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aresearch article

On therelationship between period and cohort mortality

John R. Wilmoth *

Abstract

In this paper | explore the forma relationship between period and cohort mortality,
focusing on a comparison of measures of mean lifespan. | consider not only the usual
measures (life expectancy at birth for time periods and birth cohorts) but aso some
alternative measures that have been proposed recently.

| examine (and rgject) the claim made by Bongaarts and Feeney that the level of
period e, is distorted, or biased, due to changes in the timing of mortality. | show that

their proposed alternative measure, caled “tempo-adjusted” life expectancy, is exactly
equivalent in its generalized form to a measure proposed by both Brouard and Guillot,
the cross-sectional average length of life (or CAL), which substitutes cohort survival
probabilities for their period counterparts in the calculation of mean lifespan. |
conclude that this measure does not in any sense correct for a distortion in period life
expectancy at birth, but rather offers an aternative measure of mean lifespan that is
approximately equal to two analytically interesting quantities: 1) the mean age at death
in a given year for a hypothetical population subject to observed historical mortdity
conditions but with a constant annua number of births, and 2) the mean age at death,
A, for acohort born A years ago.

However, | also observe that the trend in period e, does indeed offer a biased

depiction of the pace of change in mean lifespan from cohort to cohort. Holding other
factors constant, an historica increase in life expectancy at birth is somewhat faster
when viewed from the perspective of cohorts (i.e., year of birth) than from the
perspective of periods (i.e., year of death).

Thisarticleis part of Demographic Research Special Collection 4,
“ Human Mortality over Age, Time, Sex, and Place: The 1% HMD Symposiunt’ .
Please see Volume 13, Publications 13-10 through 13-20.

United Nations Population Division (on leave from the University of California, Berkeley) E-mail: jrw@demog.berkeley.edu
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1. Introduction

A classic problem in forma demography is how to define summary measures of
demographic events for time periods that correspond in some meaningful way to the
lived experience of actual cohorts. Although such period measures may not be
equivalent to the anal ogous measure for any particular cohort, they should nevertheless
represent the lifetime experience of a hypothetical cohort that is subject throughout its
life to currently observed demographic conditions. The question, of course, is how to
define the concept of current conditions, especially when such conditions are changing.
For example, severa authors have pointed out that in some situations the standard
measure of lifetime completed fertility, the total fertility rate (TFR), misrepresents the
average number of births that a woman would bear over her lifetime (Hajnal, 1947,
Ryder, 1964; Bongaarts and Feeney, 1998). Since the problem is caused by changes
from year to year in the timing of fertility as a function of age, this phenomenon is now
commonly referred to as “tempo distortion,” or “tempo bias.”

In the case of fertility, the existence of such a distortion is widely acknowledged,
even though there are differences of opinion about how best to adjust the TFR to
remove such bias (Schoen, 2004). In the case of mortality, however, the recent claim
by Bongaarts and Feeney (2002, 2003) of a similar bias affecting period life expectancy
at birth, e,, has not found wide acceptance. Without doubt, such skepticism derivesin

part from the dissimilarity of the two examples, since the TFR measures the number of
births over thelife course, whereas e, depicts the average age at death. This difference

recalls Ryder’s emphasis on the fundamental distinction between the quantum and the
tempo of demographic events (Ryder, 1978).

The recent discussion of these topics has revealed a pressing need to clarify the
meaning of various summary measures of average longevity in apopulation. Therefore,
in this paper | explorethe formal relationship between period and cohort mortality, with
a particular emphasis on the concept of mean lifespan. | consider not only the usual
measures (life expectancy at birth for periods and cohorts) but aso some alternative
measures that have been proposed recently.

| examine (and regject) the assertion that the level of period g, is distorted, or

biased, due to changes in the timing of mortality. | show that the alternative measure
proposed by Bongaarts and Feeney, called “tempo-adjusted” life expectancy, is exactly
equivalent in its generalized form to a measure proposed by both Brouard (1986) and
Guillot (2003), known as the cross-sectional average length of life (or CAL), which
subgtitutes cohort probabilities of survival for their period counterparts in the
calculation of mean lifespan. | conclude that this measure does not in any sense correct
for a distortion in period life expectancy at birth, but rather offers an aternative
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measure of mean lifespan that is approximately equal to two analytically interesting
guantities. 1) the mean age a death in a given year for a hypothetical population
subject to observed historical mortality conditions but with a constant annual number of
births, and 2) the mean age at death, A , for acohort born A years ago.

However, | also observe that the trend in period e, does indeed offer a biased

depiction of the pace of change in mean lifespan from cohort to cohort. Holding other
factors constant, an historical increase in life expectancy at birth is somewhat faster
when viewed from the perspective of cohorts (i.e, year of birth) than from the
perspective of periods (i.e., year of death).

The analysis beginsin Section 2 with averbal discussion of some key topics. This
is followed by Section 3, which defines various mathematical functions and derives the
standard period-cohort model of mortality. Mathematically sophisticated readers may
wish to begin with Section 3. Likewise, individuas who are already well-versed in the
specific topics addressed in this paper may wish to skip immediately to Section 3.3, or
even Section 4.

2. Overview and fundamental concepts

Demographic events mark major life course transitions (e.g., birth, marriage, fertility,
migration, retirement, widowhood, death). Their likelihood of occurrence within some
time interval is often described using rates (and/or conditiona probabilities), whose
specificity may vary as a function of age, time, sex, and other individual characteristics.
Such rates are often used to calculate a variety of summary measures that depict the
intensity and/or timing of such events over the life course. Undoubtedly, the two most
common of these measures are life expectancy at birth, e,, and the tota fertility rate
(TFR).

An overview of demographic summary measures must begin with certain
fundamental concepts, including three important dichotomies: (a) cohorts vs. periods;
(b) guantum vs. tempo; and (c) population dynamics vs. synthetic cohorts. In addition
to these three distinctions, we need to understand the phenomenon of partid (or surplus)
quantum, which affects the period TFR (and all measures of quantum) whenever the
timing of fertility (or other event) is changing over time. To address these and other
issues in this paper, | describe a new class of models that can be used to explore
mortality (and other demographic) trends based on assumptions about changes in the
age didribution of events, rather than the age pattern of risk.

http://www.demographi c-research.org 233
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2.1 Cohortsvs. periods

Cohorts and periods are two different ways of reckoning time when anayzing
demographic events. A cohort is an actual group of persons who experience a major
life event around the same time. For example, birth cohorts are composed of
individuals who are born in the same year (or decade, etc.). Cohort life expectancy at
birth is the observed average age at death for this group (ignoring migration). In the
same context, a period is a time interval (e.g., year, decade) and is associated with a
synthetic cohort, which is an imaginary group of people who experience,
hypothetically, the demographic conditions of that period throughout life. Thus, period
life expectancy at birth is the expected average age at death for a synthetic cohort that
experiences the mortality risks of that time (as reflected in age-specific death rates)
from birth onward.

2.2 Quantum vs. tempo

In general, quantum refers to the intensity (or level, or frequency) with which some
demographic event occurs in a population. Quantum can be described as a function of
age (e.g., age-specific rates) or summarized over the entire life course (e.g., the lifetime
count or probability of an event). Age-specific measures of quantum always have the
number of eventsin the numerator. In the case of mortality, these include death counts,
probabilities of death or survival, and death rates. In contrast, tempo refers to the
timing of a demographic event over thelife course. Measures of tempo are expressed in
units of time (or age) and usually depict the duration until an event’s occurrence. The
most common example is life expectancy at birth, but other measures of mortality
tempo include percentiles of the distribution of age at death (e.g., median age at death)
and person-years of survival (within some interval of time and/or age).

2.3 Population dynamicsvs. synthetic cohorts

There are two classes of period measures used for summarizing the demographic events
of agiventimeinterva: () thosethat describe population dynamics, and (b) those that
depict the hypothetical experience of a synthetic cohort. These two types of measures
serve different purposes, and a measure that is appropriate in one case may be
inappropriate in the other. For example, the period total fertility rate (TFR), which
equals the sum of observed age-specific fertility rates for a given period, depicts
accurately the average contribution to population change attributable to the current
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fertility of women in the reproductive age range (Cdot, 2001). From this perspective,
the TFRisa useful and reliable measure of population dynamics.

However, as a measure of lifetime fertility for a synthetic cohort, the TFR has at
least two inherent flaws. First, as discussed in the following section, it is affected by
the phenomenon of partial (or surplus) quantum whenever there are changes in the
timing of fertility as afunction of age. This problem, often called “tempo distortion” or
“tempo bias,” can be circumvented by a small adjustment applied to age-specific
fertility rates, which has the effect of replacing (or removing) the partial (or surplus)
guantum caused by changes in fertility timing. Second, observed age-specific fertility
rates reflect past as well as current fertility patterns, since they depend on the
distribution of women by parity at each age. This latter problem could be avoided by
computing an aternative measure of period total fertility based on parity transgition rates
within a multi-state framework.

Thus, even though it is usudly presented as a measure of lifetime fertility for a
synthetic cohort, it is more appropriate to interpret the TFR as a measure of population
dynamics? If we desire a measure of total fertility that depicts the lifetime experience
of a synthetic cohort based only on current fertility conditions, then we must address
both of the problems mentioned above. Perhaps the ideal solution would consist of
replacing thetraditional TFR by a pair of period measures. (@) the net reproduction rate
(NRR) for the analysis of population dynamics, and (b) a full-quantum (or tempo-
adjusted) multi-state TFR to represent the lifetime reproduction of a synthetic cohort.

