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On the relationship between period and cohort mortality 

John R. Wilmoth 1 

Abstract 

In this paper I explore the formal relationship between period and cohort mortality, 
focusing on a comparison of measures of mean lifespan.  I consider not only the usual 
measures (life expectancy at birth for time periods and birth cohorts) but also some 
alternative measures that have been proposed recently. 

I examine (and reject) the claim made by Bongaarts and Feeney that the level of 
period 0e  is distorted, or biased, due to changes in the timing of mortality.  I show that 

their proposed alternative measure, called “tempo-adjusted” life expectancy, is exactly 
equivalent in its generalized form to a measure proposed by both Brouard and Guillot, 
the cross-sectional average length of life (or CAL), which substitutes cohort survival 
probabilities for their period counterparts in the calculation of mean lifespan.  I 
conclude that this measure does not in any sense correct for a distortion in period life 
expectancy at birth, but rather offers an alternative measure of mean lifespan that is 
approximately equal to two analytically interesting quantities:  1) the mean age at death 
in a given year for a hypothetical population subject to observed historical mortality 
conditions but with a constant annual number of births; and 2) the mean age at death, 
λ , for a cohort born λ  years ago. 

However, I also observe that the trend in period 0e  does indeed offer a biased 

depiction of the pace of change in mean lifespan from cohort to cohort.  Holding other 
factors constant, an historical increase in life expectancy at birth is somewhat faster 
when viewed from the perspective of cohorts (i.e., year of birth) than from the 
perspective of periods (i.e., year of death). 

 
 
 
 

This article is part of Demographic Research Special Collection 4,  
“Human Mortality over Age, Time, Sex, and Place: The 1st HMD Symposium”.  
Please see Volume 13, Publications 13-10 through 13-20.  
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1. Introduction 

A classic problem in formal demography is how to define summary measures of 
demographic events for time periods that correspond in some meaningful way to the 
lived experience of actual cohorts.  Although such period measures may not be 
equivalent to the analogous measure for any particular cohort, they should nevertheless 
represent the lifetime experience of a hypothetical cohort that is subject throughout its 
life to currently observed demographic conditions.  The question, of course, is how to 
define the concept of current conditions, especially when such conditions are changing.  
For example, several authors have pointed out that in some situations the standard 
measure of lifetime completed fertility, the total fertility rate (TFR), misrepresents the 
average number of births that a woman would bear over her lifetime (Hajnal, 1947; 
Ryder, 1964; Bongaarts and Feeney, 1998).  Since the problem is caused by changes 
from year to year in the timing of fertility as a function of age, this phenomenon is now 
commonly referred to as “tempo distortion,” or “tempo bias.” 

In the case of fertility, the existence of such a distortion is widely acknowledged, 
even though there are differences of opinion about how best to adjust the TFR to 
remove such bias (Schoen, 2004).  In the case of mortality, however, the recent claim 
by Bongaarts and Feeney (2002, 2003) of a similar bias affecting period life expectancy 
at birth, 0e , has not found wide acceptance.  Without doubt, such skepticism derives in 

part from the dissimilarity of the two examples, since the TFR measures the number of 
births over the life course, whereas 0e  depicts the average age at death.  This difference 

recalls Ryder’s emphasis on the fundamental distinction between the quantum and the 
tempo of demographic events (Ryder, 1978). 

The recent discussion of these topics has revealed a pressing need to clarify the 
meaning of various summary measures of average longevity in a population.  Therefore, 
in this paper I explore the formal relationship between period and cohort mortality, with 
a particular emphasis on the concept of mean lifespan.  I consider not only the usual 
measures (life expectancy at birth for periods and cohorts) but also some alternative 
measures that have been proposed recently. 

I examine (and reject) the assertion that the level of period 0e  is distorted, or 

biased, due to changes in the timing of mortality.  I show that the alternative measure 
proposed by Bongaarts and Feeney, called “tempo-adjusted” life expectancy, is exactly 
equivalent in its generalized form to a measure proposed by both Brouard (1986) and 
Guillot (2003), known as the cross-sectional average length of life (or CAL), which 
substitutes cohort probabilities of survival for their period counterparts in the 
calculation of mean lifespan.  I conclude that this measure does not in any sense correct 
for a distortion in period life expectancy at birth, but rather offers an alternative 
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measure of mean lifespan that is approximately equal to two analytically interesting 
quantities:  1) the mean age at death in a given year for a hypothetical population 
subject to observed historical mortality conditions but with a constant annual number of 
births; and 2) the mean age at death, λ , for a cohort born λ  years ago. 

However, I also observe that the trend in period 0e  does indeed offer a biased 

depiction of the pace of change in mean lifespan from cohort to cohort.  Holding other 
factors constant, an historical increase in life expectancy at birth is somewhat faster 
when viewed from the perspective of cohorts (i.e., year of birth) than from the 
perspective of periods (i.e., year of death). 

The analysis begins in Section 2 with a verbal discussion of some key topics.  This 
is followed by Section 3, which defines various mathematical functions and derives the 
standard period-cohort model of mortality.  Mathematically sophisticated readers may 
wish to begin with Section 3.  Likewise, individuals who are already well-versed in the 
specific topics addressed in this paper may wish to skip immediately to Section 3.3, or 
even Section 4. 

 
 

2. Overview and fundamental concepts 

Demographic events mark major life course transitions (e.g., birth, marriage, fertility, 
migration, retirement, widowhood, death).  Their likelihood of occurrence within some 
time interval is often described using rates (and/or conditional probabilities), whose 
specificity may vary as a function of age, time, sex, and other individual characteristics.  
Such rates are often used to calculate a variety of summary measures that depict the 
intensity and/or timing of such events over the life course.  Undoubtedly, the two most 
common of these measures are life expectancy at birth, 0e , and the total fertility rate 

(TFR). 
An overview of demographic summary measures must begin with certain 

fundamental concepts, including three important dichotomies:  (a) cohorts vs. periods; 
(b) quantum vs. tempo; and (c) population dynamics vs. synthetic cohorts.  In addition 
to these three distinctions, we need to understand the phenomenon of partial (or surplus) 
quantum, which affects the period TFR (and all measures of quantum) whenever the 
timing of fertility (or other event) is changing over time.  To address these and other 
issues in this paper, I describe a new class of models that can be used to explore 
mortality (and other demographic) trends based on assumptions about changes in the 
age distribution of events, rather than the age pattern of risk. 
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2.1 Cohorts vs. periods 

Cohorts and periods are two different ways of reckoning time when analyzing 
demographic events.  A cohort is an actual group of persons who experience a major 
life event around the same time.  For example, birth cohorts are composed of 
individuals who are born in the same year (or decade, etc.).  Cohort life expectancy at 
birth is the observed average age at death for this group (ignoring migration).  In the 
same context, a period is a time interval (e.g., year, decade) and is associated with a 
synthetic cohort, which is an imaginary group of people who experience, 
hypothetically, the demographic conditions of that period throughout life.  Thus, period 
life expectancy at birth is the expected average age at death for a synthetic cohort that 
experiences the mortality risks of that time (as reflected in age-specific death rates) 
from birth onward. 

 
 

2.2 Quantum vs. tempo 

In general, quantum refers to the intensity (or level, or frequency) with which some 
demographic event occurs in a population.  Quantum can be described as a function of 
age (e.g., age-specific rates) or summarized over the entire life course (e.g., the lifetime 
count or probability of an event).  Age-specific measures of quantum always have the 
number of events in the numerator.  In the case of mortality, these include death counts, 
probabilities of death or survival, and death rates.  In contrast, tempo refers to the 
timing of a demographic event over the life course.  Measures of tempo are expressed in 
units of time (or age) and usually depict the duration until an event’s occurrence.  The 
most common example is life expectancy at birth, but other measures of mortality 
tempo include percentiles of the distribution of age at death (e.g., median age at death) 
and person-years of survival (within some interval of time and/or age). 

 
 

2.3 Population dynamics vs. synthetic cohorts 

There are two classes of period measures used for summarizing the demographic events 
of a given time interval:  (a) those that describe population dynamics, and (b) those that 
depict the hypothetical experience of a synthetic cohort.  These two types of measures 
serve different purposes, and a measure that is appropriate in one case may be 
inappropriate in the other.  For example, the period total fertility rate (TFR), which 
equals the sum of observed age-specific fertility rates for a given period, depicts 
accurately the average contribution to population change attributable to the current 
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fertility of women in the reproductive age range (Calot, 2001).  From this perspective, 
the TFR is a useful and reliable measure of population dynamics. 

However, as a measure of lifetime fertility for a synthetic cohort, the TFR has at 
least two inherent flaws.  First, as discussed in the following section, it is affected by 
the phenomenon of partial (or surplus) quantum whenever there are changes in the 
timing of fertility as a function of age.  This problem, often called “tempo distortion” or 
“tempo bias,” can be circumvented by a small adjustment applied to age-specific 
fertility rates, which has the effect of replacing (or removing) the partial (or surplus) 
quantum caused by changes in fertility timing.  Second, observed age-specific fertility 
rates reflect past as well as current fertility patterns, since they depend on the 
distribution of women by parity at each age.  This latter problem could be avoided by 
computing an alternative measure of period total fertility based on parity transition rates 
within a multi-state framework. 

