov, T.I. (2014). Unobserved population heterogeneity: A review of formal relationships. Demographic Research 31(22): 659–686.
Vaupel, J.W. and Yashin, A.I. (1985). Heterogeneity’s ruses: Some surprising effects of selection on population dynamics. The American Statistician 39(3): 176–185.
Vaupel, J.W. and Yashin, A.I. (1983). The deviant dynamics of death in heterogeneous populations. In: Laxenburg: International Institute for Applied Systems Analysis. .
Vaupel, J.W. and Zhang, Z. (2010). Attrition in heterogeneous cohorts. Demographic Research 23(26): 737–748.
Wienke, A. (2011). Frailty models in survival analysis. Biostatistics series. Boca Raton: Chapman and Hall.
Yashin, A.I., Iachine, I.A., and Begun, A.S. (2000). Mortality modeling: A review. Mathematical Population Studies 8(4): 305–332.