In the case of mortality as well, some measures of mean lifespan are useful mostly
for the analysis of population dynamics. For example, the cross-sectiona average

length of life (CAL, or €, ) depicts the relative size of a population at a point in time
given its past mortality trends but assuming (hypothetically) a constant annual stream of
births (Guillot, 2003). As shown here, CAL is also approximately equal to certain
measures of mean lifespan for the population in question. For example, it is quite
smilar in form to €, defined to be the mean age at death (MAD) that would be
observed in a given time period for a population with an identical historica mortality
pattern and a constant annua number of births (Bongaarts and Feeney, 2003).
However, such measures describe population dynamics, not the life course of a
synthetic cohort based exclusively on the mortality risks of a given period. | show here

that both € and e, depend on past as well as present death rates; in contrag, the
period life expectancy at hirth, e, is the expected mean age at death implied by the
observed death rates of that time alone.

2 The TFR is often interpreted (at least implicitly) as aproxy for the net reproduction rate (NRR). For example, since population replacement in
low-mortality populations requires a TFR of about 2.1 children per woman, a convenient approximation in such situationsis NRR=TFR/2.1.

http://www.demographi c-research.org 235



Wilmoth: On the relationship between period and cohort mortality

In general, period measures of the average age of some life course event (e.g.,
death) at time t have two common forms: (a) the mean age of the event that is or would
be observed in the population a that time, perhaps under some set of hypothetical
conditions (e.g., assuming a constant stream of births over time); or (b) the expected
mean age of the event in a synthetic cohort assuming that current age-specific transition
rates are experienced over a lifetime. Some confusion results from the fact that
different traditions have existed in fertility and mortaity analysis concerning the
appropriate definition for the period mean age of the event. Perhaps because a central
focus of fertility studies has been the role of reproduction in population dynamics, the
definition of “average age at birth” has followed the concept of an observed mean age.
In contrat, it was quite sensible for life expectancy at birth to reflect the concept of an
expected mean age, since mortality studies have been framed in terms of risk reduction
and abstract notions of quality of life, not population dynamics.

2.4 Causes and consequences of partial (or surplus) qguantum

Many demographic events, like death, occur at various ages for members of the same
cohort. An associated probability distribution depicts the timing of such events as a
function of age, and thus aso in relation to the time periods in which they occur.
During a given time period, each living cohort undergoes some fraction of its total
lifetime experience of the event in question, and the total number of events observed
during that period is a composite of these fractional segments of cohort lifetimes.

If the age distribution of eventsisidentica from cohort to cohort, a period cross-
section of these fractional segments sums to one, and therefore the collection of events
within the period can be said to represent the equivalent of one complete cohort
lifetime. However, whenever there are changes in the distribution of events by age for
successive cohorts, a period cross-section of cohort probability distributions typically
does not sum to one. A delay in the timing of events from cohort to cohort produces a
phenomenon of partial quantum, whereas an acceleration of timing results in surplus
quantum during the period in question. In such cases, events observed during a given
period generally misrepresent the equivaent of one complete cohort lifetime® (To
simplify the exposition here, | will often consider only the case of tempo delay and
partia guantum, since the causes and consequences of surplus quantum are identical,
though aways in the opposite direction.)

3 A sum of onein this case could occur only by coincidence, if negative and positive factors cancelled out, but such an occurrence seems

extremely unlikely.
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The phenomenon of partia (or surplus) quantum is the source of a tempo
distortion, or bias, that affects measures of lifetime quantum, like the TFR.  This
distortion can be easily eliminated by adjusting age-specific fertility rates in an
appropriate fashion. However, as noted earlier, this distortion is relevant only in
situations where the TFR is interpreted as a measure of lifetime fertility for a synthetic
cohort. When the TFR is employed as a measure of population dynamics, the partial (or
surplus) quantum caused by changes in fertility tempo is a desirable outcome. In such
cases adjusting the measure to remove tempo effects creates a bias where none existed
before.

The role of these factors in the anadysis of quantum measures, like the TFR, is
relatively straightforward, owing to the fact that the model of a synthetic cohort is
relatively simple in this case. In order to represent the lifetime quantum of an event,
such astotal fertility, demographers have typically created a synthetic cohort that isnot
subject to mortality or other forms of attrition, and thus the base population that
accumulates events (e.g., hirths) over the life course is constant. For this reason,
adjusting for the effects of partid quantum (or tempo delay) is a simple matter of
replacing the fraction of events for each cohort that have been postponed from the time
period in question into the future.

In contrast, tempo measures and their associated synthetic cohorts have a more
complicated mathematical structure due to the phenomenon of attrition, which affects
the base population (e.g., number of survivors) that is eligible to experience a given
event (e.g., death). In such cases, adjusting for tempo delay (or partia quantum) has a
dual effect. For a given base population, it restores a fraction of events that have been
postponed into the future. However, it also alters the base population itself at each age.
Wheress the first effect has a relatively minor impact on measures of mean age (e.g.,
life expectancy at birth), the latter effect is quite significant and fundamentally altersthe
nature of the measure. In fact, as | show here, tempo adjustment has the effect of
converting a period survival probability (i.e., the probability of survival to age x within
aperiod life table) into an anal ogous cohort survival probability (i.e., the probability of
survival to age x for the cohort born x years ago). In doing so, it converts period g,

into CAL, and thus fundamentdly alters the nature of the measure (recall the earlier
discussion of synthetic cohorts vs. population dynamics).

In short, adjusting for tempo change in the case of a tempo measure has the effect
of removing historical changes in the quantity being measured. Tempo adjustment in
this case converts a period measure based on a synthetic cohort into a cross-sectional
measure that reflects the past experiences of cohorts. As noted earlier, the primary use
for CAL isthe analysis of population dynamics. Differences between CAL and period
e, do not suggest that the latter measure is “distorted” in any sense. Rather, the two

measures differ because they describe different things.
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2.5 Models of mortality change over time

This analysis uses a relatively new class of models to gain insights into period-cohort
relationships. Previously, most models of mortality change over age and time have
been specified as a function of trends in age-specific death rates. Here, following the
example of Bongaarts and Feeney (2002, 2003), changes in mortdity are specified in
terms of shifting distributions of deaths by age. The former type might be referred to as
“rate models,” whereasthe latter could be called “percentile models.”

3. Mortality functions and basic relationships
3.1 Single cohort model

For asingle cohort (real or synthetic), the usua formulas for computing life expectancy
at birth arethe following:

€ = I: X@(X) dx
= I:xé(x),u(x)dx 1)

:j:’e(x)dx ,

where @(x) = —&¢(X) = ¢(X) u(X) is the probability density function, describing the
distribution of deaths by agein the cohort; () = -4 ¢(x)/¢(x) ==& In¢(x) isthedeath
rateat agex; H(x) =[,u(a)da isthe cumulative death rate up until age x; and

—joxy(a) da

(x)=e"® =e :Im¢(a)da is the probability of survival from birth until

exact age x.

Although they have different forms, all three formulasin equation 1 yield the same
value for the mean age at death in a cohort. The difference between the first two
formulas is trivia, since @(xX) =¢(X)u(x). Both of these formulas depict life
expectancy at birth as an average age at death, or as an expected value associated with
the probability distribution. However, the last formula is different in both form and
substance; it suggests an aternative interpretation of mean lifespan as the accumulation
of person-years lived, on average, by members of the cohort.
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It isalso possible to depict life expectancy at birth as an integral with respect to the
(unconditional) probability of dying, rather than age. Such caculations are closdy
related to percentiles of the distribution, a(77), which are defined as follows:

a(rm =x suchtha m=®d(x) =1-4(x) , @)

where ®(x) = J'qua(a) da isthedistribution (or cumulative probability) function for ages

at death in the cohort. Thus, a(s7) isan age, x, such that the proportion of total deaths
(over the cohort’s lifetime) occurring before age x is 7. The derivative of 7 with
respect to age, x, equals the probability density function at that age:

ST=9X) . ©)

Substituting a(77) in place of x, the relationships described in equations 2 and 3
can aso be written as follows:

m=®@(n) and §r=g¢a(m) . (4)

Moreover, substituting x=a(7) and dr=@(x)dx in equation 1, and recalling
that ¢(X)/@(x) = u(x) , we obtain the following aternative forms for life expectancy at
birth:

&=, a0 dn

:Il ~1 dmr .
H(@(m)

©)

Thus, if we assign equal weight to arbitrarily small intervals of age, each
containing an egqua share of the lifetime probability of death (totaling one, of course),
then life expectancy at hirth equals the average of either the midpoint of each age
interval or thereciprocal of the death rate within each interva.
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3.2 Standard period-cohort model

The above formulas describe the calculation of life expectancy at birth for just one
cohort, which could be either an actual birth cohort or a synthetic cohort derived from
the collective mortality experience of cohorts aive during some time period. Using
long series of higorical data (mostly from vital statistics and census data), a common
problem is to construct series of annual life tables for both periods and cohorts (e.g., the
Human Mortdity Database, www.mortality.org). To accomplish this goal, it is
necessary to make some assumption about the link between period and cohort mortality,
so that the two sets of tables arerdated in some logical and consistent manner.

