
Demographic Research   a free, expedited, online journal 
of peer-reviewed research and commentary  
in the population sciences published by the  
Max Planck Institute for Demographic Research 
Konrad-Zuse Str. 1, D-18057 Rostock · GERMANY 
www.demographic-research.org 

 
 

 
 
 

DEMOGRAPHIC RESEARCH  
VOLUME 12, ARTICLE 3, PAGES 51-76 
PUBLISHED 10 MARCH 2005 
www.demographic-research.org/Volumes/Vol12/3 
DOI:  10.4054/DemRes.2005.12.3 
 
Research Article 
 

 
 

Intrinsically dynamic population models 
 

 
Robert Schoen 

 
© 2005 Max-Planck-Gesellschaft. 

 



Table of Contents 

1 Introduction 52 
   
2 The two age group Intrinsically Dynamic Model 53 
2.1 Analyzing Leslie Matrices 53 
2.2 The Constant Subordinate Eigenstructure approach 55 
   
3 The three age group IDM 59 
   
4 The n age group IDM 63 
   
5 IDM dynamics 64 
5.1 The IDM birth trajectory 64 
5.2 Observed populations as IDM populations 65 
5.3 Transitions between stable population regimes 67 
5.4 Momentum following a gradual or irregular decline 

to zero growth 
69 

   
6 Summary and conclusions 71 
   
 References 72 
   
 Appendix 75 

 



Demographic Research–Volume 12, Article 3
a research article

Intrinsically dynamic population models
Robert Schoen 1

Abstract

Intrinsically dynamic models (IDMs) depict populations whose cumulative growth rate
over a number of intervals is equal to the product of the long term growth rates (that is the
dominant roots or dominant eigenvalues) associated with each of those intervals. Here the
focus is on the birth trajectory produced by a sequence of population projection (Leslie)
matrices. The elements of a Leslie matrix are represented as straightforward functions of
the roots of the matrix, and new relationships are presented linking the roots of a matrix to
its Net Reproduction Rate and stable mean age of childbearing. Incorporating mortality
changes in the rates of reproduction yields IDMs when the subordinate roots are held
constant over time. In IDMs, the birth trajectory generated by any specified sequence of
Leslie matrices can be found analytically.

In the Leslie model with 15 year age groups, the constant subordinate root assump-
tion leads to reasonable changes in the age pattern of fertility, and equations (27) and (30)
provide the population size and structure that result from changing levels of net reproduc-
tion. IDMs generalize the fixed rate stable model. They can characterize any observed
population, and can provide new insights into dynamic demographic behavior, including
the momentum associated with gradual or irregular paths to zero growth.

1Department of Sociology, Pennsylvania State University, 211 Oswald Tower, University Park PA 16802
USA. Tel. 814-865-8869. E-mail: schoen@pop.psu.edu
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1. Introduction

For nearly a century, Lotka’s stable population has been the central model of mathematical
demography. In a stable population, time invariant age-specific rates of birth and death
produce an exponentially increasing sequence of births and an unchanging age structure
(cf. Lotka 1939; Keyfitz 1968). In the 1940s, the discrete form of Lotka’s continuous
model was investigated, and the power of matrix theory brought to bear (Leslie 1945;
Pollard 1973). Since the 1970s, the model has been extended to the multistate case, where
more than one living state and the movements between them are recognized (Land and
Rogers 1982; Rogers 1975; Schoen 1988). Yet the stable approach demands fixed vital
rates. In a rapidly changing world characterized by numerous short term fluctuations and
uncertain long term trends, a fixed rate assumption is unrealistic and often untenable.

To move beyond stable population constraints, demographers have sought to develop
dynamic models, i.e. models with changing vital rates. In a pioneering work, Coale
(1972) investigated patterns of dynamic rates and found approximate relationships be-
tween changing rates and the birth sequences they produced; closed form expressions
eluded him. Lee (1974) considered dynamics in populations subject to external con-
straints. Preston and Coale (1982), building on Bennett and Horiuchi (1981), found closed
form relationships that characterized any population, though they did not explicitly incor-
porate dynamics. Kim (1987) analyzed discrete dynamic models and found a general
algebraic solution connecting changing rates and their birth sequences. However, in most
instances, her solution was too complex to render in closed form. Cyclically stable pop-
ulations, which arise when a fixed sequence of rates repeat indefinitely, have also been
examined (Tuljapurkar 1990; Caswell 2001). An explicit solution can be found for a se-
quence of two rate schedules in a population with two reproductive age groups (Schoen
and Kim 1994a), but most cyclical populations are far too complex for direct algebraic
solution.

Recent work on “hyperstable” models has related given birth trajectories to a consis-
tent underlying set of vital rates (Schoen and Kim 1994b; Kim and Schoen 1996) or to
a sequence of fertility levels (Schoen and Kim 1997). Schoen and Jonsson (2003) pre-
sented a modified form of Quadratic Hyperstable (QH) model that related monotonically
increasing (or decreasing) fertility rates to an exponentiated quadratic birth sequence. The
QH model provides closed form relationships that generalize the stable model, but the QH
model is limited to one specific type of monotonic change in fertility.