Thus, even though it is usually presented as a measure of lifetime fertility for a 
synthetic cohort, it is more appropriate to interpret the TFR as a measure of population 
dynamics.2  If we desire a measure of total fertility that depicts the lifetime experience 
of a synthetic cohort based only on current fertility conditions, then we must address 
both of the problems mentioned above.  Perhaps the ideal solution would consist of 
replacing the traditional TFR by a pair of period measures:  (a) the net reproduction rate 
(NRR) for the analysis of population dynamics, and (b) a full-quantum (or tempo-
adjusted) multi-state TFR to represent the lifetime reproduction of a synthetic cohort. 

In the case of mortality as well, some measures of mean lifespan are useful mostly 
for the analysis of population dynamics.  For example, the cross-sectional average 

length of life (CAL, or *
0e ) depicts the relative size of a population at a point in time 

given its past mortality trends but assuming (hypothetically) a constant annual stream of 
births (Guillot, 2003).  As shown here, CAL is also approximately equal to certain 
measures of mean lifespan for the population in question.  For example, it is quite 
similar in form to 0e′ , defined to be the mean age at death (MAD) that would be 

observed in a given time period for a population with an identical historical mortality 
pattern and a constant annual number of births (Bongaarts and Feeney, 2003).  
However, such measures describe population dynamics, not the life course of a 
synthetic cohort based exclusively on the mortality risks of a given period.  I show here 

that both *
0e  and 0e′  depend on past as well as present death rates; in contrast, the 

period life expectancy at birth, 0e , is the expected mean age at death implied by the 

observed death rates of that time alone. 
                                                        

2 The TFR is often interpreted (at least implicitly) as a proxy for the net reproduction rate (NRR).  For example, since population replacement in 

low-mortality populations requires a TFR of about 2.1 children per woman, a convenient approximation in such situations is 1.2TFRNRR ≈ . 
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In general, period measures of the average age of some life course event (e.g., 
death) at time t have two common forms:  (a) the mean age of the event that is or would 
be observed in the population at that time, perhaps under some set of hypothetical 
conditions (e.g., assuming a constant stream of births over time); or (b) the expected 
mean age of the event in a synthetic cohort assuming that current age-specific transition 
rates are experienced over a lifetime.  Some confusion results from the fact that 
different traditions have existed in fertility and mortality analysis concerning the 
appropriate definition for the period mean age of the event.  Perhaps because a central 
focus of fertility studies has been the role of reproduction in population dynamics, the 
definition of “average age at birth” has followed the concept of an observed mean age.  
In contrast, it was quite sensible for life expectancy at birth to reflect the concept of an 
expected mean age, since mortality studies have been framed in terms of risk reduction 
and abstract notions of quality of life, not population dynamics. 

 
 

2.4 Causes and consequences of partial (or surplus) quantum 

Many demographic events, like death, occur at various ages for members of the same 
cohort.  An associated probability distribution depicts the timing of such events as a 
function of age, and thus also in relation to the time periods in which they occur.  
During a given time period, each living cohort undergoes some fraction of its total 
lifetime experience of the event in question, and the total number of events observed 
during that period is a composite of these fractional segments of cohort lifetimes. 

If the age distribution of events is identical from cohort to cohort, a period cross-
section of these fractional segments sums to one, and therefore the collection of events 
within the period can be said to represent the equivalent of one complete cohort 
lifetime.  However, whenever there are changes in the distribution of events by age for 
successive cohorts, a period cross-section of cohort probability distributions typically 
does not sum to one.  A delay in the timing of events from cohort to cohort produces a 
phenomenon of partial quantum, whereas an acceleration of timing results in surplus 
quantum during the period in question.  In such cases, events observed during a given 
period generally misrepresent the equivalent of one complete cohort lifetime.3  (To 
simplify the exposition here, I will often consider only the case of tempo delay and 
partial quantum, since the causes and consequences of surplus quantum are identical, 
though always in the opposite direction.) 

                                                        
3 A sum of one in this case could occur only by coincidence, if negative and positive factors cancelled out, but such an occurrence seems 

extremely unlikely. 
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The phenomenon of partial (or surplus) quantum is the source of a tempo 
distortion, or bias, that affects measures of lifetime quantum, like the TFR.  This 
distortion can be easily eliminated by adjusting age-specific fertility rates in an 
appropriate fashion.  However, as noted earlier, this distortion is relevant only in 
situations where the TFR is interpreted as a measure of lifetime fertility for a synthetic 
cohort.  When the TFR is employed as a measure of population dynamics, the partial (or 
surplus) quantum caused by changes in fertility tempo is a desirable outcome.  In such 
cases adjusting the measure to remove tempo effects creates a bias where none existed 
before. 

The role of these factors in the analysis of quantum measures, like the TFR, is 
relatively straightforward, owing to the fact that the model of a synthetic cohort is 
relatively simple in this case.  In order to represent the lifetime quantum of an event, 
such as total fertility, demographers have typically created a synthetic cohort that is not 
subject to mortality or other forms of attrition, and thus the base population that 
accumulates events (e.g., births) over the life course is constant.  For this reason, 
adjusting for the effects of partial quantum (or tempo delay) is a simple matter of 
replacing the fraction of events for each cohort that have been postponed from the time 
period in question into the future. 

In contrast, tempo measures and their associated synthetic cohorts have a more 
complicated mathematical structure due to the phenomenon of attrition, which affects 
the base population (e.g., number of survivors) that is eligible to experience a given 
event (e.g., death).  In such cases, adjusting for tempo delay (or partial quantum) has a 
dual effect.  For a given base population, it restores a fraction of events that have been 
postponed into the future.  However, it also alters the base population itself at each age.  
Whereas the first effect has a relatively minor impact on measures of mean age (e.g., 
life expectancy at birth), the latter effect is quite significant and fundamentally alters the 
nature of the measure.  In fact, as I show here, tempo adjustment has the effect of 
converting a period survival probability (i.e., the probability of survival to age x within 
a period life table) into an analogous cohort survival probability (i.e., the probability of 
survival to age x for the cohort born x years ago).  In doing so, it converts period 0e  

into CAL, and thus fundamentally alters the nature of the measure (recall the earlier 
discussion of synthetic cohorts vs. population dynamics). 

In short, adjusting for tempo change in the case of a tempo measure has the effect 
of removing historical changes in the quantity being measured.  Tempo adjustment in 
this case converts a period measure based on a synthetic cohort into a cross-sectional 
measure that reflects the past experiences of cohorts.  As noted earlier, the primary use 
for CAL is the analysis of population dynamics.  Differences between CAL and period 

0e  do not suggest that the latter measure is “distorted” in any sense.  Rather, the two 

measures differ because they describe different things. 
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2.5 Models of mortality change over time 

This analysis uses a relatively new class of models to gain insights into period-cohort 
relationships.  Previously, most models of mortality change over age and time have 
been specified as a function of trends in age-specific death rates.  Here, following the 
example of Bongaarts and Feeney (2002, 2003), changes in mortality are specified in 
terms of shifting distributions of deaths by age.  The former type might be referred to as 
“rate models,” whereas the latter could be called “percentile models.” 

 
 

3. Mortality functions and basic relationships 

3.1 Single cohort model 

For a single cohort (real or synthetic), the usual formulas for computing life expectancy 
at birth are the following: 
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l  is the probability of survival from birth until 

exact age x. 
Although they have different forms, all three formulas in equation 1 yield the same 

value for the mean age at death in a cohort.  The difference between the first two 
formulas is trivial, since )()()( xxx µφ l= .  Both of these formulas depict life 

expectancy at birth as an average age at death, or as an expected value associated with 
the probability distribution.  However, the last formula is different in both form and 
substance; it suggests an alternative interpretation of mean lifespan as the accumulation 
of person-years lived, on average, by members of the cohort. 
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It is also possible to depict life expectancy at birth as an integral with respect to the 
(unconditional) probability of dying, rather than age.  Such calculations are closely 
related to percentiles of the distribution, )(~ πa , which are defined as follows: 

 
xa =)(~ π   such that  )(1)( xx l−=Φ=π   ,     (2) 

 

where ∫=Φ
x

daax
0

)()( φ  is the distribution (or cumulative probability) function for ages 

at death in the cohort.  Thus, )(~ πa  is an age, x, such that the proportion of total deaths 

(over the cohort’s lifetime) occurring before age x is π .  The derivative of π  with 
respect to age, x, equals the probability density function at that age: 

 
)(xdx

d φπ =   .       (3) 

 
Substituting )(~ πa  in place of x, the relationships described in equations 2 and 3 

can also be written as follows: 
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d =   .     (4) 

 
Moreover, substituting )(~ πax =  and dxxd )(φπ =  in equation 1, and recalling 

that )()()( xxx µφ =l , we obtain the following alternative forms for life expectancy at 

birth: 
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Thus, if we assign equal weight to arbitrarily small intervals of age, each 

containing an equal share of the lifetime probability of death (totaling one, of course), 
then life expectancy at birth equals the average of either the midpoint of each age 
interval or the reciprocal of the death rate within each interval. 
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3.2 Standard period-cohort model 

The above formulas describe the calculation of life expectancy at birth for just one 
cohort, which could be either an actual birth cohort or a synthetic cohort derived from 
the collective mortality experience of cohorts alive during some time period.  Using 
long series of historical data (mostly from vital statistics and census data), a common 
problem is to construct series of annual life tables for both periods and cohorts (e.g., the 
Human Mortality Database, www.mortality.org). To accomplish this goal, it is 
necessary to make some assumption about the link between period and cohort mortality, 
so that the two sets of tables are related in some logical and consistent manner. 