The traditional manner of defining this link has been to equate period and cohort
mortality in terms of their age-specific death rates. Thus, we typicaly begin by
assuming that the death rates for a period life table should be derived directly from
observed cohort desth rates. In continuous age and time, this relationship can be
expressed as follows:

M) = py (X0 = pe (X t=X%) = 4 (X 1) (6)

where 7=t-x. Thus, by definition, the period death rate a age x and time t,
H(XE) = 1, (x1), equals g (X,t=X) = 4. (x 1), the death rate at age x for the cohort
born x years ago at time 7. Given this assumption, a series of historica life tables for
both periods and cohorts is fully defined by the surface of age-specific rates expressed
as afunction of age and time.*

For example, life expectancy at birth for a given period t can be computed using
the above equations. Written using a complete notation, the standard equations for
period life expectancy at birth are as follows:

4 The equations given here refer to the death rate at a point of age and time, (x,t) , which simplifies the task of defining the link between period

and cohort mortality. In practice, period and cohort mortality must be defined and measured over some time interval, such as a single calendar
year. In such situations, one simple approach is merely to equate period rates to cohort rates, or vice versa, without further manipulation.
However, the rates that result from such a procedure are less precise in terms of their temporal specificity than what is obtained by constructing
different sets of overlapping rates for periods and cohorts. Although derived from the same data, accurate mortality rates for periods and cohorts
over discrete intervals are estimated by altering slightly the configuration of age and time used to organize the raw data (annua death counts, and
estimates of exposure-to-risk in person-years), so that each set of rates corresponds to exact period or cohort age intervals. For purposes of the
present discussion, such complications can safely be ignored, since the mathematical development pursued here is expressed entirely in terms of

continuous age and time.
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e3(t) = [ xg, (x ) dx
= I: X2, (X,1) 4, (1) dX @)

=t (xyax

where @, (x,t) = =&, (xt) = £, (x,t) 4, (X,t) gives the probability distribution of ages
at death for the synthetic cohort of period t; g, (x.t) = u(xt) =—§7, (x,t)/ép(x,t)
=-4In/ (xt) is the death rate a age x and time t; H, (x,t) = ][54, (a,t)da is the

: . . - -[*py(atyda
cumulative rate function at age x and time t; and ¢, (xt)=e " =e Jos

= J'm @,(a,t)da isthe period probability of survival from birth until exact age x.

Similarly, life expectancy at birth for a cohort born at time 7 can be computed as
follows:

&(r) = [, x@(x 1) dx
= [ xC () (X, T) O (8)

= I: (. (x,r)dx ,

where @ (x,7) =—<-0.(x,7) = ¢ (x,T) 44,(x,T) givesthe probability distribution of ages
at death for the cohort born at time 7; . (X,1) = u(X,T+X) == 0 (X,1)/( (XT)
=-4In¢ (x 1) is the cohort death rate at age x; H (x,7) =,/ (a,7)da is the

: : } -[He(anda e .
cumulative rate function at agex; and ¢ _(x,7) =e "-*" =¢ Jplanca :J’ @(ar)da is
X

the cohort probability of survival from birth until exact age x.
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3.3 Cohort distributions of age at death

Let us aso define percentiles of the distribution of age at death for each cohort as
follows:

a.(mr)=x suchthat m=® (x,7)=1-7(x71) , 9)

where @ (x,7) = J'Oxgac(a, r)da isthe distribution (or cumulative probability) function
for age at death in the cohort born at time 7. An important quantity in this discussion
will be speed of change in these percentiles over time. Define s.(x,7) to be the pace of

change (from cohort to cohort) in the percentile of ages at death observed at age x for
the cohort born at time 7 . Thus, by definition

s(x0)=&a,(m1) (10)

where 1= ®_(x,7) isfixed.

In general, such quantities, known as “cohort percentile slopes,” are useful for
describing the relationship between period and cohort mortality. It is shown in the
Appendix (see section A-1) that a cohort percentile dope has the following relationship
to the other mortality functions described above:

—ar Pe(%7) _ G l(x7) _FInt (x7) _ —§H(x7)
2.(x1) @x1) K1) He(%,T)

s.(x71)= (1)

Thus, the cohort percentile slope at age x equals theratio (either positive or negative) of
the change over time in some measure of cumulative mortality or survival, divided by
an associated measure of age-specific mortality.

Using the first relationship of equation 11, it is possible to derive simple
expressions for the derivatives of ®_(x,7) in threedirections:

LD (X,T)=-s,(XT) @(X,T) (horizontal) ; (12)
F®P.(X7) =@ (x71) (diagonal) ; (13)
4@ (xt-x) =(1+s.(xt-%) @ (xt-X) (vertical) . (14)
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Asillustrated herein Figure 1, the labds, “horizontal,” “diagonal,” and “vertical,” refer
to directions of change in a Lexis diagram, drawn such that the abscissa and ordinate of
the Cartesian plane correspond to the time and age of death, respectively (thus, cohort
lifetimes are represented by diagona lines). The horizontal and diagona derivatives
are obtained, respectively, from the earlier equation for the percentile slope and from
the definition of @ (x,7) intermsof ¢.(x,7). The vertical derivative follows from the

fact that the derivative in the diagona direction equas the sum of the other two
derivatives.

Figurel:  Schematic representation of derivativesin three directions of the
cohort cumulative probability function, ®_(x,t)

Age
L, (x,1—x) LD, (x,7)
v ‘ 4@ (x,7)
=4O (x,t—x)

t Time

Note: By assumption, 7 =t — X.
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The derivative of @ (x,7) in the vertica direction is important because it

illugrates that the cross-sectional sum of cohort probability distributions does not in
general equa one. For example, if s.(x,t —x) >0 for all x, it follows that

I: @(xt—-x)dx< I: (1+ S (Xt - x)) @.(x,t —x) dx
(15)
:J'miCDC(x,t -x)dx=1.

o

In this example, since cohort percentile slopes at time't are positive, the timing of
death is being delayed or postponed for each successive cohort. This equation
illugrates the phenomenon of partial quantum, which occurs whenever the age
distribution of events (deaths) is shifting upward over time. Conversdy, if the
distribution of deaths is shifting uniformly toward younger ages (thus, the timing of
death is being advanced or accelerated), then s,(x,t —x) would be negative for all x at

time t, and the above sum would be greater than unity (i.e., surplus quantum). Let us
refer to ¢ (x,t —X) asacross-sectional cohort probability density function.

Assuming that s,(x,t-x)>-1 for al x at time t,” it is possible to define the
following probability density function:

_ _ = Axt=%
#e0=(1rs 0t-0) (et -9 = T (16)
where rc(x,t—x):%, and thus 1+s,(xt-x)=(1-r (xt-x))™". This

function sums to one over the full age range (see equation 15 above), since
s.(xt=Xx)@(x,t—x) replacesthe missing quantum at age x, assuming s, (x,t —x) >0.°
Thus, ¢ (x,t) isan adjusted cross-sectional cohort probability density function.

5 It is theoretically possible for cohort percentiles to have slopes that are less than -1, and their reality has been confirmed by empirical
observation. For expediency, this situation will be not covered in this paper, as we assumethat s (x,t —x) > -1 . Although the formulas of this

section remain correct even when cohort percentile slopes dip below —1, the interpretation of the quantities, @"(x,t) and g (x,t) , asadjusted
density functions and adjusted death ratesis no longer valid.
8 In this discussion we will generally consider the example of cohort percentiles that increase over time, reflecting an increase in longevity. It

should be evident that a decrease over time is also possible (except at age 0) and is associated with opposite effects.
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One important feature of the adjusted function, ¢*(x,t), isitsrelationship to the
cross-sectional cohort cumulative probability and survival functions, ®_ (x,t—x) and
(. (X,t—X), respectively. In the following eguation, note that the first integral derives
from the definition of ®_, whereas the second integral follows from equation 14:

D (xt-x) = [ @(at-x)da= [ ¢ (at)da . 17

Likewise, it follows that:
L6t=X) =1-@ (xt-X) = [ "g(at-xda=["g*(at) da . (18)

Thesereationships, linking @, and ¢ to ¢ and ¢*, areillustrated herein Figure 2A.
Following a smilar logic, let us define adjusted death rates as follows:

_HXYH (19)

(%) = (1+ s, (6t = X)) t(x.t) = 1=1 (%t - %)

The cumulative death rate at age x and timet also has two equivalent forms:

Ho(xt-%) = [ g (at-x)da=[ w*(at)da . (20)

Therefore, the cohort survival probability at age x and time t can be computed using
either set of death rates:

((xt=x) = exp{ - [ u(at=-x) da}: exp{ ~[ @b da} . (21)

Thesereationships, linking —In¢_ to x# and p* , areillustrated herein Figure 2B.
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Figure 2: [llustration of relationship between cumulative quantum for cohorts
and “tempo-adjusted” age-specific quantum for periods

A) Cohort cumulative probability of death, ®_ (x,7), and probability of survival,
¢.(x,7), asfunctions of both ¢(a,7) and ¢ (a,t)

Age ¢*(a,1) ¢.(a,7)

Lwn) — (|

N

>
T ®,(x,7)

T t Time

Note: As discussed in the text, ®(X,7) = I:(/E(a, r)da= I;(p‘ (a,t)da, and

C(XT)=1-D(X,T) = Ij @(a,r)da= Ij ¢ (a,t)da, where 7=t —X. Compare equations 17 and 18.
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Figure2:  Continued

B) Cohort probability of survival, ¢.(x,7), asfunctions of both £ (a,7) and z*(a,t)

Age prat)  p(a,7)=pa,z+a)
+ 3
—Inf_(x,7)
// c k
J
T t Time

Note: As discussed in the text, ¢ (X,T) = P)(p{— IDX H(a,1) da} = P)(p{— IDX/J* (a,t) da} ,where T =t—X. Compare

equation 21.

http://www.demographi c-research.org 247



Wilmoth: On the relationship between period and cohort mortality

4. Alternative measures of period mean lifespan

In addition to life expectancy at birth, e,, several other measures of period mean

lifespan have recently been put forth (see review by Bongaarts, 2005). Here, we focus
on two measures in particular: the “cross-sectional average length of life” (CAL),
proposed by Brouard (1986) and Guillot (2003), and “tempo-adjusted” life expectancy
at birth, suggested by Bongaarts and Feeney (2002, 2003). In this section, | will
explore the mathematical relationship between these and one related measures, plus
their connection to period e, .