The present paper extends work on dynamic modeling by introducing a new approach
to modeling discrete vital rates that can relate virtually any pattern of fertility change to
its resultant birth sequence. We first examine the model when there are only 2 or 3 re-
productive age groups, then describe the generaln age group model, and finally explore
model dynamics and relationships, providing numerical illustrations.
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2. The two age group Intrinsically Dynamic Model

2.1 Analyzing Leslie Matrices

To lay the foundation for the approach presented here, we begin with a brief review of the
structure of population projection matrices (PPMs). A more complete treatment can be
found in Caswell (2001) and the references cited there.

Consider a 2 age group population projection (Leslie) matrix that projects the begin-
ning of the interval population to the end of the interval, i.e.

A =
(
a b
1 0

)
. (1)

The first row elements, a and b, indicate the contribution of the first and second age
groups, respectively, at the beginning of the interval to the number of persons in the first
age group at the beginning of the next interval. The first element of the second row,1,
indicates that all persons in the first age group at the beginning of the interval survive to
be in the second age group at the beginning of the next interval. Our focus here is on the
birth trajectory, rather than on the age structure, and the form ofA generates successive
numbers of births. In effect, we assume that mortality is incorporated in the “fertility”
rates in the first row ofA, and by combining mortality with fertility we simplify the
structure of the Leslie matrices.

Now let the initial population be described by the vector

x0 =
(
x10

x20

)
(2)

wherexjt denotes the number of persons in thejth age group at timet. We then have the
projection relationship

x1 = Ax0 (3)

where the elements ofx1 are the “births” (i.e. numbers in the first age group) at times 1
and 0.

Any matrix can be expressed in terms of its eigenvalues and eigenvectors (Caswell
2001). Doing so provides a mathematical decomposition of the matrix, but one with
substantive interpretations in demographic usage. Accordingly, we can write

A = UΛV . (4)

In equation (4),Λ is a2 × 2 diagonal matrix of eigenvalues whose diagonal elements
areλ1 andλ2. Those eigenvalues (or roots, or characteristic values) describe the growth
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rates of the two ”components” implicit in matrixA. Eigenvalueλ1, the dominant root,
describes the rate of growth of the dominant (stable) component, and must be greater
thanλ2, the growth rate of the subordinate component (cf. Keyfitz 1968). In terms of
Lotka’s intrinsic rate of natural increase,r, we have the relationshipλ1 = emr, where
m is the number of years in the projection interval. (In the 2 age group case,m = 25.)
The eigenvalues are defined by the characteristic equation|A − λI| = 0, whereI is the
identity matrix (here of order 2) and the vertical lines denote the determinant. With the
characteristic equation ofA given by

−λ(a− λ) − b = 0 (5)

we have the eigenvalues

λ =
1
2

(
a± (a2 + 4b)

1
2

)
(6)

where the dominant eigenvalue is provided by the positive root in equation (6).
Matrix U is the matrix of right eigenvectors, and by convention is written in the form

U =
(

1 1
u1 u2

)
. (7)

In Leslie matrices, the right eigenvectors describe the age composition of the compo-
nents. Specifically,u1 is the number of persons in the second age group relative to a unit
number in the first age group in the stable population that arises from the persistence of
PPMA. All of the elements of the first (dominant component) right eigenvector must be
real and non-negative, and it is the only right eigenvector with those properties. In the
2 × 2 Leslie matrix,u2, which reflects the age structure of the subordinate component,
is real but always negative. Given the form ofA in equation (1), we can write (Caswell
2001)

u1 = λ−1
1 ;u2 = λ−1

2 ; (8)

whereλ2 < 0.
Matrix V = U−1 is the matrix of left eigenvectors. Substantively, they reflect the

present value of future births in each component ofA, where those births are discounted
over time by the eigenvalue of that component. The first row ofV relates to the first
(dominant, or stable population) component. Elements in the first column give repro-
ductive values for the first age group and those in the second column for the second age
group. Given equation (1), we have

V =
(

1 −λ2
−λ2
λ1

λ2

){
λ1

(λ1 − λ2)

}
. (9)
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The mean age of childbearing implied by matrixA,µA, is given by
(

a
λ1

)
+
(

2b
λ2

1

)
. In

terms of roots,µA = (λ1−λ2)
λ1

, the reciprocal of the scalar expression in curly brackets on
the right of equation (9).

Convergence to stability occurs asA is raised to higher powers (i.e. as the initial pop-
ulation is projected further into the future). The matrixAp, the product ofA multiplied
by itselfp times, can be seen as equal toUΛpV . Becauseλ2 < λ1, λ

p
2 becomes insignif-

icant in comparison withλp
1 as p becomes large. After a sufficiently long period, sayP

intervals,λP
2 can be considered zero,AP and becomes a “rank one” matrix, i.e. becomes

equal toλP
1 times the product of the first column ofU and the first row ofV (Caswell

2001; for a thorough discussion of the process of convergence, see Keyfitz 1968.)