The traditional manner of defining this link has been to equate period and cohort 
mortality in terms of their age-specific death rates.  Thus, we typically begin by 
assuming that the death rates for a period life table should be derived directly from 
observed cohort death rates.  In continuous age and time, this relationship can be 
expressed as follows: 

 
),(),(),(),( τµµµµ xxtxtxtx ccp =−==   ,     (6) 

 
where xt −=τ .  Thus, by definition, the period death rate at age x and time t, 

),(),( txtx pµµ = , equals ),(),( τµµ xxtx cc =− , the death rate at age x for the cohort 

born x years ago at time τ .  Given this assumption, a series of historical life tables for 
both periods and cohorts is fully defined by the surface of age-specific rates expressed 
as a function of age and time.4 

For example, life expectancy at birth for a given period t can be computed using 
the above equations.  Written using a complete notation, the standard equations for 
period life expectancy at birth are as follows: 

 

                                                        
4 The equations given here refer to the death rate at a point of age and time, ),( tx , which simplifies the task of defining the link between period 

and cohort mortality.  In practice, period and cohort mortality must be defined and measured over some time interval, such as a single calendar 

year.  In such situations, one simple approach is merely to equate period rates to cohort rates, or vice versa, without further manipulation.  

However, the rates that result from such a procedure are less precise in terms of their temporal specificity than what is obtained by constructing 

different sets of overlapping rates for periods and cohorts.  Although derived from the same data, accurate mortality rates for periods and cohorts 

over discrete intervals are estimated by altering slightly the configuration of age and time used to organize the raw data (annual death counts, and 

estimates of exposure-to-risk in person-years), so that each set of rates corresponds to exact period or cohort age intervals.  For purposes of the 

present discussion, such complications can safely be ignored, since the mathematical development pursued here is expressed entirely in terms of 

continuous age and time. 
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Similarly, life expectancy at birth for a cohort born at time τ  can be computed as 
follows: 
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the cohort probability of survival from birth until exact age x. 
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3.3 Cohort distributions of age at death 

Let us also define percentiles of the distribution of age at death for each cohort as 
follows: 

 
xac =),(~ τπ    such that   ),(1),( ττπ xx cc l−=Φ=   ,    (9) 

 

where ∫=Φ
x

cc daax
0

),(),( τφτ  is the distribution (or cumulative probability) function 

for age at death in the cohort born at time τ .  An important quantity in this discussion 
will be speed of change in these percentiles over time.  Define ),( τxsc  to be the pace of 

change (from cohort to cohort) in the percentile of ages at death observed at age x for 
the cohort born at time τ .  Thus, by definition 
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d
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where ),( τπ xcΦ=  is fixed. 

In general, such quantities, known as “cohort percentile slopes,” are useful for 
describing the relationship between period and cohort mortality.  It is shown in the 
Appendix (see section A-1) that a cohort percentile slope has the following relationship 
to the other mortality functions described above: 
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Thus, the cohort percentile slope at age x equals the ratio (either positive or negative) of 
the change over time in some measure of cumulative mortality or survival, divided by 
an associated measure of age-specific mortality. 

Using the first relationship of equation 11, it is possible to derive simple 
expressions for the derivatives of ),( τxcΦ  in three directions: 

 
),(),(),( τφτττ xxsx cccd

d −=Φ    (horizontal) ;  (12) 

),(),( τφτ xx ccdx
d =Φ     (diagonal) ;  (13) 

( ) ),(),(1),( xtxxtxsxtx cccdx
d −−+=−Φ φ  (vertical) .  (14) 
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As illustrated here in Figure 1, the labels, “horizontal,” “diagonal,” and “vertical,” refer 
to directions of change in a Lexis diagram, drawn such that the abscissa and ordinate of 
the Cartesian plane correspond to the time and age of death, respectively (thus, cohort 
lifetimes are represented by diagonal lines).  The horizontal and diagonal derivatives 
are obtained, respectively, from the earlier equation for the percentile slope and from 
the definition of ),( τxcΦ  in terms of ),( τφ xc .  The vertical derivative follows from the 

fact that the derivative in the diagonal direction equals the sum of the other two 
derivatives. 
 
 

Figure 1: Schematic representation of derivatives in three directions of the 
cohort cumulative probability function, τ)(x,Φc  

 

 
 

 
Note:  By assumption, xt −=τ . 
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The derivative of ),( τxcΦ  in the vertical direction is important because it 

illustrates that the cross-sectional sum of cohort probability distributions does not in 
general equal one.  For example, if 0),( >− xtxsc  for all x, it follows that 
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In this example, since cohort percentile slopes at time t are positive, the timing of 

death is being delayed or postponed for each successive cohort.  This equation 
illustrates the phenomenon of partial quantum, which occurs whenever the age 
distribution of events (deaths) is shifting upward over time. Conversely, if the 
distribution of deaths is shifting uniformly toward younger ages (thus, the timing of 
death is being advanced or accelerated), then ),( xtxsc −  would be negative for all x at 

time t, and the above sum would be greater than unity (i.e., surplus quantum).  Let us 
refer to ),( xtxc −φ  as a cross-sectional cohort probability density function. 

Assuming that 1),( −>− xtxsc  for all x at time t,5  it is possible to define the 

following probability density function: 
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where 
),(1
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xtxs

xtxs
xtxr

c

c
c −+

−=− , and thus ( ) 1),(1),(1 −−−=−+ xtxrxtxs cc .  This 

function sums to one over the full age range (see equation 15 above), since 
),(),( xtxxtxs cc −− φ  replaces the missing quantum at age x, assuming 0),( >− xtxsc .6   

Thus, ),(* txφ  is an adjusted cross-sectional cohort probability density function. 

                                                        
5 It is theoretically possible for cohort percentiles to have slopes that are less than –1, and their reality has been confirmed by empirical 

observation.  For expediency, this situation will be not covered in this paper, as we assume that 1),( −>− xtxsc .  Although the formulas of this 

section remain correct even when cohort percentile slopes dip below –1, the interpretation of the quantities, ),(* txφ  and ),(* txµ , as adjusted 

density functions and adjusted death rates is no longer valid. 

6 In this discussion we will generally consider the example of cohort percentiles that increase over time, reflecting an increase in longevity.  It 

should be evident that a decrease over time is also possible (except at age 0) and is associated with opposite effects. 
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One important feature of the adjusted function, ),(* txφ , is its relationship to the 

cross-sectional cohort cumulative probability and survival functions, ),( xtxc −Φ  and 

),( xtxc −l , respectively.  In the following equation, note that the first integral derives 

from the definition of cΦ , whereas the second integral follows from equation 14: 
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00

),(*),(),( φφ   .    (17) 

 
Likewise, it follows that: 

∫∫
∞∞
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xx ccc datadaxtaxtxxtx ),(*),(),(1),( φφl   .  (18) 

 
These relationships, linking cΦ  and cl  to cφ  and *φ , are illustrated here in Figure 2A. 

Following a similar logic, let us define adjusted death rates as follows: 
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The cumulative death rate at age x and time t also has two equivalent forms: 

 

∫∫ =−=−
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00

),(*),(),( µµ   .    (20) 

 
Therefore, the cohort survival probability at age x and time t can be computed using 
either set of death rates: 

 

{ } { }∫∫ −=−−=−
xx

cc datadaxtaxtx
00

),(*exp),(exp),( µµl   .  (21) 

 
These relationships, linking clln−  to µ  and *µ , are illustrated here in Figure 2B. 
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Figure 2: Illustration of relationship between cumulative quantum for cohorts 
and “tempo-adjusted” age-specific quantum for periods 

 
A) Cohort cumulative probability of death, ),( τxcΦ , and probability of survival,  

      ),( τxcl , as functions of both ),( τφ ac  and ),(* taφ  

 
 

  
 

Note:  As discussed in the text, ∫∫ ==Φ
xx

cc datadaax
00

),(*),(),( φτφτ , and 

∫∫
∞∞

==Φ−=
xx ccc datadaaxx ),(*),(),(1),( φτφττl , where xt −=τ .  Compare equations 17 and 18. 
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Figure 2: Continued 

 

B) Cohort probability of survival, ),( τxcl , as functions of both ),( τµ ac  and ),(* taµ  

 
 

 
 

Note:  As discussed in the text, 
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),(*exp),(exp),( µτµτl , where xt −=τ .  Compare  

equation 21. 
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4. Alternative measures of period mean lifespan 

In addition to life expectancy at birth, 0e , several other measures of period mean 

lifespan have recently been put forth (see review by Bongaarts, 2005).  Here, we focus 
on two measures in particular:  the “cross-sectional average length of life” (CAL), 
proposed by Brouard (1986) and Guillot (2003), and “tempo-adjusted” life expectancy 
at birth, suggested by Bongaarts and Feeney (2002, 2003).  In this section, I will 
explore the mathematical relationship between these and one related measures, plus 
their connection to period 0e . 

In terms of notation, let CAL be denoted *
0e , and let the Bongaarts-Feeney measure 

be written as BFe 0 .  In this section we will also consider a third measure, 0e′ , or the 

mean age at death (MAD) in a constant-birth population.  As we shall see, these three 
period measures are closely related; moreover, they are equivalent in a special case (i.e., 
when the shift at time t in cross-sectional cohort distributions of age at death is constant 

across age).  However, *
0e , 0e′ , and BFe 0  are different in general from the period life 

expectancy at birth, 0e .  All four measures are equal only under a very restrictive 

condition (i.e., that age-specific mortality rates are not changing at  
time t and have been constant over time for all living cohorts). 