In terms of notation, let CAL be denoted €, and |et the Bongaarts-Feeney measure

be written as e . In this section we will also consider a third measure, €, or the
mean age at death (MAD) in a constant-birth population. As we shall see, these three
period measures are closaly related; moreover, they are equivalent in aspecial case (i.e,
when the shift at timet in cross-sectional cohort distributions of age at death is constant
across age). However, €, €, and e]” are different in genera from the period life
expectancy at birth, e,. All four measures are equal only under a very restrictive
condition (i.e, that agespecific mortaity rates ae not changing at
timet and have been constant over time for al living cohorts).

A key contention of thisarticleisthat € and €, are useful primarily as measures
of population dynamics and, as such, differ fundamentally from e,, which is based on

the model of a synthetic cohort. Asdiscussed earlier, the synthetic cohort that underlies
e, is a hypothetical group of people who experience the death rates of the current

period throughout life. In contrast, a model of population dynamics underlies the

interpretation of & and €); the key feature of thismodel is an assumption of a constant

stream of births flowing into the population, arriving at rate of B births per year. If this
constant-birth population were subject to the historica mortality conditions of some

actual population up until timet, then at that moment its sizewould be B€; (t), and the

mean age a death observed in the population would be €(t). Although eg(t), the

measure proposed by Bongaarts and Feeney, may serve as an approximation for these
other two measures, it has no clear interpretation of its own except in the special case
(mentioned earlier) where it equal sthe other two measures.
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4.1 Relative size of a constant-birth population, €

Both Brouard (1986) and Guillot (2003) have proposed the “cross-sectional average

length of life,” a measure known by its acronym, CAL, written here dso as €. By
definition,

e (t) =CAL(t) = j:’ 0. (xt-x)dx
(22)
= exp[ —jo 1 (at) da] dx= [ xgr(xt)dx

where p*(x,t) and ¢ (x,t) are defined as before. Despite the similarity of these

formulas to those underlying the calculation of life expectancy at birth, CAL or €, is

useful primarily as a measure of population dynamics. As noted by Guillot (2003), in a
constant-birth population with a seady inflow of B births per year, the density of
survivors at exact age x and time't would be B ¢_(x,t—X) . Therefore, the size of the

(hypothetical) constant-birth population that would be observed at time t is a smple
function of CAL(t):

N = [ Bl(xt-x)dx=B[ f(xt-x)d=B&(t) . (23)

4.2 Mean age at death in a constant-birth population, €

By definition, €)(t) equalsthe mean age at desth that would be observed at timet given

the mortality history of an actual population but assuming a constant inflow of births
into the population. If there were B hirths per year in such a population, then the
density of deaths at exact age x and timet would be B ¢ (x,t —x) . Therefore, the mean
age at death, MAD, that would be observed at timet in a (hypothetical) constant-birth
population is as follows:
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J'mngoc(x,t—x) dx

€)(t) = MAD (t) =

J.:, B @, (x,t — x) dx (24)
"X @ (xt-x)d
=j0mx(0(x x) dx S ¢C(_xt =[x xt) 0%
J' @, (x,t = x) dx re(t)

‘”Cl(x_t (t)X) by definition, and where T,(t) = [ r, (xt - X) ¢ (x.t) dx is
a (weighted) average of r.(x,t —x) for timet.

Equivalence of the various forms of € (t) in eguation 24 derives from the
following fundamental relationship:’

where ¢(xt) =

[Jatt=xdx= [ (1-r.(t = %) g (x ) dx=1-T (1) . (25)

In other words, T (t) measures the missing (or surplus) quantum at time t

whenever the timing of cross-sectional cohort mortaity is being delayed (or
accelerated) a that moment. Note that 1_(t) also equals the pace of change over time

in CAL(t):

" (" a _ _(° S, (X,t = x)
4 CAL (t) jo 4/ (%t = x)dx jo —1+SC(X’t_X)w(x,t)dx 2

= [ =@ (=R

7 Some authors have referred to the quantity in equation 25, 1-1,(t) , asthe“total mortality rate,” by analogy to thetotal fertility rate (Bongaarts

and Feeney, 2003; Guillot, 2005). However, | have chosen not to use this terminology, because ¢, (x,t —x) isnot amortality rate by the usual

definition of theterm. Alternatively, the same concept is expressed here using the term “partial (or surplus) quantum.”
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4.3 Tempo-adjusted life expectancy at birth, eS" or €

Bongaarts and Feeney (2002, 2003) define “tempo-adjusted” life expectancy at birth as
follows:

eBf(t) = J': exp{— A da} dx

01-T(t) @27

:j:exp{—joxy'(a,t)d ax |

,u(>_<,t) = 'UC(X_t X) by definition. Comparing this formula to the
1-r()  1-1()

one for €(t) given above (i.e., equation 24), we see that each equation resembles one
of the classic formulas for life expectancy at birth. It isalso useful to compare 1/'(x,t)

where u'(x,t) =

and @(x.t), which serve as inputsto the calculation of el (t) and €,(t); in both cases,
a measure of age-specific quantum has been inflated (or deflated) by a factor of

@-r.m)*.
The close relationship between € and ef", can be illustrated by re-writing
equation 27 asfollows:

e =] |- 420 cal o

28
= ["expl - [N o ) dal ok “
o P TR

Similarly, we can see the resemblance between & and €, by re-writing equation 24 as
follows:

&) = Lt(t)x) ax = [ x%qﬁ(x,t)dx . (29)

http://www.demographi c-research.org 251



Wilmoth: On the relationship between period and cohort mortality

In both of the above formulas, theratio of 1-r_ (x,t—x) to 1-r_(t) will be close
to one so long as r.(x,t—x) does not vary widely as a function of age at time t.
Bongaarts and Feeney (2002, 2003) assume that r.(X,t —X) isindeed constant with age
(their “proportionality” assumption). Since redlity resembles this assumption in some
cases, the three measures are sometimes approximately equal. However, Guillot (2003)
notes that observed differences between CAL and €, can be substantial: for French

males the difference was 2.51 yearsin 2001 and was even larger in earlier decades (e.g.,
9.24 yearsin 1954).

According to Bongaarts and Feeney (2002, 2003), these two quantities, £/'(x,t)
and ¢(x,t), are “tempo-adjusted” mortality functions. However, unlike t*(x,t) and
@ (x,t), (' (xt) and @g(xt) arenctin general associated with the same probability of
survival toagex. Thatis,

@ (at-a) q Jj(l—rc(a,t—a))go*(a,t)da
a=
1-T(t) 1-1,(t) (20)
~ Jjﬁ(a,t)dx—.[jrc(a,t—a)qo*(a,t)da_Z (xt—x)l_rc(x+*t)
) 1-r.() S 1-n()

[ oeoa-];

where T, (x",t) = Imrc(a,t - a)mda by definition. In contrast,

l(Xt=Xx)
x X ,t 1-7 (1))t
exp{—jo,u(a,t)da}=exp{— Olﬂ—(?c(t)) da}:zp(x,t)( L)t (31)

Thus, these two quantities are not the same in general, and for this reason ef(t) and
€ (t) are not egual except under special circumstances. when s.(x,t—x) and
r.(x,t —X) are constant as afunction of age x (for agiven timet).

Furthermore, as noted also by Feeney (2004, 2005), the general form of tempo-
adjusted mortality should involve an appropriate adjustment at each age, not an average
correction applied uniformly across the age range. Although Feeney's notation was
different, he adso proposed an agespecific adjustment factor  of

1+s,(xt-x)=(1-r(xt-x))". Asnoted earlier in the definitions of z*(x,t) and
@ (x,t) used here (see equations 16 and 19), this adjustment to observed cohort
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mortality functions reflects the shift in the cohort distribution of age at death occurring
at that exact age and time, rather than some average value across all ages at timet. For

comparison, note the factor of (1-F(t))™ used in the definition of £/(x,t) and ¢@(x,t).