2.2 The Constant Subordinate Eigenstructure approach

To specify an analytically useful dynamic model, we need to find an algebraic expression
for the product of a sequence of Leslie matrices when those matrices are changing over
time. That is a difficult problem because matrix multiplication is generally not commuta-
tive. As a result, the desired product generally cannot be written in closed form, but only
as a product integral which must be evaluated numerically (cf. Gantmacher 1959).

To obtain a special case where the product of PPMs is analytically tractable, we seek
an appropriate simplifying assumption. An appealing possibility is to have the growth rate
over a number of intervals equal the product of the growth rates of each of those intervals.
That greatly simplifies the specification of the birth sequence in terms of the fertility rates
of each interval, the crucial relationship we seek to determine. Tuljapurkar (1990: 83-
85) noted that when Leslie matrices shared a common set of reproductive values, overall
growth equaled the product of theλ1’s of the individual matrices. Schoen (2003) ex-
amined multistate models with uniform natural increase across model states, and found
population projection matrices that had both that multiplicative property in the growth
rates and constant relative reproductive values. In Leslie matrices with no mortality, like
those of equation (1), equation (8) shows that an eigenvalue constant over time has an
eigenvector that is constant over time. Accordingly, let us consider Leslie matrices where
only thedominant eigenvalue varies over time, while the subordinate eigenvalue(s) re-
main constant. A sequence of such Leslie matrices should have the desired multiplicative
property in the growth rates.

To begin, we make use of the algebraic relationship that exists between the roots
and coefficients of a quadratic equation (Birkoff and MacLane 1959). Specifically, from
equation (5), the quadratic characteristic equation [λ2 − aλ− b = 0], hasa as the sum of
the two roots and−b as the product of the two roots. Our standard but time varying PPM
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can thus be written as

At =
(
λ1t + λ2 −λ1tλ2

1 0

)
(10)

where the time (t) subscript has been added to dominant rootλ1. Using equation (6), it
can readily be verified thatat = λ1t + λ2, bt = −λ1tλ2 andλ1t andλ2 are the eigen-
values ofAt. Subordinate roots are not commonly encountered in demographic work,
though the ratioλ2

λ1
is related to the rate of convergence to stability (Kim and Schoen

1993). However, equation (10) shows that the elements of our base Leslie matrix can be
expressed as simple, symmetric functions of the dominant and subordinate roots. While
that relationship is not new, its implications for demographic analysis have not been ap-
preciated.

Now consider the productM0,2 = A2A1. In terms of its own eigenstructure, the
product matrixM0,2 can be written in the form of equation (4) as

M0,2 = UM2ΛM2VM2 (11)

and we find that

UM2 =

(
1 1

λ11+λ2
λ11(λ12+λ2)

1
λ2

)
(12)

ΛM2 =

(
λ12λ11 0

0 λ2
2

)
(13)

and

VM2 =

(
1 −λ2

−λ2(λ11+λ2)
λ11(λ12+λ2)

λ2

){
λ11(λ12 + λ2)
λ12λ11 − λ2

2)

}
. (14)

Paralleling equation (9), we denote the scalar factor on the right side of equation (14) as
1/µM2.

Because of the constant subordinate eigenvector restriction, that product has three
important properties (Gantmacher 1959). First, the desired multiplicative property holds:
the eigenvalues ofM0,2 are equal to the products of the eigenvalues ofA1 andA2. Thus
the sequence of PPMsA2A1 can be termed “intrinsically dynamic” in the sense that their
product matrix (M ) grows at a rate that is equal to the product of theirindividual growth
rates.

Second, the subordinate right eigenvector of all three matrices is identical. That fol-
lows from the assumption that the subordinate vector, and hence the subordinate root, is
constant over time.
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Third, the relative sizes of the first row elements of the left eigenvector matrices of
all three PPMs are equal. However, the scalar factor associated withVM2 (that can be
interpreted as reflecting the reciprocal of the mean age at childbearing) does vary over
time.

The dominant right eigenvector ofM is not constant, allowing the age composition
of the dynamic model to change over time. To determine how it changes in the long term,
consider the situation at timeP , when only the dominant component of the dynamic
population remains. The form of equations (11)-(14) indicates that the rank one product
matrix,M0,P , can be written in terms of its dominant root, its dominant right (column)
eigenvector, and its dominant left (row) eigenvector as

M0,P =
P∏

j=1

λ1j

( 1
µMP

1
λ1P µM,P−1

)
(1 − λ2) . (15)

Equation (15) incorporates the scalar mean age at childbearing into the column vector,
leaving the row vector constant. Let element (i, j) be the element in theith row andjth
column of a matrix. At timeP , the (1,1) element ofM is the product of theP dominant
eigenvalues times the factor1/µMP . The (2,1) element of M at timeP is the (1,1) element
of M at timeP−1, i.e. the product of the first(P−1) λ1’s times1/µM,P−1. Accordingly,
the ratio of the second age group to the first at timeP (that is the (2,1) element ofUMP )
is given by

µMP

(λ1P µM,P−1)
.