A key contention of this article is that *
0e  and 0e′  are useful primarily as measures 

of population dynamics and, as such, differ fundamentally from 0e , which is based on 

the model of a synthetic cohort.  As discussed earlier, the synthetic cohort that underlies 

0e  is a hypothetical group of people who experience the death rates of the current 

period throughout life.  In contrast, a model of population dynamics underlies the 

interpretation of *
0e  and 0e′ ; the key feature of this model is an assumption of a constant 

stream of births flowing into the population, arriving at rate of B births per year.  If this 
constant-birth population were subject to the historical mortality conditions of some 

actual population up until time t, then at that moment its size would be )(*
0 teB , and the 

mean age at death observed in the population would be )(0 te′ .  Although )(0 te BF , the 

measure proposed by Bongaarts and Feeney, may serve as an approximation for these 
other two measures, it has no clear interpretation of its own except in the special case 
(mentioned earlier) where it equals the other two measures. 
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4.1 Relative size of a constant-birth population, *
0e  

Both Brouard (1986) and Guillot (2003) have proposed the “cross-sectional average 

length of life,” a measure known by its acronym, CAL, written here also as *
0e .  By 

definition, 
 

{ } ,),(*),(*exp

),()()(*

00 0

00

∫∫ ∫

∫
∞∞

∞

=−=

−==

dxtxxdxdata

dxxtxtCALte

x

c

φµ

l

    (22) 

 
where ),(* txµ  and ),(* txφ  are defined as before.  Despite the similarity of these 

formulas to those underlying the calculation of life expectancy at birth, CAL or *
0e  is 

useful primarily as a measure of population dynamics.  As noted by Guillot (2003), in a 
constant-birth population with a steady inflow of B births per year, the density of 
survivors at exact age x and time t would be ),( xtxB c −l .  Therefore, the size of the 

(hypothetical) constant-birth population that would be observed at time t is a simple 
function of )(tCAL : 

 

)(*),(),()( 000
teBdxxtxBdxxtxBtN cc =−=−= ∫∫

∞∞
ll  .  (23) 

 
 

4.2 Mean age at death in a constant-birth population, 0e′′′′  

By definition, )(0 te′  equals the mean age at death that would be observed at time t given 

the mortality history of an actual population but assuming a constant inflow of births 
into the population.  If there were B births per year in such a population, then the 
density of deaths at exact age x and time t would be ),( xtxB c −φ .  Therefore, the mean 

age at death, MAD, that would be observed at time t in a (hypothetical) constant-birth 
population is as follows: 
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where 
)(1

),(
),(

tr
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−
−=′ φφ  by definition, and where ∫

∞
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0
),(*),()( dxtxxtxrtr cc φ  is 

a (weighted) average of ),( xtxrc −  for time t. 

Equivalence of the various forms of )(0 te′  in equation 24 derives from the 

following fundamental relationship:7 
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In other words, )(trc  measures the missing (or surplus) quantum at time t 

whenever the timing of cross-sectional cohort mortality is being delayed (or 
accelerated) at that moment.  Note that )(trc  also equals the pace of change over time 

in )(tCAL : 
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7 Some authors have referred to the quantity in equation 25, )(1 trc− , as the “total mortality rate,” by analogy to the total fertility rate (Bongaarts 

and Feeney, 2003; Guillot, 2005).  However, I have chosen not to use this terminology, because ),( xtxc −φ  is not a mortality rate by the usual 

definition of the term.  Alternatively, the same concept is expressed here using the term “partial (or surplus) quantum.” 
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4.3 Tempo-adjusted life expectancy at birth, BFe 0  or *
0e  

Bongaarts and Feeney (2002, 2003) define “tempo-adjusted” life expectancy at birth as 
follows: 
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where 
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=′ µµµ  by definition.  Comparing this formula to the 

one for )(0 te′  given above (i.e., equation 24), we see that each equation resembles one 

of the classic formulas for life expectancy at birth.  It is also useful to compare ),( txµ′  

and ),( txφ′ , which serve as inputs to the calculation of )(0 te BF  and )(0 te′ ; in both cases, 

a measure of age-specific quantum has been inflated (or deflated) by a factor of 

( ) 1)(1 −− trc . 

The close relationship between *
0e  and BFe 0 , can be illustrated by re-writing 

equation 27 as follows: 
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Similarly, we can see the resemblance between *
0e  and 0e′  by re-writing equation 24 as 

follows: 
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In both of the above formulas, the ratio of ),(1 xtxrc −−  to )(1 trc−  will be close 

to one so long as ),( xtxrc −  does not vary widely as a function of age at time t.  

Bongaarts and Feeney (2002, 2003) assume that ),( xtxrc −  is indeed constant with age 

(their “proportionality” assumption).  Since reality resembles this assumption in some 
cases, the three measures are sometimes approximately equal.  However, Guillot (2003) 
notes that observed differences between CAL and 0e′  can be substantial:  for French 

males the difference was 2.51 years in 2001 and was even larger in earlier decades (e.g., 
9.24 years in 1954). 

According to Bongaarts and Feeney (2002, 2003), these two quantities, ),( txµ′  

and ),( txφ′ , are “tempo-adjusted” mortality functions.  However, unlike ),(* txµ  and 

),(* txφ , ),( txµ′  and ),( txφ′  are not in general associated with the same probability of 

survival to age x.  That is, 
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Thus, these two quantities are not the same in general, and for this reason )(0 te BF  and 

)(0 te′  are not equal except under special circumstances:  when ),( xtxsc −  and 

),( xtxrc −  are constant as a function of age x (for a given time t). 

Furthermore, as noted also by Feeney (2004, 2005), the general form of tempo-
adjusted mortality should involve an appropriate adjustment at each age, not an average 
correction applied uniformly across the age range.  Although Feeney’s notation was 
different, he also proposed an age-specific adjustment factor of 

( ) 1),(1),(1 −−−=−+ xtxrxtxs cc .  As noted earlier in the definitions of ),(* txµ  and 

),(* txφ  used here (see equations 16 and 19), this adjustment to observed cohort 
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mortality functions reflects the shift in the cohort distribution of age at death occurring 
at that exact age and time, rather than some average value across all ages at time t.  For 

comparison, note the factor of ( ) 1)(1 −− trc  used in the definition of ),( txµ′  and ),( txφ′ . 

As shown earlier, *
0e  (or CAL) can be computed from either ),(* txµ  or ),(* txφ .  

Thus, CAL is exactly equal to the generalized form of tempo-adjusted life expectancy at 

birth proposed by Feeney (2004, 2005).  In the equations for *
0e , the factor of 

),(1 xtxsc −+ , or ( ) 1),(1 −−− xtxrc , replaces the lost quantum at age x that results from 

delay in the timing of mortality from cohort to cohort.  The substantive value of this 
particular interpretation of CAL is dubious (see later discussion).  Nevertheless, if this 
concept is useful at all, then it is worth noting that the generalized form of tempo-

adjusted life expectancy at birth equals *
0e , or CAL, which is different from the original 

measure proposed under the same label by Bongaarts and Feeney.  In fact, BFe 0  differs 

in general from both *
0e  and 0e′ .  As noted earlier, the latter two measures provide 

interesting descriptions of population dynamics (in a constant-birth population).  Except 

in the special case when it equals these other two measures, BFe 0  seems to have no 

substantively interesting interpretation on its own. 
 
 

4.4 Comparison to period life expectancy at birth, 0e  

Even in the special case where *
0e , 0e′ , and BFe 0  are equivalent, their value is typically 

different from the period life expectancy at birth, 0e .  The latter measure would equal 

the other three only if the age pattern of mortality were constant over time.  However, in 
the case of a sustained mortality decline, 0e  tends to be higher than the other measures.  

Let us consider why this difference occurs, focusing in particular on a comparison 

between 0e  and *
0e . 

Because )(0 te  and )(*
0 te  equal the sum of period and cohort survival probabilities 

across the age range at time t (see equations 1 and 22), it is useful to understand the 
relationship between ),( txpl  and ),( xtxc −l .  As noted earlier, the period survival 

probability, ),( txpl , is a function of death rates observed at time t alone.  Likewise, the 

associated cohort survival probability, ),( xtxc −l , depends only on death rates along a 
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single diagonal lifeline of the Lexis diagram.  However, such diagonals pertain to 
different time periods even for a single cohort, and to a wide interval of age and time 
when we consider the collection of cohorts alive at time t.  Thus, an important 

difference between )(0 te  and )(*
0 te  is that the former is a function of death rates for 

time t alone, whereas the latter depends on all death rates (past and present) experienced 
by cohorts alive at time t. 

Furthermore, it is possible to show that 
 

{ }dadyyatytxxtx
x a

dt
d

pc ∫ ∫ +−=−
0 0

),(exp),(),( µll   .  (32) 

 
In this equation, the argument to the exponential function is merely the total change in 
death rates occurring within the triangle of the Lexis diagram that lies below the 
diagonal lifeline of the cohort born at time xt − , and to the left of a vertical line at  
time t.  Thus, in a situation of sustained mortality decline, the survival probability for a 
cohort, ),( xtxc −l , would be higher than its corresponding period value, ),( txpl , by a 

factor that depends on the total reduction in mortality risks over this triangular interval 
of age and time.  This representation leads to a useful interpretation of observed 

differences between 0e  and *
0e . 