As shown earlier, € (or CAL) can be computed from either 2 (x,t) or ¢*(xt).
Thus, CAL is exactly equal to the generalized form of tempo-adjusted life expectancy at

birth proposed by Feeney (2004, 2005). In the equations for €, the factor of

1+s,(xt=-x), or (1-r.(xt—x))™, replaces the lost quantum at age x that results from

delay in the timing of mortality from cohort to cohort. The substantive value of this
particular interpretation of CAL is dubious (see later discussion). Nevertheless, if this
concept is useful at all, then it is worth noting that the generalized form of tempo-

adjusted life expectancy at birth equals €, , or CAL, which is different from the original
measure proposed under the same label by Bongaarts and Feeney. In fact, el differs

in genera from both € and €,. As noted earlier, the latter two measures provide
interesting descriptions of population dynamics (in a constant-birth population). Except
in the special case when it equals these other two measures, el seems to have no
substantively interesting interpretation on its own.

4.4 Comparison to period life expectancy at birth, g,

Even in the special case where €, €, and el are equivalent, their value is typically
different from the period life expectancy at birth, e,. The latter measure would equal

the other three only if the age pattern of mortality were constant over time. However, in
the case of a sustained mortality decline, e, tendsto be higher than the other measures.

Let us consider why this difference occurs, focusing in particular on a comparison
between e, and €.
Because e,(t) and €, (t) equal the sum of period and cohort survival probabilities

across the age range at time t (see equations 1 and 22), it is useful to understand the
relationship between ¢, (x,t) and ¢.(x,t-x). As noted earlier, the period survival

probability, ¢, (x,t), isafunction of death rates observed at timet alone. Likewise, the
associated cohort survival probability, ¢ (x,t—X), depends only on death rates along a
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single diagonal lifdine of the Lexis diagram. However, such diagonals pertain to
different time periods even for a single cohort, and to a wide interval of age and time
when we consider the collection of cohorts aive at time t. Thus, an important
difference between g,(t) and €, (t) is that the former is a function of death rates for

timet alone, whereasthe latter depends on all death rates (past and present) experienced
by cohorts dive at timet.
Furthermore, it is possible to show that

(X, t= %) = £, (1) exp {onjoajTy(y,t —a+y)dy da} : (32)

In this equation, the argument to the exponential function is merely the total change in
death rates occurring within the triangle of the Lexis diagram that lies below the
diagond lifeline of the cohort born at time t —x, and to the left of a vertica line at

timet. Thus, in a Situation of sustained mortality decline, the survival probability for a
cohort, ¢ (x,t—x) , would be higher than its corresponding period value, ¢, (xt), by a

factor that depends on the total reduction in mortality risks over this triangular interval
of age and time. This representation leads to a useful interpretation of observed

differences between e, and € .

As noted already, in a situation of sustained mortaity decline, €,(t) tends to be
lower than &(t) , because ¢ (x,t —X) tendsto be lower than 7, (x,t) acrossage, X, for
afixed time, t. Using equation 32, it is possible to convert ¢, (xt) into ¢ (xt-x)
simply by factoring out the gains in period survival probabilities due to historical
reductions in mortality rates. Likewise, €(t) is lower than e, (t) in this Situation

because it also does not take into account these past improvements in mortality. This
analysisillustrates why the concept of “tempo-adjusted” life expectancy has little value.
For a measure of tempo such as g,, an adjustment designed to remove the impact of

“tempo change” aso has the effect of erasing some of the gainsin longevity implied by

historical reductions in age-specific death rates. For this reason, both & and €, are
useful primarily as measures of population dynamics (see earlier discussion).
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5. Trendsin life expectancy at birth by period and cohort
5.1 Speed of changein historical trends

Figures 3A and 3B show actual and smoothed trends in period and cohort life
expectancy at birth, plotted in the usual way (by year of death for period e,, and year of

birth for cohort e,). Then, for comparison with period e,, Figure 3C shows the
smoothed trend in Swedish cohort e, plotted in two ways. by year of birth, and in

relation to the time when the cohort’s mean age at death actually occurs.® Note that the
slope of the cohort trend tends to be greater than the dope of the period trend when
cohort e, is plotted asa function of year of birth, but less when plotted according to the

period in which the cohort mean age at death actually occurs.

Figure 3: Life expectancy at birth in Sweden
A) Periods, actual vs. smoothed trends, 1751-2002
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Note: The observed trend was smoothed using the LOWESS method (Chambers et al., 1983).
Source: Human Mortality Database (2004).

8 Bongaarts (2005) refers to the latter measure as “ lagged cohort life expectancy.” Thetime lag in this case is the cohort life expectancy itself.
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Figure3:  Continued
B) Cohorts, actua vs. smoothed trends, 1751-1911

w |
©0

Age

45

40

—— Observed
— Smoothed

35
|

T T T T
1750 1800 1850 1900
Year (of birth)

Notes: (1) See note for Figure 3A. (2) Data employed here for cohorts born after approx. 1890 are incomplete. Therefore, estimates
of life expectancy at birth for these cohorts rely on recent period data at very high ages (i.e., above age 90).
Source: Human Mortality Database (2004).

C) Periods vs. cohorts, smoothed trends only
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Notes: See notes for Figure 3B.
Source: Human Mortality Database (2004).
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In part, such differences are due to fluctuations over time in historica mortality
trends, which affect the mean lifespan of periods and cohorts in complicated ways.
Such factors are beyond the scope of the present work. However, in addition to the
arbitrary influences of history, there exists an intrinsic difference between period and
cohort trends in e, due to the fundamental mathematical relationship linking the age

and time of death to a decedent’ s time of birth.

5.2 Intrinsic differencein period-cohort trends

As before, let 7=t—x. In words, cohort=period—age. Clearly, when x is fixed,
dr =dt. However, when xischanging, dr =dt —dx. Inthat case,

%:1—%:1—r and %:1+%:1+S. (33)

where r =% and s=-¢ . Therefore,

1-2=(1+%)" or 1-r=(1+s)" . (34)

It also follows that
r=—— and s=— . (39)
S

Thus, r and s represent two different measures of the speed of change over timein
some function of age. The former is a slope with respect to the timing of the event
itself, whereas the latter is with respect to the timing of birth for the cohort that
experiences the event. This relationship is valid for any life course event (not only
death) and was noted previously by Zeng and Land (2002) in the case of fertility.

Figure 4 offers a smple example: a trend in which some measure of tempo
increases by 1 year of age over 5 years of time (thus, r =0.2). However, the same
increase involves only 4 cohorts (thus, s=0.25).
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Figure4:  Simple exampleillustrating intrinsic differencein dope of age trend
from per spective of periods (r =0.2) and cohorts (s=0.25)
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5.3 Period-cohort trendsin thelinear shift model

In order to elucidate the relationship between period and cohort mortality, it is useful to
simulate historical trends using a mode of a shifting distribution of age at death. The
shift model explored here has threeimportant characteristics:
a) Itislinear (i.e, the trend in each percentile of the distribution is linear over
time);
b) It is sustained over a long duration (i.e, the shift extends relatively far into
both the past and the future); and
c) lItis degf)i ned in relation to a baseline mortality distribution associated with time
t=0.

9 Time t=0 ischosen asthe baseline for the model in order to keep the formulas as simple as possible. If one wishes to use someother year,

say t, , asthereference point for the shift, then all formulas shown here could be modified by substituting t' =t -t, in place of t.
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To smplify the exposition, the linear shift model described here is specified in
terms of period mortality at time t =0. It isalso possible to define such a modd asa
function of cohort mortality at time t =0 (i.e.,, based on a cross-section of cohort
mortality distributions at this moment). However, as shown in the Appendix (section
A-2.2), a sustained linear shift model yields identical results for those periods and
cohorts whose lifespans lie fully within the shift whether the model is defined in terms
of period or cohort mortality.’® Therefore, | assume here that the time scale of the shift
isrelatively long (say, 150 years both forward and backward from time t = 0).

As was done earlier for cohorts, let us define percentiles of the period distribution
of age at death (i.e., for the synthetic cohort associated with period t) as follows:

a,(mt)=x suchthat m=d,(x,t)=1-¢,(xt) , (36)

where @ (x,t) = J'Ox @,(a,t)da is the digtribution (or cumulative probability) function

for age at death in period t. Furthermore, assume that the percentile associated with the
samevalueof 71 equalsyattimet =0:

a,(m0)=y suchthat m=®,(y,0)=1-7,(y,0) . 37

The relationship between these two ages, x and y, can be used to specify the form of
historical changesin the age distribution of deaths.

For example, the core assumption of the linear shift model is that the values of x
associated with a given y form a straight line, whose slope may vary as a function of

age:

x=y+r(y)t for -T<t<T , (39)

where r(y) can take on different values as a function of age, y, subject to certain
restrictions (see Appendix, section A-2.3); and T is the duration of the shift both
forward and backward from t =0. In generd, let us assumethat T is sufficiently large
to ensure that all cohortsaliveat t =0 experience the shift for their entire lives.™

10 Note that if the model involves an abrupt change of slopein the percentiles of amortality distribution at some moment close to the present, say
t =0, then there are important differences between these two approaches.