Equation (15) gives the size and structure of the long term “intrinsically dynamic
model” (IDM) in terms of known PPM roots and the still to be determined mean age
functionµMt. To findµMt, note that the form of the column vector in equation (15) and
the known constant subordinate eigenvector allow us to write

UMt =

(
1 1

µMt

λ1tµM,t−1

1
λ2

)
. (16)

Because, at all times,V = U−1, equation (16) can be used to findVMt, and show that
the scalar factor ofVMt is

1
µMt

=
λ1t

λ1t − λ2

(
µMt

µM,t−1

) . (17)

Rewriting equation (17), we have the recursive relationship

1
µMt

=
λ1t + λ2

µM,t−1

λ1t
(18)
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at every timet. Combining equation (18) for timest, t− 1, t− 2, and so on to eliminate
µM values at times beforet gives the solution

1
µMt

= 1 +
λ2

λ1t
+

λ2
2

λ1t λ1,t−1
+

λ3
2

λ1t λ1,t−1 λ1,t−2
+

λ4
2

λ1t λ1,t−1 λ1,t−2 λ1,t−3
+ . . . .

(19)
The infinite series in equation (19) must converge because its terms alternate in sign

(asλ2 < 0) and the absolute value of the ratioλ2/λ1t is always less than 1 (sinceλ1t is
the dominant root). Straightforward algebra confirms that equations (15) and (19) satisfy
the long term IDM projection equation

xt = At xt−1 (20)

whenxt andxt−1 are equated to the product of theλ1’s times the column vector given in
equation (15), andAt is given by equation (10). In the stable case, whereλ1 is constant,
the series in equation (19) sums toλ1/(λ1 − λ2), the scalar factor1µA

in equation (9).
[see Appendix note 1]

Heuristically, as time passes, equation (19) shows how a one time increase inλ1 is
steadily diminished by being relegated to successively smaller, higher order terms un-
til its effect disappears. It follows that1µMt

increases, or the product matrix mean age
at childbearing decreases, wheneverλ1t rises. Fundamentally, equation (19) reconciles
population growth byλ1t between timest − 1 andt with the population’s legacy of past
growth at different rates, growth which leaves its imprint in the population’s age compo-
sition. The birth cohort size adjustments that follow from equation (19) make the long
term “intrinsic dynamics” of the model possible.

The solution for the 2 age group IDM in equations (15) and (19) was verified by com-
parison with calculations on hypothetical data using the mathematical package Maple.
Table 1 compares the product matrix with values calculated from equations (15) and (19).
In the calculations,λ1t = 1 + .04 t andλ2 = −0.4. Those values implyat = .6 + .04 t
andbt = .4 + .016 t. The Net Reproduction Rate (NRR) at timet, Rt, is the sum ofat

andbt or 1 + .2 t. After 12 projection intervals (300 years), the product matrix is close
to rank one asλ12

2 = .0000168. By projection, mean ageµM,12 = 1.26871 (in units of
25 years). Table 1 shows five different theoretically calculated values, where the series
in equation (19) is followed to consecutively higher powers ofλ2. Convergence occurs
fairly quickly, with 6 terms of the series (150 years) providing accuracy to about.002 and
9 terms to about.0001.

We began the model development with the two age group case as that involves the sim-
plest mathematics. However, the same constant subordinate eigenstructure/intrinsically
dynamic approach generalizes to any number of age groups, as shown in the following
sections.
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Table 1: Comparison of Two Age Group Intrinsically Dynamic Model Values
From Equations (15) and (19) With Those From a Population Projection

Product matrix Product matrix element from summing
element from the series up to λ2 terms of the power

population
projection 5 6 7 8 9

Age group (j)
1 11.73411 11.72737 11.73626 11.73339 11.73435 11.73402
2 7.88256 7.87718 7.88435 7.88196 7.88279 7.88249

Note: Population projection matrix (At) specified by λ1t = 1 + .04 t and λ2 = −0.4.Values shown refer to the
(j,1) element of the time 12 product matrix.

3. The three age group IDM

Let our 3 age group, time varying Leslie matrix,At, be given by

At =


 at bt ct

1 0 0
0 1 0


 (21)

where again we assume that mortality is included in the first row elements and our pro-
jection follows the birth trajectory. The eigenvectors of PPMAt are the roots of the
characteristic equation (cf. Pollard 1973)

λ3 − atλ
2 − btλ− ct = 0 (22)

and can readily be determined analytically using a mathematical program like Maple or
Mathematica. [see Appendix note 2] Tuljapurkar (1993: 265) showed that the net ma-
ternity values of any Leslie matrix can be written in terms of its eigenvalues. Using that
relationship,At can be written

At =


 λ1t + λ2 + λ3 −(λ1t λ2 + λ1t λ3 + λ2 λ3) λ1t λ2 λ3

1 0 0
0 1 0


 (23)

where we again assume that onlyλ1 varies with time.
From the constant subordinate eigenstructure restriction, we obtain the same con-

straints on the product of successive PPMs and on the eigenstructure of the product matrix
as in the 2 age group case. At any timeτ , the right eigenvector matrix of 3 age group PPM
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Aτ is