As noted already, in a situation of sustained mortality decline, )(*
0 te  tends to be 

lower than )(0 te , because ),( xtxc −l  tends to be lower than ),( txpl  across age, x, for 

a fixed time, t.  Using equation 32, it is possible to convert ),( txpl  into ),( xtxc −l  

simply by factoring out the gains in period survival probabilities due to historical 

reductions in mortality rates.  Likewise, )(*
0 te  is lower than )(0 te  in this situation 

because it also does not take into account these past improvements in mortality.  This 
analysis illustrates why the concept of “tempo-adjusted” life expectancy has little value.  
For a measure of tempo such as 0e , an adjustment designed to remove the impact of 

“tempo change” also has the effect of erasing some of the gains in longevity implied by 

historical reductions in age-specific death rates.  For this reason, both *
0e  and 0e′  are 

useful primarily as measures of population dynamics (see earlier discussion). 
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5. Trends in life expectancy at birth by period and cohort 

5.1 Speed of change in historical trends 

Figures 3A and 3B show actual and smoothed trends in period and cohort life 
expectancy at birth, plotted in the usual way (by year of death for period 0e , and year of 

birth for cohort 0e ).  Then, for comparison with period 0e , Figure 3C shows the 

smoothed trend in Swedish cohort 0e  plotted in two ways:  by year of birth, and in 

relation to the time when the cohort’s mean age at death actually occurs.8  Note that the 
slope of the cohort trend tends to be greater than the slope of the period trend when 
cohort 0e  is plotted as a function of year of birth, but less when plotted according to the 

period in which the cohort mean age at death actually occurs. 
 
 

Figure 3: Life expectancy at birth in Sweden 

A) Periods, actual vs. smoothed trends, 1751-2002 

 
Note:  The observed trend was smoothed using the LOWESS method (Chambers et al., 1983). 
Source:  Human Mortality Database (2004). 

                                                        
8 Bongaarts (2005) refers to the latter measure as “lagged cohort life expectancy.”  The time lag in this case is the cohort life expectancy itself. 
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Figure 3: Continued  

B) Cohorts, actual vs. smoothed trends, 1751-1911 

 
Notes:  (1) See note for Figure 3A.  (2) Data employed here for cohorts born after approx. 1890 are incomplete.  Therefore, estimates 

of life expectancy at birth for these cohorts rely on recent period data at very high ages (i.e., above age 90). 
Source:  Human Mortality Database (2004). 

 
C) Periods vs. cohorts, smoothed trends only 

 
Notes:  See notes for Figure 3B. 
Source:  Human Mortality Database (2004). 
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In part, such differences are due to fluctuations over time in historical mortality 
trends, which affect the mean lifespan of periods and cohorts in complicated ways.  
Such factors are beyond the scope of the present work.  However, in addition to the 
arbitrary influences of history, there exists an intrinsic difference between period and 
cohort trends in 0e  due to the fundamental mathematical relationship linking the age 

and time of death to a decedent’s time of birth.   
 
 

5.2 Intrinsic difference in period-cohort trends 

As before, let xt −=τ .  In words, ageperiodcohort −= .  Clearly, when x is fixed, 

dtd =τ .  However, when x is changing, dxdtd −=τ .  In that case,  
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where dt

dxr =  and τd
dxs = .  Therefore, 
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It also follows that  
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1
  .      (35) 

 
Thus, r and s represent two different measures of the speed of change over time in 

some function of age.  The former is a slope with respect to the timing of the event 
itself, whereas the latter is with respect to the timing of birth for the cohort that 
experiences the event.  This relationship is valid for any life course event (not only 
death) and was noted previously by Zeng and Land (2002) in the case of fertility. 

Figure 4 offers a simple example:  a trend in which some measure of tempo 
increases by 1 year of age over 5 years of time (thus, 2.0=r ).  However, the same 
increase involves only 4 cohorts (thus, 25.0=s ). 
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Figure 4:  Simple example illustrating intrinsic difference in slope of age trend 
from perspective of periods ( 2.0====r ) and cohorts ( 25.0====s ) 

 

 
 

 
 

5.3 Period-cohort trends in the linear shift model 

In order to elucidate the relationship between period and cohort mortality, it is useful to 
simulate historical trends using a model of a shifting distribution of age at death.  The 
shift model explored here has three important characteristics: 

a) It is linear (i.e., the trend in each percentile of the distribution is linear over 
time); 

b) It is sustained over a long duration (i.e., the shift extends relatively far into 
both the past and the future); and 

c) It is defined in relation to a baseline mortality distribution associated with time 
0=t .9   

                                                        
9  Time 0=t  is chosen as the baseline for the model in order to keep the formulas as simple as possible.  If one wishes to use some other year, 

say 0t , as the reference point for the shift, then all formulas shown here could be modified by substituting 0ttt −=′  in place of t. 
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To simplify the exposition, the linear shift model described here is specified in 
terms of period mortality at time 0=t .  It is also possible to define such a model as a 
function of cohort mortality at time 0=t  (i.e., based on a cross-section of cohort 
mortality distributions at this moment).  However, as shown in the Appendix (section 
A-2.2), a sustained linear shift model yields identical results for those periods and 
cohorts whose lifespans lie fully within the shift whether the model is defined in terms 
of period or cohort mortality.10  Therefore, I assume here that the time scale of the shift 
is relatively long (say, 150 years both forward and backward from time 0=t ). 

As was done earlier for cohorts, let us define percentiles of the period distribution 
of age at death (i.e., for the synthetic cohort associated with period t) as follows: 

 
xtap =),(~ π    such that   ),(1),( txtx pp l−=Φ=π   ,    (36) 

 

where ∫=Φ
x

pp datatx
0

),(),( φ  is the distribution (or cumulative probability) function 

for age at death in period t.  Furthermore, assume that the percentile associated with the 
same value of π  equals y at time 0=t : 

 
yap =)0,(~ π    such that   )0,(1)0,( yy pp l−=Φ=π   .    (37) 

 
The relationship between these two ages, x and y, can be used to specify the form of 
historical changes in the age distribution of deaths. 

For example, the core assumption of the linear shift model is that the values of x 
associated with a given y form a straight line, whose slope may vary as a function of 
age: 

 
tyryx )(+=     for TtT <<−   ,     (38) 

 
where )( yr  can take on different values as a function of age, y, subject to certain 

restrictions (see Appendix, section A-2.3); and T is the duration of the shift both 
forward and backward from 0=t .  In general, let us assume that T is sufficiently large 
to ensure that all cohorts alive at 0=t  experience the shift for their entire lives.11 

                                                        
10 Note that if the model involves an abrupt change of slope in the percentiles of a mortality distribution at some moment close to the present, say 

0=t , then there are important differences between these two approaches. 

11 As a practical matter, we can assume that all cohort lifespans are finite, and thus that some finite interval, from –T to T, can contain the lifespans 

of all currently living cohorts.  If we allow for theoretically infinite lifespans, T needs to be large enough to assure that a very high proportion of 

deaths (say, ε−1 , where 0>ε  is very small) for cohorts alive at time 0=t  occur during the period of the shift. 
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Note that π=−=Φ ),(1),( txtx pp l  is constant for all combinations of x and t 

along this percentile contour line.  Therefore, another way of describing the core 
assumption of a linear shift model is that 

 
)(),( ytxp Φ=Φ    or   )(),( ytxp ll =   ,     (39) 

 
where tyrxy )(−= .  Thus, )(yΦ  and )(yl  depict the baseline mortality distribution 

and survival probabilities for the linear shift model.  They are identical to the 
corresponding period mortality functions associated with time 0=t  in the model (i.e., 

)()0,( yyp Φ=Φ  and )()0,( yyp ll =  ) . 

It is shown in the Appendix (section A-2.1) that in a sustained linear shift model, 
period life expectancy at birth during the shift interval (i.e., for TtT <<− ) has the 
following form: 

 

trete p += 00 )(   ,       (40) 

 

where ∫
∞

=
00 )( dxxxe φ ; ∫

∞
=

0
)()( dxxxrr φ ; and )()()( xxx

dx
d

dx
d

l−=Φ=φ .  In the 

same model, life expectancy at birth for the cohort born in year τ  is as follows: 
 

( ) τφτφτ sdxxxsxsdxxxsxeec ++=++= ∫∫
∞∞

0000 )(*)(1)(*)(*)(  , (41) 

 

where ∫
∞

=
00 )(** dxxxe φ ; ∫

∞
=

0
)(*)( dxxxss φ ; 

)(1
)(

)(
xr

xr
xs

−
= ; 

)(1
)(

)(*
xr

x
x

−
= µµ ; 

∫=
−

x
daa

ex 0
)(*

)(*
µ

l ; and )(*)(*)(* xxx µφ l= .  However, note that equation 41 applies 

only to those cohorts whose observed (finite) lifespan lies fully within the interval of 
the period-based shift (i.e., within TtT <<− ). 

Thus, period life expectancy at time 0=t  serves as the baseline value for the 

linear shift model, i.e., 00 )0( ee p = .  Let us consider the relationship between this 

quantity and cohort life expectancy for two particular cohorts: 
 
a) The cohort born at that moment, i.e., 0=τ ; and 
b) The cohort whose average age at death occurs at time 0=t . 
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As indicated by equation 41 above, cohort life expectancy is a function of *
0e , or 

CAL, at time 0=t .  For the cohort born at time 0=τ , this equation simplifies to the 
following: 

 

( ) ∫∫
∞∞

+=+=
0000 )(*)(*)(*)(1)0( dxxxsxedxxxsxec φφ   .  (42) 

 
However, case b) is more complicated. 