1 As apractical matter, we can assume that all cohort lifespans are finite, and thus that some finite interval, from T to T, can contain the lifespans

of al currently living cohorts. If we allow for theoretically infinite lifespans, T needs to be large enough to assure that avery high proportion of
deaths (say, 1-& ,where £>0 isvery small) for cohortsalive at time t =0 occur during the period of the shift.
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Note that @, (x,t) =1-/¢,(xt) =7 is congtant for all combinations of x and t

along this percentile contour line. Therefore, another way of describing the core
assumption of alinear shift model isthat

D, (x,t) =d(y) or (,(xt)=«y) , (39

where y=x-r(y)t. Thus ®(y) and ¢(y) depict the baseline mortality distribution

and survival probabilities for the linear shift model. They are identica to the
corresponding period mortality functions associated with time t =0 in the modd (i.e.,

@, (y,0) =(y) and £,(y.0) = «y) ).

It is shown in the Appendix (section A-2.1) that in a sustained linear shift model,
period life expectancy at birth during the shift interval (i.e., for -T <t<T) has the
following form:

gt =g+rt , (40)

where &= [ " xg(X)dx; T=[" r()@(x) dx; and ¢x) =2 D) =~£(x) . In the

same model, life expectancy at birth for the cohort born in year 7 isasfollows:

e5(r) =€ + [ xs() @ () dx+57 =[x [1+(x) ¢ () dx +57 , (41)

where & = [”xgr(9ax; 5= s @*() x; s<x>:—1ﬁ(rx()x); ,U*(x):—l_(r)(()x);

*(x) = eﬁjo M(a)da; and ¢*(X) = ¢*(X) 4*(X) . However, note that equation 41 applies

only to those cohorts whose observed (finite) lifespan lies fully within the interval of
the period-based shift (i.e., within =T <t <T).

Thus, period life expectancy at time t =0 serves as the baseline value for the
linear shift model, i.e, €(0)=g,. Let us consider the relationship between this
quantity and cohort life expectancy for two particular cohorts:

a) Thecohort born at that moment,i.e, 7 =0; and
b) The cohort whose average age at death occursat timet =0.
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As indicated by equation 41 above, cohort life expectancy is a function of €, or
CAL, at time t =0. For the cohort born at time 7 =0, this equation smplifies to the
following:

e5(0) = [ x[L+s() ¢ (Y dx=ef + [ xs(x) g () . (42)

However, case b) is more complicated.
Obvioudly the cohort whose average age at death occurs at time t =0 must have

been born at some earlier date, say 7 =-A, where A >0. Setting €(-4)=A1 in
equation 41 and then solving for A yields the following formula:

1 s(x)

N =1=[ g ax= 20 “3)

Therefore, the mean ages at death for these two cohorts differ by a factor of 1+5.
Also, notethat if s(X) iscloseto constant over the age range, then (1+ s(x))/ (1+ §) will

be close to one. In that case, €5(-1) = would have asimilar valueto €. Thus, asa
rough approximation, CAL(0) equals the cohort mean age at death that is attained at
time t =0 by a cohort born CAL(0) years earlier, assuming linear trends over time in
cohort percentiles of age at death.

5.4 Empirical application of thelinear shift model

For empirical applications of the linear shift model, we redefine the origin of the time
axis in each case so that the current year t is treated as time O in the above formulas.

The formulas given above for €;(0) and €;(-A) =A in this model provide motivation

for two additional measures of mean lifespan based on cross-sectional cohort mortality
patternsat timet. Inthefirst case, define

es(t) = [ x [+ s(xt-x) F(xax=e O+ [ xs.(6t-x) F(xt)dx . (44)
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Comparing this formula to equation 42 above, it follows that e*(f (t) equalsthe average

age at death (or life expectancy) for the cohort born at timet, assuming linear trendsin
cross-sectional cohort percentiles of age at death. In other words, if we create a linear
shift model using cohort (not period) mortality patterns observed at timet, the resulting

estimate of €5(t) equals e*; (t).
In the second case, let

LS00 o e e, (1)

“0=], x 1+5.(1) 1+5.(1) )

Like e*; (t) , this quantity is a linear projection of cross-sectional cohort mortality at
time t. If historical changes mimic the linear shift mode exactly, then
g(t) =€e(t—-A)=A (compare equation 43 above). Furthermore, even when actual
conditions differ from assumptions of the this model, €(t) may serve as a useful
approximation of cohort life expectancy for the cohort whose average age at death
occursa time t.

In Figure 5, smoothed trends in Swedish period and cohort life expectancy at birth

are compared to these two sets of predictions, e*:(t) and €(t). These results

demonstrate that the predictions of the linear shift model match reality reasonably well.
Therefore, it seems to be possible to use this model to form plausible statements about
mortality for individual cohorts based on mortality patterns for the collection of cohorts
observed in a cross-section at a moment of time. However, the current purpose of these
calculations is not to obtain estimates or forecasts of cohort life expectancy, but rather
to provide insights into the relationship between period and cohort mortality. Note that

each value of e*; (t) and €)(t) in Figure 5 is based on cohort mortality patterns for a

single year. For thisreason, the period of unusually rapid mortality change around the
middle of the 20" century produces exaggerated trends in both cases (over-estimating
the mean lifespan for cohorts born in those years, and under-estimating it for the
cohorts whose mean age at death occurs in those years).

Furthermore, note that

CAL(t) = & (1) = 1 (€ (t) +€5 (1)) (46)
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since

1 1—rc(x,t—x)+1+sc(x,t—x) ~1 (@7)
2l 1-T.(t) 1+5.(t) ’

at least in the case of a smooth mortality surface (see next paragraph). In the special
case where r.(x,t—x) =r and s.(x,t —x) =s for al x, these relationships are exact, as

the three measure are identicd in this situation. The approximate symmetry of these
three quantities over time (from 1861 until 2003, for the national population of Sweden)

can be seen in Figure 6, which also shows empirica trendsin e, and €5 (for 6A), or
e, and e5 (for 6B).

Figure5: Life expectancy at birth by period and cohort, plus estimates of
cohort e, assuming linear trendsin cross-sectional cohort percentiles

of age at death, Sweden, 1751-2003
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Figure6: Period life expectancy plus four measures of mean age at death based
on cross-sectional cohort mortality, Sweden, 1861-2003
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It isimportant to note that al estimates for the measures shown in Figures 5 and 6
were derived from smoothed surfaces of period and/or cohort survival probabilities (for
single years of age and time). Although other smoothing techniques could have been
used, the strategy empl oyed here was to smooth the two empirical surfaces, 7, (x,t) and

(. (x,t—x), over time for each age group separately using the LOWESS procedure

(Chambers et al., 1983), and then to compute al other quantities from the pair of
smoothed survival surfaces. Although other techniques could be explored as well, afull
treatment of thistopic is beyond the scope of the present work.

For most of the measures used in this paper, including e,, € €, and €5, the
smoothing procedure merely removes short-term fluctuations in trends. However, for

U

e and e*o* , the results shown here would be fundamentally different (and clearly less
plausible) if calculations were based on unsmoothed data. As noted before, these two
measures give projected values of cohort life expectancy based on alinear shift model.
Such cal culations appear to be adversely affected by observed values of s.(x,t—X) less
than —1, which seem to arise only when using unsmoothed data. In such cases, the
@ (xt) and p*(xt) functions take on negative values, and a the same time the
approximations of equations 46 and 47 become unreliable. A comparison of estimates
to empirical patterns shows clearly that the results based on smoothed data are superior.
(Results shown here are based on smoothed data only; results based on unsmoothed
data are available from the author on request.) Furthermore, there are clear theoretical
motivations for using only smooth age patterns of mortality change (as depicted in age-
specific percentile dopes) in empirical applications of the linear shift mode (see
Appendix, section A-2.3).

6. Comparison of sx measures of mean lifespan

Table 1 compares the Sx measures of mean lifespan explored in this paper. Among
these six measures, only life expectancy at birth, e,, can be computed solely as a

function of death rates at timet. All of the other measures depend on cohort survival
probabilities at timet, ¢_(x,t—x), which reflect mortality conditions from the past as

well asthe present.

In addition to life expectancy at hirth, the table also containstwo measures, € and
€, that are based on a model of population dynamics in which the inflow of birthsis
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Table 1: Summary of Six Measures of Mean Lifespan for Period t

Name Notation Equivalent forms Short Description
Life expectancy €o(t) J“” 0 (xt) dx Mean age at death in a synthetic
at birth cohort exposed throughout life to
_re the age-specific death rates of
_J.D X(/'p(x't) dx time t
=7 *u(atydal d
=] expi- [ @t da; dx
Cross-sectional eg(t) J“” (Xt - x)dx Relative size of a population at
time t assuming a constant

average length

of life (CAL) > d inflow of births; also, the
_J.o X (x ) dx generalized form of tempo-
e x adjusted €,
= J.o @(p{ ID 1 (at) da} dx
Mean age at €(t) J‘°° X (%t - X) dx Mean age at death in a
death (MAD) population at time t assuming a
J‘D‘” @ (%t -X) dx constant inflow of births
= j: X¢@(xt)dx
o 1-r.(Xt=X
=I x#(p*(x,t) dx
° 1-r5(t)
” . " BF, w
‘Tempo-adjusted eo () J‘ exp —J.X,U'(a,t) dal dx Tempo-adjusted €, assuming a
life expectancy . . .
at birth parallel shift at time t in cohort
J- J-x H(a, t) dx distributions of age at death
0 1-r,
Expected cohort e (t) J“” x(1+ se(x.t- x))(p* (x,t)dx Mean age at death fc_)r coh_on
life expectancy 0 born at time t assuming a linear
at birth = (1+ §C (1))98 () Zl_wift_zve_r timefiz col;]or;)
w istributions of deaths by age
=e5(O)+ [ xs(xt-X) ¢ (x 1) dx (see note 2)
Achieved cohort e (t) J-w 1+5.(xt=X%) @ (x,t)dx Mean age at death, A , for
. o X TTa= s
!fleb?:sectancy 1+5(t) cohort born at time t —A
e D(t) assuming a linear shift in cohort
1+ S 0 distributions of deaths by age