Uτ =




1 1 1

λ−1
1τ λ−1

2 λ−1
3

λ−2
1τ λ−2

2 λ−2
3


 . (24)

The inverse ofUτ yields the left eigenvector matrix

Vτ =




1 −(λ2 + λ3) λ2λ3

−λ2
2(λ1τ−λ3)

λ2
1τ (λ2−λ3)

λ2
2(λ

2
1τ−λ2

3)

λ2
1τ (λ2−λ3)

−λ2
2λ1τ λ3(λ1τ−λ3)

λ2
1τ (λ2−λ3)

λ2
3(λ1τ−λ2)

λ2
1τ (λ2−λ3)

−λ2
3(λ

2
1τ−λ2

2)

λ2
1τ (λ2−λ3)

λ2
3λ1τ λ2(λ1τ−λ2)

λ2
1τ (λ2−λ3)



{

1
µAτ

}
(25)

where the mean age of childbearing implied byAτ , µAτ , is given by

µAτ =
(λ1τ − λ2)(λ1τ − λ3)

λ2
1τ

. (26)

Using the structure of the eigenvectors ofAτ and the reasoning underlying equation
(15), we can write the long term product matrix as

M0,t =




t∏
j=1

λ1j






1
µMt

1
(λ1tµM,t−1)

1
(λ1tλ1,t−1µM,t−2)


 (1 − (λ2 + λ3) λ2λ3) . (27)

The (1,1) element ofM0,t is the product of the individual PPM growth rates, divided
byµMt; the (2,1) element is the product of the PPMs up to timet−1, divided byµM,t−1;
and the (3,1) element is the product of the PPMs up to timet − 2, divided byµM,t−2.
The latter two elements are simply the (1,1) elements ofM at timest − 1 and t − 2,
respectively. The row vector of relative reproductive values remains fixed over time and
equal to its stable population counterpart.

To findµMt, we note that with constant subordinate eigenvectors the fullUMt matrix
can be written

UMt =




1 1 1
µMt

(λ1tµM,t−1)
λ−1

2 λ−1
3

µMt

(λ1tλ1,t−1µM,t−2)
λ−2

2 λ−2
3


 . (28)
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Using the relationshipVMt = U−1
Mt and equating the scalar factor associated with the

first row ofVMt to 1/µMt yields the recursive relationship

1
µMt

= 1 +
(λ2 + λ3)
λ1t µM,t−1

− (λ2λ3)
λ1t λ1,t−1 µM,t−2

. (29)

Using the relationship in equation (29) to eliminateµM at times before t leads to1
µMt

as the sum of the series

1
µMt

= 1 +
(λ2 + λ3)
λ1t

+
(λ3

2−λ3
3)

(λ2−λ3)

(λ1t λ1,t−1)
+

+
(λ4

2−λ4
3)

(λ2−λ3)

(λ1t λ1,t−1 λ1,t−2)
+

(λ5
2−λ5

3)
(λ2−λ3)

(λ1t λ1,t−1λ1,t−2λ1,t−3)
+ . . . (30)

Equations (27) and (30) provide the basic relationships underlying the 3 age group
IDM. The infinite series in equation (30) converges because it is an alternating series and
λ1t > −(λ2 + λ3), sinceλ1t + λ2 + λ3 = at > 0. Equations (23), (27), and (30) satisfy
basic projection equation (20), confirming the solution. Those equations apply regardless
of whether the two subordinate roots are real and unequal, real and equal, or complex
conjugates.

Table 2 compares the projected product matrix with values calculated from equations
(27) and (30). In the calculations,λ1t = 1 + .02 t, λ2 = −.2, andλ3 = −.5. The NRR
at any time can be found by summing the first row elements of theAt matrix in equation
(21). Algebraically, that yields

Rt = 1 − (1 − λ1t)(1 − λ2)(1 − λ3) . (31)

With the present values,Rt = 1 + .036 t, indicating how the NRR increases linearly
with time (andλ1t). After 20 projection intervals (300 years, as 3 age groups imply 15
year intervals), the product matrix is very close to rank one;λ20

2 is less than.000001. In
the projection, mean ageµM,20 = 1.54841 (in units of 15 years). Table 2 shows four
theoretically calculated values, where the series in equation (30) is summed over the first
7 through 10 terms. Convergence is a bit slower (in terms of number of intervals) than in
the two age group case. Differences between projected and calculated values are about
.01 − .02 after 7 terms of the series, and about.001 after 10 terms (150 years).