Obviously the cohort whose average age at death occurs at time 0=t  must have 

been born at some earlier date, say λτ −= , where 0>λ .  Setting λλ =− )(0
ce  in 

equation 41 and then solving for λ  yields the following formula: 
 

s

e
dxx

s

xs
xe

c
c

+
=

+
+==− ∫

∞

1

)0(
)(*

1

)(1
)( 0

00 φλλ   .    (43) 

 
Therefore, the mean ages at death for these two cohorts differ by a factor of s+1 .  

Also, note that if )(xs  is close to constant over the age range, then ( ) ( )sxs ++ 1)(1  will 

be close to one.  In that case, λλ =− )(0
ce  would have a similar value to *

0e .  Thus, as a 

rough approximation, )0(CAL  equals the cohort mean age at death that is attained at 

time 0=t  by a cohort born )0(CAL  years earlier, assuming linear trends over time in 

cohort percentiles of age at death. 
 
 

5.4 Empirical application of the linear shift model 

For empirical applications of the linear shift model, we redefine the origin of the time 
axis in each case so that the current year t is treated as time 0 in the above formulas.  

The formulas given above for )0(0
ce  and λλ =− )(0

ce  in this model provide motivation 

for two additional measures of mean lifespan based on cross-sectional cohort mortality 
patterns at time t.  In the first case, define 

 

( ) ∫∫
∞∞

−+=−+=
0000 ),(*),()(*),(*),(1)(** dxtxxtxsxtedxtxxtxsxte cc φφ  . (44) 
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Comparing this formula to equation 42 above, it follows that )(**
0 te  equals the average 

age at death (or life expectancy) for the cohort born at time t, assuming linear trends in 
cross-sectional cohort percentiles of age at death.  In other words, if we create a linear 
shift model using cohort (not period) mortality patterns observed at time t, the resulting 

estimate of )(0 tec  equals )(**
0 te . 

In the second case, let 
 

)(1

)(**
),(*

)(1

),(1
)( 0

00 ts

te
dxtx

ts

xtxs
xte

cc

c

+
=

+
−+=′′ ∫

∞
φ   .   (45) 

 

Like )(**
0 te , this quantity is a linear projection of cross-sectional cohort mortality at 

time t.  If historical changes mimic the linear shift model exactly, then 

λλ =−=′′ )()( 00 tete c  (compare equation 43 above).  Furthermore, even when actual 

conditions differ from assumptions of the this model, )(0 te ′′  may serve as a useful 

approximation of cohort life expectancy for the cohort whose average age at death 
occurs at time t . 

In Figure 5, smoothed trends in Swedish period and cohort life expectancy at birth 

are compared to these two sets of predictions, )(**
0 te  and )(0 te ′′ .  These results 

demonstrate that the predictions of the linear shift model match reality reasonably well.  
Therefore, it seems to be possible to use this model to form plausible statements about 
mortality for individual cohorts based on mortality patterns for the collection of cohorts 
observed in a cross-section at a moment of time.  However, the current purpose of these 
calculations is not to obtain estimates or forecasts of cohort life expectancy, but rather 
to provide insights into the relationship between period and cohort mortality.  Note that 

each value of )(**
0 te  and )(0 te ′′  in Figure 5 is based on cohort mortality patterns for a 

single year.  For this reason, the period of unusually rapid mortality change around the 
middle of the 20th century produces exaggerated trends in both cases (over-estimating 
the mean lifespan for cohorts born in those years, and under-estimating it for the 
cohorts whose mean age at death occurs in those years). 

Furthermore, note that 
 

( ))()()(*)( 002
1

0 tetetetCAL ′′+′≈=   ,     (46) 
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since 
 

1
)(1

),(1

)(1

),(1

2

1 ≈








+
−++

−
−−

ts

xtxs

tr

xtxr

c

c

c

c   ,    (47) 

 
at least in the case of a smooth mortality surface (see next paragraph).  In the special 
case where rxtxrc =− ),(  and sxtxsc =− ),(  for all x, these relationships are exact, as 

the three measure are identical in this situation.  The approximate symmetry of these 
three quantities over time (from 1861 until 2003, for the national population of Sweden) 

can be seen in Figure 6, which also shows empirical trends in 0e  and BFe 0  (for 6A), or 

30e  and BFe30  (for 6B). 

 
 

Figure 5:  Life expectancy at birth by period and cohort, plus estimates of 
cohort 0e  assuming linear trends in cross-sectional cohort percentiles 
of age at death, Sweden, 1751-2003 
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Figure 6:  Period life expectancy plus four measures of mean age at death based 
on cross-sectional cohort mortality, Sweden, 1861-2003 

A) At birth 

 
B) At age 30 

 
 

Note:  The y-axis here represents the number of years beyond age 30.  In the case of 30e , this is known as remaining life 

expectancy. 
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It is important to note that all estimates for the measures shown in Figures 5 and 6 
were derived from smoothed surfaces of period and/or cohort survival probabilities (for 
single years of age and time).  Although other smoothing techniques could have been 
used, the strategy employed here was to smooth the two empirical surfaces, ),( txpl  and 

),( xtxc −l , over time for each age group separately using the LOWESS procedure 

(Chambers et al., 1983), and then to compute all other quantities from the pair of 
smoothed survival surfaces.  Although other techniques could be explored as well, a full 
treatment of this topic is beyond the scope of the present work. 

For most of the measures used in this paper, including 0e , 0e′  *
0e , and BFe 0 , the 

smoothing procedure merely removes short-term fluctuations in trends.  However, for 

0e ′′  and **
0e , the results shown here would be fundamentally different (and clearly less 

plausible) if calculations were based on unsmoothed data.  As noted before, these two 
measures give projected values of cohort life expectancy based on a linear shift model.  
Such calculations appear to be adversely affected by observed values of ),( xtxsc −  less 

than –1, which seem to arise only when using unsmoothed data.  In such cases, the 
),(* txφ  and ),(* txµ  functions take on negative values, and at the same time the 

approximations of equations 46 and 47 become unreliable.  A comparison of estimates 
to empirical patterns shows clearly that the results based on smoothed data are superior.  
(Results shown here are based on smoothed data only; results based on unsmoothed 
data are available from the author on request.)  Furthermore, there are clear theoretical 
motivations for using only smooth age patterns of mortality change (as depicted in age-
specific percentile slopes) in empirical applications of the linear shift model (see 
Appendix, section A-2.3). 

 
 

6. Comparison of six measures of mean lifespan 

Table 1 compares the six measures of mean lifespan explored in this paper.  Among 
these six measures, only life expectancy at birth, 0e , can be computed solely as a 

function of death rates at time t.  All of the other measures depend on cohort survival 
probabilities at time t, ),( xtxc −l , which reflect mortality conditions from the past as 

well as the present. 

In addition to life expectancy at birth, the table also contains two measures, *
0e  and 

0e′ , that are based on a model of population dynamics in which the inflow of births is  
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Table 1:  Summary of Six Measures of Mean Lifespan for Period t  

Name Notation Equivalent forms Short Description 

Life expectancy  
at birth 

)(0 te  

∫ ∫

∫

∫

∞

∞

∞







−=

=

0 0

0

0

),(exp

),(

),(

dxdata

dxtxx

dxtx

x

p

p

µ

φ

l

 

Mean age at death in a synthetic 
cohort exposed throughout life to 
the age-specific death rates of 
time t  

Cross-sectional 
average length  
of life (CAL) 

)(*0 te  

∫ ∫

∫

∫

∞

∞

∞







−=

=

−

0 0

0

0

),(*exp

),(*

),(

dxdata

dxtxx

dxxtx

x

c

µ

φ

l

 

Relative size of a population at 
time t assuming a constant 
inflow of births; also, the 
generalized form of tempo-

adjusted 0e  

Mean age at  
death (MAD) 

)(0 te′  

∫

∫

∫

∫

∞

∞

∞

∞

−
−−

=

′=

−

−

0

0

0

0

),(*
)(1

),(1

),(

),(

),(

dxtx
tr

xtxr
x

dxtxx

dxxtx
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c

c

c

c

φ

φ

φ

φ

 

Mean age at death in a 
population at time t assuming a 
constant inflow of births 

"Tempo-adjusted” 
life expectancy  
at birth 

)(0 te BF  

∫ ∫

∫ ∫

∞

∞













−
−=







 ′−

0 0

0 0

1

),(
exp

),(exp

dxda
r

ta

dxdata

x

c

x

µ

µ
 

Tempo-adjusted 0e  assuming a 

parallel shift at time t in cohort 
distributions of age at death 

Expected cohort 
life expectancy  
at birth 

)(**0 te  ( )
( )

∫

∫

∞

∞

−+=

′′+=

−+

00

0

0

),(*),()(*

)()(1

),(*),(1

dxtxxtxsxte

tets

dxtxxtxsx

c

c

c

φ

φ

 

Mean age at death for cohort 
born at time t assuming a linear 
shift over time in cohort 
distributions of deaths by age 
(see note 2) 

Achieved cohort 
life expectancy  
at birth 

)(0 te ′′  

)(1

)(**

),(*
)(1

),(1

0

0

ts

te

dxtx
ts

xtxs
x

c

c

c

+
=

+
−+

∫
∞

φ

 

Mean age at death, λ , for 

cohort born at time λ−t  

assuming a linear shift in cohort 
distributions of deaths by age 
(see note 2) 

 

Notes: (1) By definition:  
),(1

),(
),(*

xtxr

xtx
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c

c

−−
−= φφ ; 

),(1

),(
),(*

xtxr

tx
tx

c −−
= µµ ; 

)(1

),(
),(
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xtx
tx

c

c
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−=′ φφ ; 

)(1
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tr
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c−
=′ µµ ; 

∫
∞

−=
0

),(*),()( dxtxxtxsts cc φ ; and ∫
∞

−=
0

),(*),()( dxtxxtxrtr cc φ . 