(see note 2)

axt-% Hxt) _axt-x _ H(XY)
1-r(xt=-x) " P = 1-ry(x,t-x) A= 1-T,(t) P H O 1-T@)

Notes: (1) By definition: ¢ (X,t) =
5() = J'D S (X t=xX) gF(x,t) dx; and T(t) = J'D ro(x,t=x) @ (xt) dx .
(2) For e**D and (% , the speed of the assumed linear shift is derived from observed age-specific changes in cohort distributions of

deaths by age at time t, after smoothing the cohort survival surface to remove short-term fluctuations in trends (see end of
Section 5.4).
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assumed to be constant over time. These two quantities, aswell as €5, are functions

of shiftsat timet in cohort distributions of age at death. Both € and €, can be used to
describe the characteristics at time t of a (hypothetical) constant-birth population.
Unlike the other two measures, e , appearsto have no clear and useful interpretation
of its own, except in a special case where all three measures would be equal.

Empiricaly, ef” tendsto lie somewhere between € and €.
Table 1 also includes two measures, e*o* and €, that are derived from a linear

shift model of mortality change. Both e*o* and € are projected values of the cohort

mean age a death based on trends in cohort mortality functions that are observed at
time t. The projections shown here are based on smoothed estimates of the shift in
cohort mortality at time t. Thus, athough they are insenstive to rapid, year-to-year
fluctuations in mortality, they seem to follow temporal variations in mortality over
longer durations (decades, etc.). These measures might be more useful as actual
projections of cohort mortality if they were based on observed changes averaged over
relatively longer time periods.

7. Conclusion

In this study, we have compared life expectancy at birth to five other measures of mean
lifespan for a given time period, t. Life expectancy, €,, is unique among these

measures for the fact that it is solely a function of death rates observed at timet among
surviving cohorts. For this reason, it is a pure period measure of mean lifespan. The
other five measures do not share this characteristic, asthey belong to the class of cross-
sectional cohort measures, which depend not only on cohort death rates at time t, but
also on cohort survival probabilities observed at that moment. Since cohort survival
probabilities are a function of death rates from periods before time t as well, these
measures form a fundamentally different class compared to pure period measures such
as life expectancy at birth.

The concept of “tempo-adjusted” life expectancy forms a special case of the cross-
sectional cohort measures. Despite recent interest in thistopic, the interpretive value of
such a measure is not at al clear. In its generalized form, tempo-adjusted life

expectancy at birth is equivalent to a measure known as CAL, or & (Brouard, 1986;
Guillot, 2003). In a specia case, it also equals ef’ (Bongaarts and Feeney, 2002,
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2003), as well as two other measures studied here, €, and €. However, “tempo
adjustment” in the case of e, appears to be synonymous with “removal of past changes

in mortality rates.” Survival probabilities computed from tempo-adjusted death rates
(applying the general form of the concept) are equivalent to cross-sectional cohort
survival probabilities. By substituting cohort for period survival probabilities in the
calculation of life expectancy at birth, tempo-adjusted g, does not take into account all

of the changes in mortality risks that have taken place during the lifetimes of living
cohorts.
Because it lacks a useful genera interpretation, the Bongaarts-Feeney measure

(egf ) is the leat interesting of the cross-sectional cohort measures considered here.

Although it may sometimes be approximately equal to three of the other measures (€,

7

€, and €)), the latter quantities are no more difficult to calculate and correspond

directly to the underlying theoretical constructs. Of the other four measures from the
same class, two describe population dynamics at time t based on a model of constant

births (& and €,). The other two are projected estimates of the mean age at death (or

life expectancy at birth) for two particular cohorts (e*o* and € ); they can be derived

using a linear shift model of mortality change (in which the percentiles of cohort
distributions of age a death follow linear trends over time).

Analysis of empirica trends as well as the linear shift model has led to a pair of
key insights concerning the relationship between period and cohort mortality. The first
is that trends in period life expectancy at birth misrepresent the lived experience of
cohorts in terms of the speed of change in the average length of life. In a situation of
sustained mortality decline, for example, the rise in life expectancy over time tends to
be dightly faster from cohort to cohort than from period to period. The second is that
period life expectancy at birth for timet tendsto lie between the mean ages at death for
two special cohorts: the cohort born at time t, and the cohort whose mean age at death

is attained at time t (two of the measures investigated here, e*o* and €, are projected
estimates of these two quantities).
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Appendix
A-1. Percentile slopes of cohort distributions of age at death

Recall from the main text that percentiles of the distribution of age at death for the
cohort born at time r are defined as follows:

a.(mr)=x suchthat m=® (x,7)=1-7(x71) , 9)

where @ (x,7) = J'Oxgac(a, r)da isthe distribution (or cumulative probability) function

for age at death in the given cohort. Also recall the following definition for the pace of
change (from cohort to cohort) in the percentile of this distribution that occurs at age x:

s(x1)=&a,(m1) (10)

where 71=®_(x,7) is fixed. | show here that this cohort percentile slope has the

following equivalent forms:

—ar P(X7) _ G le(X7) _ &Il (x7) _ —§ H(x7)
@(x1) a(x1)  p(x1) H(X,T)

s(x7)= (11)

For simplicity, let us consider a single age x for the cohort born at time 7, and let
s=s.(x 7). Asnoted by Bongaarts and Feeney (2002), in order for sto equal the slope

of the percentile associated with age x for the given cohort, it must satisfy the following
equation:
%¢c(x+sa,r+a)|a:0=0 . (48)

That is, achange of s unitsin x accompanied by a unit changein 7 is associated with no
change whatsoever in the cumulative probability of death, z, in the immediate vicinity
of xandz. Let y=x+sa and u=r+a. Itfollowsthat:

GO (x+sar+a)=g P (Y,U) E+ &P (YU E=@(y,u)s+g D (v.U) (49)
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Setting a =0 and eguating the result to zero gives us the following expression:
@a(x1)s+Ld(x,7)=0 . (50)

Solving for s yields the first relationship in equation 11. The other three forms of s
follow directly from the following elementary relationships. (a) ¢.(x,7) =-®_(x,7);

(b) In¢,(x.7) ==H (x7) s and (¢) @ (x7) = £, (X 7)1, (%)

A-2. Fundamental propertiesof thelinear shift model

Equations 40 and 41 describe the trend in period and cohort life expectancy at birth in
the case of a linear shift model (subject to the conditions stated at the beginning of
section 5.3). In this section of the appendix, | derive these two equations and
demonstrate that equivalent results are obtained whether alinear shift model is specified
in terms of period or cohort mortaity. | aso discuss some necessary restriction on the
possible values for percentile slopes within alinear shift modd.

A-2.1 Period and cohort life expectancy at birth
As stated in the main text, a linear shift model can be specified by assuming that each
percentile of the period distribution of age at death (i.e., within successive period life
tables for the model population) is constant adong a line defined by the following
equation:

x=y+r(y)t for -T<t<T , (39)

where r(y) can take on different values as a function of age, y, subject to certain
restrictions (see section A-2.3); and T is the duration of the shift both forward and
backward from t =0. Note that % =r(y) for al combinations of x and t along this

line. In other words,
O, (1) =®(y) or (,(xt)=0(y) , (39

where y = x~r(y)t. Notethat & =1/(L+r'(y)t), where r'(y) =<1 (y).
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Thus, ®(y) and ¢(y) depict the baseline mortality distribution and survival

probahilities for the linear shift model. They are identical to the corresponding period
mortality functions associated with time t=0 for the model population (i.e,

®,(y,0) =®(y) and ¢,(y,0) =¢(y)). Differentiating @ (x,t) with respect to age, we
obtain the period distribution of deaths by age:

A0 = 50,00 = O E = A0 5y

Then, using the change of variable from x to y given above, we may calculate period
life expectancy at birth asfollows:

(1) = [ xp(xt

=, (y+rtay)dy 2
= [ yaydy+t[ " r(y)y)dy
=g+ rt ,
where &, = [ yg(y)dy and 7 = [ r(y) ely) dy .
Furthermore, the death rate at age x and timet is given by:
't
) = () = D - _HO) (53)

£,(xt) 1+ (yt

where p(y) = @y)/¢(y) ==& ¢(y)/((y) is the death rate a age y implied by the

baseline mortality distribution. For the cohort born at time 7, the death rate at age x is
asfollows:

H(2)

@@ &9

(X T) = p(X T +X) =

where z=x-r(z)(r+x). Note that % =(1-r(2))/l+r'(2)(r+X)). Also note that
X=2z2+5(2)(1 +2), where s(2) = r(z)/(l— r(z)) .
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Now, using the change of variable from x to z given above, we can compute the
cumulative death rate for the cohort born at time 7 asfollows:

Hc(a,r)=I:yc(x,r)dx=I:%dx=ﬁu*(z)dz=H*(b) , (55)

where b=a-r(b)(r +a); and *(2) = u(2)/(1-r(z)). Based on this formula, it is
simpleto compute the probability of survival to age x for the cohort born at time 7 :

e—j:;f(a) da

l (1) =N =@ = =(*(2) . (56)

Therefore, the cohort digtribution of deaths by ageis asfollows:

_ _ r@u@)  _[L-r@)e@)
ROGT) = Lo(X D) He(xT) = 141D +x)  1+1r' (D (T +X)

(57)

where ¢*(2) = (*(2) #*(z) . Then, using the same change of variable from x to z, we
can calculate cohort life expectancy at birth as follows:

e5(1) = [ xg(x 1) dx

= I:(z+s(z)(r+ 2))d" (2)dz

=j:’z¢f(z)dz+ rj:s(z)ﬁ*(z)dz+jo°°zs(z)¢f(z)dz
e +§r+j:zs(z)¢f(z)dz :

(58)

where € = I: z¢ (z)dz and s = I: s(2) ¢ (2)dz.