Table 3 looks at four different fertility patterns and how their shape varies with the size
of the dominant root. The two subordinate roots specify the age pattern of fertility. Here,
Pattern 1 emphasizes early fertility, Pattern 2 mid-reproductive age fertility, and Patterns 3
and 4 later age fertility. Pattern 2 involves 2 real roots, Patterns 1 and 4 complex conjugate

http://www.demographic-research.org 61



Schoen: Intrinsically dynamic population models

Table 2: Comparison of Three Age Group Intrinsically Dynamic Model Values
From Equations (27) and (30) With Those From a Population Projection

Product matrix Product matrix element from equations
element from (27) and (30), summing the series to term number

population projection 7 8 9 10
Age group (j)

1 26.67127 26.65159 26.67917 26.66805 26.67261
2 18.94539 18.92959 18.95184 18.94272 18.94652
3 13.65055 13.63766 13.65589 13.64830 13.65152

Note: Population projection matrix (At) specified by λ1t = 1 + .02t, λ2 = −.2 and λ3 = −.5. Values shown

refer to the (j, 1) element of the time 20 product matrix.

roots, and Pattern 3 a double root. Those four patterns span the most commonly found
three age group discrete fertility schedules (Schoen and Kim 1996).

Table 3: Fertility Patterns and Their Variation With the Dominant Root in 3 Age
Group Intrinsically Dynamic Models

Pattern 1 Pattern 2 Pattern 3 Pattern 4
Root (λ1) a b c a b c a b c a b c

.8 .2 .38 .08 .1 .46 .08 0 .48 .128 0 .44 .16

.9 .3 .44 .09 .2 .53 .09 .1 .56 .144 .1 .52 .18
1.0 .4 .5 .1 .3 .6 .1 .2 .64 .16 .2 .6 .2
1.1 .5 .56 .11 .4 .67 .11 .3 .72 .176 .3 .68 .22
1.2 .6 .62 .12 .5 .74 .12 .4 .80 .192 .4 .76 .24
1.3 .7 .68 .13 .6 .81 .13 .5 .88 .208 .5 .84 .26
1.4 .8 .74 .14 .7 .88 .14 .6 .96 .224 .6 .92 .28
1.5 .9 .80 .15 .8 .95 .15 .7 1.04 .24 .7 1.00 .30

Subordinate roots −.3 ± .1i −.2,−.5 −.4(double root) −.4 ± .2i

Table 3 shows how in every pattern, at every age, fertility changes linearly withλ1.
The amount of change in an age-specific rate varies across patterns and ages, and follows
the expressions shown in the first row of the PPM in equation (23). Increases inλ1 lead
to ages 0-14 having the largest increases, ages 15-29 the second largest, and ages 30-44
the smallest. Thus asλ1 increases, the mean age of childbearing decreases. That pattern
of change departs from proportionality, but for the most part the fertility schedules are
plausible given the observed variability in human fertility. Recent low fertility in the
West, for example, has been accompanied by rising mean ages at childbearing. However,
Pattern 1 has unusually high relative fertility levels at ages 0-14 forλ1 = 1.5 (i.e. when
Lotka’s r = .027), and Patterns 3 and 4 have zero fertility at ages 0-14 whenλ1 = .8
(i.e. r = −.015). Because the rate in the first age group mirrorsλ1 in its movements up
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and down, values ofλ1 below.8 would lead to unacceptable (negative) fertility values.
The constant subordinate eigenstructure assumption was chosen for its mathematical,

not its demographic, properties. By restricting the age pattern of fertility, it permits any
pattern of change in fertility levels over time and allows the resultant birth trajectory to be
found (and, with a mortality assumption, gives the age composition of the population at
any time). The ability to vary the level of fertility represents a substantial extension of the
stable population model, and at the price of an assumption that is no more unrealistic than
fixed rates. The IDM first row PPM elements are all linear functions ofλ1, and hence
of each other, and need not reproduce (or approximate) the characteristic age pattern of
fertility. Yet they generally produce reasonable values over a broad range ofλ values
when there are three reproductive ages. While investigators using IDMs need to verify
that acceptable age patterns of fertility exist, Table 3 suggests that it is usually possible to
do so.

4. The n age group IDM

To extend the intrinsically dynamic model to the case ofn age groups, let our standard
form Leslie matrixAt have first row elementsajt , j = 1, . . . , n. As before, the subdiag-
onal elements are equal to 1. The characteristic equation ofAt is then

λn
t − a1t λ

n−1
t − a2t λ

n−2
t − . . .− ant = 0 . (32)

From the relationship between roots and coefficients in polynomial equations, then
coefficients can be written in terms of then roots of equation (32). Specifically,a1t is the
sum of the roots taken one at a time;a2t is minus the sum of the roots taken 2 at a time;
andajt is (−1)j+1 times the sum of the roots takenj at a time. As a result, in the IDM
all of theajt are linear functions ofλ1t.

In Leslie matrixAt, several basic demographic measures are expressible as relatively
simple functions of alln roots. Summing the first row elements of the matrix and rear-
ranging terms gives the NRR as

Rt = 1 −
n∏

j=1

(1 − λjt) . (33)

In intrinsically dynamic models, the NRR is always a linear function ofλ1 (and vice
versa).