(2) For **
0e  and 0e ′′ , the speed of the assumed linear shift is derived from observed age-specific changes in cohort distributions of 

deaths by age at  time t, after smoothing the cohort survival surface to remove short-term fluctuations in trends (see end of 
Section 5.4). 
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assumed to be constant over time.  These two quantities, as well as BFe 0 , are functions 

of shifts at time t in cohort distributions of age at death.  Both *
0e  and 0e′  can be used to 

describe the characteristics at time t of a (hypothetical) constant-birth population.  

Unlike the other two measures, BFe 0 , appears to have no clear and useful interpretation 

of its own, except in a special case where all three measures would be equal.  

Empirically, BFe 0  tends to lie somewhere between *
0e  and 0e′ . 

Table 1 also includes two measures, **
0e  and 0e ′′ , that are derived from a linear 

shift model of mortality change.  Both **
0e  and 0e ′′  are projected values of the cohort 

mean age at death based on trends in cohort mortality functions that are observed at 
time t.  The projections shown here are based on smoothed estimates of the shift in 
cohort mortality at time t.  Thus, although they are insensitive to rapid, year-to-year 
fluctuations in mortality, they seem to follow temporal variations in mortality over 
longer durations (decades, etc.).  These measures might be more useful as actual 
projections of cohort mortality if they were based on observed changes averaged over 
relatively longer time periods.  

 
 

7. Conclusion 

In this study, we have compared life expectancy at birth to five other measures of mean 

lifespan for a given time period, t.  Life expectancy, 0e , is unique among these 

measures for the fact that it is solely a function of death rates observed at time t among 
surviving cohorts.  For this reason, it is a pure period measure of mean lifespan.  The 
other five measures do not share this characteristic, as they belong to the class of cross-
sectional cohort measures, which depend not only on cohort death rates at time t, but 
also on cohort survival probabilities observed at that moment.  Since cohort survival 
probabilities are a function of death rates from periods before time t as well, these 
measures form a fundamentally different class compared to pure period measures such 
as life expectancy at birth. 

The concept of “tempo-adjusted” life expectancy forms a special case of the cross-
sectional cohort measures.  Despite recent interest in this topic, the interpretive value of 
such a measure is not at all clear.  In its generalized form, tempo-adjusted life 

expectancy at birth is equivalent to a measure known as CAL, or *
0e  (Brouard, 1986; 

Guillot, 2003).  In a special case, it also equals BFe 0  (Bongaarts and Feeney, 2002, 
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2003), as well as two other measures studied here, 0e′  and 0e ′′ .  However, “tempo 

adjustment” in the case of 0e  appears to be synonymous with “removal of past changes 

in mortality rates.”  Survival probabilities computed from tempo-adjusted death rates 
(applying the general form of the concept) are equivalent to cross-sectional cohort 
survival probabilities.  By substituting cohort for period survival probabilities in the 
calculation of life expectancy at birth, tempo-adjusted 0e  does not take into account all 

of the changes in mortality risks that have taken place during the lifetimes of living 
cohorts. 

Because it lacks a useful general interpretation, the Bongaarts-Feeney measure 

( BFe 0 ) is the least interesting of the cross-sectional cohort measures considered here.  

Although it may sometimes be approximately equal to three of the other measures ( *
0e , 

0e′ , and 0e ′′ ), the latter quantities are no more difficult to calculate and correspond 

directly to the underlying theoretical constructs.  Of the other four measures from the 
same class, two describe population dynamics at time t based on a model of constant 

births ( *
0e  and 0e′ ).  The other two are projected estimates of the mean age at death (or 

life expectancy at birth) for two particular cohorts ( **
0e  and 0e ′′ ); they can be derived 

using a linear shift model of mortality change (in which the percentiles of cohort 
distributions of age at death follow linear trends over time). 

Analysis of empirical trends as well as the linear shift model has led to a pair of 
key insights concerning the relationship between period and cohort mortality.  The first 
is that trends in period life expectancy at birth misrepresent the lived experience of 
cohorts in terms of the speed of change in the average length of life.  In a situation of 
sustained mortality decline, for example, the rise in life expectancy over time tends to 
be slightly faster from cohort to cohort than from period to period.  The second is that 
period life expectancy at birth for time t tends to lie between the mean ages at death for 
two special cohorts:  the cohort born at time t, and the cohort whose mean age at death 

is attained at time t (two of the measures investigated here, **
0e  and 0e ′′ , are projected 

estimates of these two quantities). 
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Appendix 

A-1. Percentile slopes of cohort distributions of age at death 

Recall from the main text that percentiles of the distribution of age at death for the 
cohort born at time τ are defined as follows: 

 
xac =),(~ τπ    such that   ),(1),( ττπ xx cc l−=Φ=   ,    (9) 

 

where ∫=Φ
x

cc daax
0

),(),( τφτ  is the distribution (or cumulative probability) function 

for age at death in the given cohort.  Also recall the following definition for the pace of 
change (from cohort to cohort) in the percentile of this distribution that occurs at age x: 

 
),(~),( τπτ τ cd

d
c axs =   ,       (10) 

 
where ),( τπ xcΦ=  is fixed.  I show here that this cohort percentile slope has the 

following equivalent forms: 
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For simplicity, let us consider a single age x for the cohort born at time τ, and let 

),( τxss c= .  As noted by Bongaarts and Feeney (2002), in order for s to equal the slope 

of the percentile associated with age x for the given cohort, it must satisfy the following 
equation: 

 

0),(
0

=++Φ
=acda

d asax τ   .       (48) 

 
That is, a change of s units in x accompanied by a unit change in τ is associated with no 
change whatsoever in the cumulative probability of death, π, in the immediate vicinity 
of x and τ.  Let saxy +=  and au +=τ .  It follows that: 

 

),(),(),(),(),( uysuyuyuyasax cdu
d

cda
du

cdu
d

da
dy

cdy
d

cda
d Φ+=Φ+Φ=++Φ φτ   . (49) 
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Setting 0=a  and equating the result to zero gives us the following expression: 
 

0),(),( =Φ+ ττφ τ xsx cd
d

c   .       (50) 

 
Solving for s yields the first relationship in equation 11.  The other three forms of s 
follow directly from the following elementary relationships:  (a) ),(),( ττ xx cc Φ−=l ;   

(b) ),(),(ln ττ xHx cc −=l ; and (c) ),(),(),( τµττφ xxx ccc l= . 

 
 

A-2. Fundamental properties of the linear shift model 

Equations 40 and 41 describe the trend in period and cohort life expectancy at birth in 
the case of a linear shift model (subject to the conditions stated at the beginning of 
section 5.3). In this section of the appendix, I derive these two equations and 
demonstrate that equivalent results are obtained whether a linear shift model is specified 
in terms of period or cohort mortality.  I also discuss some necessary restriction on the 
possible values for percentile slopes within a linear shift model. 

 
 

A-2.1 Period and cohort life expectancy at birth 

As stated in the main text, a linear shift model can be specified by assuming that each 
percentile of the period distribution of age at death (i.e., within successive period life 
tables for the model population) is constant along a line defined by the following 
equation: 

 
tyryx )(+=     for TtT <<−   ,     (38) 

 
where )( yr  can take on different values as a function of age, y, subject to certain 

restrictions (see section A-2.3); and T is the duration of the shift both forward and 
backward from 0=t .  Note that )( yr

dt
dx =  for all combinations of x and t along this 

line.  In other words, 
 

)(),( ytxp Φ=Φ    or   )(),( ytxp ll =   ,     (39) 

 

where tyrxy )(−= .  Note that ( )tyr
dx

dy )(11 ′+= , where )()( yryr
dy
d=′ . 
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Thus, )(yΦ  and )( yl  depict the baseline mortality distribution and survival 

probabilities for the linear shift model.  They are identical to the corresponding period 
mortality functions associated with time 0=t  for the model population (i.e., 

)()0,( yyp Φ=Φ  and )()0,( yyp ll = ).  Differentiating ),( txpΦ  with respect to age, we 

obtain the period distribution of deaths by age: 
 

tyr

y
ytxtx

dx

dy

dy
d

pdx
d

p )(1

)(
)(),(),(

′+
=⋅Φ=Φ= φφ   .    (51) 

 
Then, using the change of variable from x to y given above, we may calculate period 
life expectancy at birth as follows: 

 

( )

,

)()()(

)()(

),()(

0

00

0

00

tre

dyyyrtdyyy

dyytyry

dxtxxte p
p

+=

+=

+=

=

∫∫

∫

∫

∞∞

∞

∞

φφ

φ

φ

     (52) 

 

where ∫
∞

=
00 )( dyyye φ  and ∫

∞
=

0
)()( dyyyrr φ . 