A-2.2 Equivalence of period- and cohort-based models
The linear shift model described in the main text and in the previous sub-section is

specified in terms of period mortality. In other words, mortality change for the model
population is described as a shift in the distribution of age at death in a series of period
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life tables. Thus, by design the period percentile slope at age x in year t, r (xt),
equals r(y), where y=x-r(y)t. We can confirm thisreationship by differentiating
the period survival probability, ¢, (x,t) , with respect to timet:

Ay)
1+r'(y)t

w5l = r(y) =g (x0r(y) . (59)

since £-¢(y) = -e(y) and & = ~r(y)/({L+r'(y)t). Then, by the same logic used earlier
to compute cohort percentile slopes (see section A-1 above), it follows that:

r(xt)—M rey) . (60)

?(x1)

Note that thisresult merely reflects the core assumption of the model.

On the other hand, values of cohort percentile slopes in this model are a
consequence of the assumptions and must be derived. As before, the change of variable
used for computing cohort mortality is defined by the equation, z=x-r(2)(7 +X) .

Differentiating the cohort survival probability, ¢_.(x,t), with respect to time 7, we
obtain:

N 4 s LT@)F@ (@)
ar Lo ) = (2 1+ (r+x)1-r(2)

=a(x0)s(2) (61)

since L 0*(2) =-¢*(2) and & =-r(2)/(1+1'(2)(r+x)). It follows that:

_arbe(XT) _
s(x7)= a(.1) =s(2) . (62)

Thus, a key property of the linear shift model is the close relationship between the
period and cohort percentile slopes:

ALVE oty =20 (63)

0= P 1+s,(07)
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Turning the derivation around, we begin by specifying that the percentiles of
successive cohort distributions of age a death are congtant along aline defined by

x=z+s(2)(t +2z) for -T<t<T . (64)

Note that & = 5(z) for all combinations of x and 7 along thisline. In other words, the
linear shift model isnow based on the core assumption that

. (X,T)=D*(2) or ( (xT)=("(2) , (65)
where z=x-5(2)(r+2) . Since r =-x attimet =0, thisassumption implies that
®(2-2)=D*(2) or ((z~2)=(*(2) . (66)

Therefore, the functions, ®*(z) and ¢*(z), again depict the cross-sectional cohort
mortality distribution at time t =0 for the model population. From equation 64 we
obtain & =1/(1+s(2) +s(2)(r+2)).

Note that both the change of variable implied by equation 64, and the derivative of
z with respect to x that follows from this equation, are equivalent to the forms given
earlier as part of the original derivation of the linear shift model. To demonstrate the
equivalence of the change of variable itself, add 7 to both sdes of equation 61 and

rearrange the equation to obtain 7+ x = (1+5(2))(r +2) . Since 1+s(2) = (1-r(2))™, it
follows that 7+2z=(1-r(2))(r+x), and thus z=x-r(z)(r +X). Equivalence of the
two forms of the derivative, %, follows from the additional observation that

dx !

s'(z)/(1+ s(z)) = r'(z)/(l— r(z)). In summary:
Z2=xX-8(2)(1+2)=x-r(2)(r+x) , (67)
and

& 1 . 1-r(2
* T 1+5(2)+S(D)(r+2) 1+r'D(r+x)

(68)
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Differentiating ®_(x,7) with respect to age, the cohort distribution of deaths by age is
asfollows:

_ 7@

z 1+s(2)+s(2)(r+2)

(X 1) = 5P (x 1) =5 P*(2) (69)

Dividing through by ¢.(x,7) = ¢*(2) , we obtain the death rate at age x for the cohort
born at time 7 :

_ 1 (2) _-r@)w@
He6T) =17 S(2+3(2)(r+2) 1+r'@(r+x) (70)
Finally, the death rate at age x and timet isas follows:
_ _ = M)
H(Xt) = (1 (X 1) = (Xt =X) Tyt (71)

where y = x=r(y)t and 4(y) = [L-1(y))&*(y).

Therefore, the surface of death rates over age and time, u(x,t), hasthe same form,
and thus the relationship between all period and cohort mortality functions is the same,
whether a linear shift model is specified in terms of period or cohort mortdity.
However, as noted in the main text, this egquivalence pertains only to periods and
cohorts whose entire life experience takes place within the shift. In other words,
discontinuities at the start and end of the shift have different forms for period-based and
cohort-based models. Since the purpose of this analysis is to understand the
relationship between period and cohort mortality under conditions of a sustained change
over time, such patterns are not considered here.

A-2.3 Redtrictions on values of percentile sopes

Although the percentile slopes of the linear shift model, r(y) and s(y), typically take

on rather small values (often in arange between —1 and +1), there do not appear to be
strict upper or lower limits on ther possible values except at age zero (see below).
However, agenera restriction is necessary concerning the rate of changein either r(y)

or s(y) asafunction of age. The discussion hereis preliminary and does not consider

http://www.demographi c-research.org 277



Wilmoth: On the relationship between period and cohort mortality

all possible cases. In particular, it considers only the necessary restrictionson r(y) or
s(y) individualy, without attempting to resolve the problem of how these two sets of
restrictions are interrelated. Thus, the discussion is developed here in terms of r(y)
alone, without considering the case of s(y) except to note that it should be subject

simultaneously to a similar set of restrictions.

The firg issueis how to avoid a cross-over of percentile trends over the course of
the linear shift. Suppose that a and b are two ages such that 0<sa<b <o . Consider
the trendsin the (period) percentiles associated with these two ages at time 0. To avoid
across-over in these two percentile trends, the following equation must be true for all t
intherangeof (-T,T):

atr(@t<b+r()t . (72)

The following condition is both necessary and sufficient to ensure that the relationship
in equation 72 remains true throughout the shift period:

|r'(y)|s?1 for 0sy<oo . (73)
To show that equation 73 is necessary, start by rearranging equation 72 as follows:
~t[r()-r(a)<b-a . (74)

Dividing both sides of equation 74 by -t and b-a, and considering separately the
two cases when t is positive and negétive, yields the following:

r(b)-r(a)
b-a

< for =T <t <T (exceptt=0) . (75)

1
t

Since equation 75 must hold true throughout the shift period, it follows that

r(b)—r(a)

1
<= . 76
b—a (76)

T

And since equation 76 must be true for all values of a and b, including the case where
these two ages are arbitrarily close together, equation 73 is anecessary condition.
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To show that equation 73 is sufficient, begin by noting the following relationship:

b b bl b-a
rb)y-r(@=| r'(yydys| |r'(y)|dys| =dy=—— . 77
(b)-r(@) = [ ray<[ |r(dy= [ Zdy== (77)
The second inequality in this equation isimplied by equation 73. Similarly,
(0 -r(a) = [Ty dyz -] |rmdy 2 [ Ey = -22 (78)
a a aT T

Equations 77 and 78 together imply equation 76, which ensures the original restriction
on r(y) asexpressed in equation 72.

Thus, an important restriction on the possible values of percentile slopesin alinear
shift model is that they should not change too quickly as a function of age. This
conclusion appears closely related to the empirica observation that projected values of
life expectancy based on the linear shift model are more plausible when percentile
slopes are computed from smoothed mortality surfaces (see end of section 5.4).

Another important restriction concerns the value of the percentile dope at age 0.
In order to avoid negative ages at death for a shift from time—T to T, it is necessary to
require that

r)=0 . (79)

However, two alternative approaches are also worth considering. First, for a shift from
timeOto T, aweaker restriction is sufficient:

r(0)=0 . (80)
Or second, keeping the longer shift interval, (-T,T), define an age, a,, such that

mortality rates equal zero below that age at time t = 0. To avoid negative ages at death
in this situation requires the following restriction:

&
|r(ay)| = = (81)
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Although negative ages at death should be treated as strictly impossible, a
complete absence of mortality within some age range might be considered possible
though highly unlikely. A useful special case is the parallel linear shift model, in
which r(y) =r is constant over the full age range. This model has been applied by
Bongaarts and Feeney (2002, 2003), who assume that mortality is zero below age 30 at
the start of aparalle linear shift. Given the very low levels of mortality at younger ages
observed in many modern populations, the inexactness of such an assumption may be
outweighed in many situations by the advantages of working with a smpler model.
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