The mean age of childbearing implied byAt can be defined by the relationship

µAt =
a1t

λ1t
+

2a2t

λ2
1t

+ . . .+
nant

λn
1t

. (34)
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Rewriting that relationship in terms of roots yields

µAt =
(
λ1−n

1t

) n∏
j=2

(λ1t − λj) . (35)

The approach used in the 2 and 3 age group models can generate the product matrix
andµMt in then age group case. Once again, thejth root of the product matrix is the
product of thejth roots of the individual PPMs. Apart from theµMt factor and with
one as the first element, thejth element in the first row of the left eigenvector matrix is
(−1)j−1 times the sum of the subordinate roots takenj − 1 at a time. The first column of
the right eigenvector matrix has first term1/µMt, andjth term

1
[µM,t−j+1(

∏
λ1j)]

,

where the product goes fromt− j+2 to t. A recursive equation for mean ageµMt can be
found by extending equation (28) to specify the first column ofUMt, usingVMt = U−1

Mt,
and then equating the scalar factor ofVMt to 1/µMt. Asn becomes large, the expressions
get quite complicated.

Beyond complexity, there is a serious problem with then age group IDM as a vehicle
for analyzing human populations. The pattern of fertility change required by the constant
subordinate eigenstructure assumption becomes increasingly inappropriate whenn ≥ 4.
Consider the conventional Leslie matrix with 10 five-year age groups. Since human popu-
lations have essentially zero fertility below age 10, the (1,1) element of that Leslie matrix
must be zero. However, any change in the dominant root would cause the (1,1) element
to change by an equal amount, producing a PPM with unrealistic or unacceptable values.
Consequently, the focus here is on the 3 age group model. Table 3 shows that the age
patterns of fertility are quite reasonable in that model, and 15 year age groups coincide
closely with the typical beginning of reproduction, the mean age of childbearing, and the
end of reproduction. Moreover, it is not difficult to condense a 10 age group Leslie matrix
to 3 groups (Keyfitz 1968, p37-40).

5. IDM Dynamics

5.1 The IDM birth trajectory

The number of births at timet (or more precisely the number of persons in the first age
group at that time) can be found by dividingλMt, the product of the PPM growth rates (or
the cumulative growth rate up to timet), byµMt. When theλ1t have a known functional
form,λMt can often be found analytically.
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Consider the case whereλ1t = eht, for some known constanth. Since

t∑
j=1

hj = h
t(t+ 1)

2
,

we have

λMt = exp(
ht(t+ 1)

2
) . (36)

Using different assumptions, Schoen and Kim (1997) and Schoen and Jonsson (2003)
also found exponentiated quadratic growth associated with exponentially increasing net
reproduction. Other polynomial functions forλ1t also lead to exponentiated growth in
births at an order one degree higher than the largest power of t inλ1t. For example,
Maple calculations indicate that ifλ1t = exp(ht2), thenλMt = exp(ht(t+1)(2t+1)

6 ), and

if λ1t = exp(ht3), thenλMt = exp(ht2(t+1)2

4 ) .
The ability to analyze cyclical fluctuations in fertility is particularly useful, and si-

nusoidal patterns inλ1t can be summed analytically. In particular, Maple computations
show that

t∑
j=1

sinωj =
1
2

[
sinω − sinω(t+ 1) + (cot

ω

2
){sinω cosω − cosω(t+ 1)}

]
. (37)

Schoen and Kim (1997) found a similar expression for cyclical net reproduction by
assuming a constant generation length, though their approach did not provide any underly-
ing age-specific birth rates. Under polynomial growth inλ1t, the relative size adjustments
produced by the1/µMt factor may be small, as they were in the case of the linearly in-
creasingλ1t of Table 2. With cyclical changes, however, those adjustments may play a
much larger role.

5.2 Observed populations as IDM populations

Any observed population distribution can be viewed as an IDM population distribution.
That representation is not unique, however, as different intrinsically dynamic models fol-
low from alternative assumptions regarding the (constant) subordinate roots and the nature
of the past birth trajectory.

Consider the case of an arbitrary initial population,x0, were we focus on the 3 repro-
ductive age groups and scale the population by assuming that there is one person at ages
0-14. In the absence of mortality, or after adjustments for mortality have been made to
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restore the birth sequence, we can write

x0 =


 1
x20

x30


 (38)

wherexj0 represents the number of persons in thejth age group at initial time 0. To
simplify the calculations, assume that the population was stable with dominant growth
rateλA and subordinate rootsλ2 andλ3 before time (−1). Then, from the definition of
λA and equation (26)

λA =
x20

x30

µA =
(λA − λ2)(λA − λ3)

λ2
A

. (39)

To specify the IDM, we need to find the time 0 cumulative growth rate (λM0) and
the time 0 product matrix mean age at childbearing (µM0). Using equation (27), with the
scale readjusted so that the population age 0-14 is 1, we can equate the second element of
the scaled column vector with the second element in the population in equation (38) and
write

x20 =
µM0

(µAλM0)
. (40)

Using equations (30) and (39), we can replace the infinite series in equation (30) with
the stableµA and show that

1
µM0

= 1 − λA

λM0(1 − 1
µA

)
. (41)

Combining equations (40) and (41) yields the solutions

λM0 =
1 + x20λA(µA − 1)

x20µA

µM0 = 1 + x20λA(µA − 1) . (42)

With equation (42), the IDM representation can be written as

x0 =




1

[λA + µA(λM0 − λA)]−1

[λ2
A + λAµA(λM0 − λA)]−1


 . (43)
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The form of equation (43) makes it clear that the age composition becomes that of the
λA stable population whenλA = λM0.