Furthermore, the death rate at age x and time t is given by: 
 

tyr

y

tx

tx
txtx

p

p
p )(1

)(

),(

),(
),(),(

′+
=== µφ

µµ
l

  ,    (53) 

 
where )()()()()( yyyyy dy

d
lll −== φµ  is the death rate at age y implied by the 

baseline mortality distribution.  For the cohort born at time τ , the death rate at age x is 
as follows: 

 

)()(1

)(
),(),(

xzr

z
xxxc +′+

=+=
τ

µτµτµ   ,    (54) 

 
where )()( xzrxz +−= τ .  Note that ( ) ( ))()(1)(1 xzrzr

dx
dz +′+−= τ .  Also note that 

)()( zzszx ++= τ , where ( ))(1/)()( zrzrzs −= . 
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Now, using the change of variable from x to z given above, we can compute the 
cumulative death rate for the cohort born at time τ  as follows: 

 

)(*)(*
)()(1

)(
),(),(

000
bHdzzdx

xzr

z
dxxaH

baa

cc ==
+′+

== ∫∫∫ µ
τ

µτµτ   , (55) 

 
where )()( abrab +−= τ ; and ( ))(1)()(* zrzz −= µµ .  Based on this formula, it is 

simple to compute the probability of survival to age x for the cohort born at time τ : 
 

)(*),( 0
)(*

)(*),( zeeex
z

c
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zHxH
c ll =∫===

−−− µττ   .   (56) 

 
Therefore, the cohort distribution of deaths by age is as follows: 
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where )(*)(*)(* zzz µφ l= .  Then, using the same change of variable from x to z, we 

can calculate cohort life expectancy at birth as follows: 
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  (58) 

 

where ∫
∞

=
00 )(** dzzze φ  and ∫

∞
=

0
)(*)( dzzzss φ . 

 
 

A-2.2 Equivalence of period- and cohort-based models 

The linear shift model described in the main text and in the previous sub-section is 
specified in terms of period mortality.  In other words, mortality change for the model 
population is described as a shift in the distribution of age at death in a series of period 
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life tables.  Thus, by design the period percentile slope at age x in year t, ),( txrp , 

equals )( yr , where tyrxy )(−= .  We can confirm this relationship by differentiating 

the period survival probability, ),( txpl , with respect to time t: 

 

)(),()(
)(1

)(
)(),( yrtxyr

tyr

y
ytx pdt

dy

dy
d

pdt
d φφ =

′+
== ll   ,   (59) 

 

since )()( yy
dy
d φ−=l  and ( )tyryr

dt

dy )(1)( ′+−= .  Then, by the same logic used earlier 

to compute cohort percentile slopes (see section A-1 above), it follows that: 
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Note that this result merely reflects the core assumption of the model. 

On the other hand, values of cohort percentile slopes in this model are a 
consequence of the assumptions and must be derived.  As before, the change of variable 
used for computing cohort mortality is defined by the equation, )()( xzrxz +−= τ .  

Differentiating the cohort survival probability, ),( txcl , with respect to time τ , we 

obtain: 
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since )(*)(* zz

dz
d φ−=l  and ( )( )xzrzr

d
dz +′+−= ττ )(1)( .  It follows that: 
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Thus, a key property of the linear shift model is the close relationship between the 
period and cohort percentile slopes: 
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Turning the derivation around, we begin by specifying that the percentiles of 
successive cohort distributions of age at death are constant along a line defined by 

 
)()( zzszx ++= τ   for TtT <<−   .     (64) 

 
Note that )(zs

d
dx =τ  for all combinations of x and τ  along this line.  In other words, the 

linear shift model is now based on the core assumption that 
 

)(*),( zxc Φ=Φ τ    or   )(*),( zxc ll =τ   ,    (65) 

 
where )()( zzsxz +−= τ .  Since x−=τ  at time 0=t , this assumption implies that 

 
)(*),( zzzc Φ=−Φ    or   )(*),( zzzc ll =−   .    (66) 

 
Therefore, the functions, )(* zΦ  and )(* zl , again depict the cross-sectional cohort 

mortality distribution at time 0=t  for the model population.  From equation 64 we 

obtain ( )( )zzszs
dx
dz +′++= τ)()(11 . 

Note that both the change of variable implied by equation 64, and the derivative of 
z with respect to x that follows from this equation, are equivalent to the forms given 
earlier as part of the original derivation of the linear shift model.  To demonstrate the 
equivalence of the change of variable itself, add τ  to both sides of equation 61 and 

rearrange the equation to obtain ( ) )()(1 zzsx ++=+ ττ .  Since ( ) 1)(1)(1 −−=+ zrzs , it 

follows that ( ) )()(1 xzrz +−=+ ττ , and thus )()( xzrxz +−= τ .  Equivalence of the 

two forms of the derivative, 
dx
dz , follows from the additional observation that 

( ) ( ))(1)()(1)( zrzrzszs −′=+′ .  In summary: 
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and 
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Differentiating ),( τxcΦ  with respect to age, the cohort distribution of deaths by age is 

as follows: 
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Dividing through by )(*),( zxc ll =τ , we obtain the death rate at age x for the cohort 

born at time τ : 
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Finally, the death rate at age x and time t is as follows: 

 

tyr

y
xtxtxtx cp )(1
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′+
=−== µµµµ   ,    (71) 

 
where tyrxy )(−=  and ( ) )(*)(1)( yyry µµ −= . 

Therefore, the surface of death rates over age and time, ),( txµ , has the same form, 

and thus the relationship between all period and cohort mortality functions is the same, 
whether a linear shift model is specified in terms of period or cohort mortality.  
However, as noted in the main text, this equivalence pertains only to periods and 
cohorts whose entire life experience takes place within the shift.  In other words, 
discontinuities at the start and end of the shift have different forms for period-based and 
cohort-based models.  Since the purpose of this analysis is to understand the 
relationship between period and cohort mortality under conditions of a sustained change 
over time, such patterns are not considered here. 

 
 

A-2.3 Restrictions on values of percentile slopes 

Although the percentile slopes of the linear shift model, )(yr  and )(ys , typically take 

on rather small values (often in a range between –1 and +1), there do not appear to be 
strict upper or lower limits on their possible values except at age zero (see below).  
However, a general restriction is necessary concerning the rate of change in either )(yr  

or )(ys  as a function of age.  The discussion here is preliminary and does not consider 
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all possible cases.  In particular, it considers only the necessary restrictions on )(yr  or 

)(ys  individually, without attempting to resolve the problem of how these two sets of 

restrictions are interrelated.  Thus, the discussion is developed here in terms of )(yr  

alone, without considering the case of )(ys  except to note that it should be subject 

simultaneously to a similar set of restrictions. 
The first issue is how to avoid a cross-over of percentile trends over the course of 

the linear shift.  Suppose that a and b are two ages such that ∞<<≤ ba0 .  Consider 
the trends in the (period) percentiles associated with these two ages at time 0.  To avoid 
a cross-over in these two percentile trends, the following equation must be true for all t 
in the range of ),( TT− : 

 
tbrbtara )()( +≤+   .      (72) 

 
The following condition is both necessary and sufficient to ensure that the relationship 
in equation 72 remains true throughout the shift period: 

 

T
yr

1
)( ≤′   for ∞<≤ y0   .      (73) 

 
To show that equation 73 is necessary, start by rearranging equation 72 as follows: 
 

[ ] abarbrt −≤−− )()(   .      (74) 

 
Dividing both sides of equation 74 by t−  and ab − , and considering separately the 
two cases when t is positive and negative, yields the following: 

 

tab

arbr 1)()( ≤
−
−

  for TtT <<−  (except 0=t )  .   (75) 

 
Since equation 75 must hold true throughout the shift period, it follows that 

 

Tab

arbr 1)()( ≤
−
−

  .       (76) 

 
And since equation 76 must be true for all values of a and b, including the case where 
these two ages are arbitrarily close together, equation 73 is a necessary condition. 
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To show that equation 73 is sufficient, begin by noting the following relationship:  
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The second inequality in this equation is implied by equation 73.  Similarly,  
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Equations 77 and 78 together imply equation 76, which ensures the original restriction 
on )(yr  as expressed in equation 72. 

 
Thus, an important restriction on the possible values of percentile slopes in a linear 

shift model is that they should not change too quickly as a function of age.  This 
conclusion appears closely related to the empirical observation that projected values of 
life expectancy based on the linear shift model are more plausible when percentile 
slopes are computed from smoothed mortality surfaces (see end of section 5.4). 

 
Another important restriction concerns the value of the percentile slope at age 0.  

In order to avoid negative ages at death for a shift from time –T to T, it is necessary to 
require that 

 
0)0( =r   .        (79) 

 
However, two alternative approaches are also worth considering.  First, for a shift from 
time 0 to T, a weaker restriction is sufficient: 

 
0)0( ≥r   .        (80) 

 
Or second, keeping the longer shift interval, ),( TT− , define an age, 0a , such that 

mortality rates equal zero below that age at time 0=t .  To avoid negative ages at death 
in this situation requires the following restriction: 
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Although negative ages at death should be treated as strictly impossible, a 
complete absence of mortality within some age range might be considered possible 
though highly unlikely.  A useful special case is the parallel linear shift model, in 
which ryr =)(  is constant over the full age range.  This model has been applied by 

Bongaarts and Feeney (2002, 2003), who assume that mortality is zero below age 30 at 
the start of a parallel linear shift.  Given the very low levels of mortality at younger ages 
observed in many modern populations, the inexactness of such an assumption may be 
outweighed in many situations by the advantages of working with a simpler model.  
 
 

 
 