To illustrate the procedure numerically, letx0’=[1 .6 .4], where the prime (’) indicates
the vector transpose. Assuming stability before time (−1) and settingλ2 = −.2 and
λ3 = −.5, we find λA = 1.5, µA = 1.51111, λM0 = 1.61029, andµM0 = 1.46,
with age and time in units of 15 years. The faster pace of growth from time (−1) to 0
(λ0 = 1/.6 = 1.66667), compared toλA = 1.5 between times (−2) and (−1), leads to
an increase in cumulative growth from1.5 to 1.61029 and a fall in the (implicit) product
matrix mean age at childbearing from1.51111 to 1.46.

5.3 Transitions between stable population regimes

Intrinsically dynamic models can be used to examine transitions from one set of fixed rates
to another. If a stable population growing atλA were suddenly to shift to a regime with
long term growth atλB , the subordinate roots remaining constant, its dynamics would be
that of an IDM.

Consider a 3 reproductive age group model, and let the number of persons under age
15 at time 0 be scaled to 1. With the change in regimes fromλA to λB occurring at time
0, equations (27) and (30) describe the subsequent behavior of the population. Table 4
and Figure 1 show the birth trajectory (i.e. the number of persons under age 15) when
λA = 1.5 andλB = 1 under two different patterns of fertility, specifically Patterns 2
and 4 of Table 3. After the fall in fertility to replacement level, the number of births
falls sharply, then recovers some, and eventually approaches its ultimate stationary level.
When all of theλ1 values in equation (30) are the same, equation (26 ) applies. With the
initial number of births scaled to 1, equation (27) indicates that the ultimate birth level is
µA

µB
. Table 4 and Figure 2 show howµMt moves fromµA to µB along a path similar to

that of the birth trajectory. Consistent with Preston (1986) and Kim and Schoen (1997),
the number of persons under age 30 remains quite level during the transition.

The concept of population momentum, introduced in Keyfitz (1971), refers to the
increase in population size that accompanies the transition to zero growth. Given a drop
to replacement level fertility at a specified initial time, momentum,Ω, is the ratio of the
total size of the ultimate stationary population to the total size of the initial population.
Mathematically, it can be written (cf. Schoen and Jonsson 2003)

Ω = be0Q (44)

whereb is the birth rate of the initial population,e0 is the life expectancy at birth in the
stationary population, andQ is the size of the ultimate birth cohort relative to that of the
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Figure 1: The Birth Trajectory Following a Transition, at Time 0, From a Stable
(λA = 1.5) to a Stationary (λB = 1) Regime, Under Two Fertility
Patterns
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Figure 2: The Cumulative Mean Age of Childbearing (µMt) Following a
Transition, at Time 0, From a Stable (λA = 1.5) to a Stationary
(λB = 1) Regime, Under Two Fertility Patterns
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Table 4: The Birth Trajectory and Related Measures Following a Transition, at
Time 0, From a Stable (λA =1.5) to a Stationary (λB =1) Regime, Under
Two Age Patterns of Fertility

Number of persons Number of persons Product matrix mean
Time (t) aged 0-14 years aged 0-29 years age of childbearing (µMt)
[in years] Pattern 2 Pattern 4 Pattern 2 Pattern 4 Pattern 2 Pattern 4

0 1 1 1.66667 1.66667 22.66667(µA) 24.33333 (µA)
15 .74444 .68889 1.74444 1.68889 30.44776 35.32258
30 .89000 .87111 1.63444 1.56000 25.46816 27.93367
45 .81367 .78756 1.70367 1.65867 27.85743 30.89729
60 .85254 .81796 1.66621 1.60551 26.58708 29.74897
75 .83296 .81035 1.68551 1.62830 27.21208 30.02830
90 .84278 .81035 1.67575 1.62070 26.89504 30.02804
105 .83787 .81187 1.68065 1.62222 27.05281 29.97196
120 .84033 .81066 1.67819 1.62252 26.97365 30.01686
135 .83910 .81132 1.67942 1.62198 27.01317 29.99213
150 .83971 .81103 1.67881 1.62236 26.99338 30.00292
165 .83940 .81113 1.67912 1.62216 27.00326 29.99922
180 .83956 .81111 1.67896 1.62224 26.99829 30.00001
195 .83948 .81111 1.67904 1.62222 27.00073 30.00011
210 .83952 .81111 1.67901 1.62222 26.99945 29.99986
225 .83951 .81111 1.67903 1.62222 27.00000 30.00001
240 .83952 .81111 1.67903 1.62222 26.99959 29.99990
∞ .83951 .81111 1.67901 1.62222 27.00000(µB ) 30.00000(µB )

Note: Equation (30) is summed through the 16th term. Under Fertility Pattern 2, λ2 = −.2 and λ3 = −.5. Under

Fertility Pattern 4, λ2 = −.4 + .2i and λ3 = −.4 − .2i.

initial birth cohort. As indicated above, in the IDM

Q =
µA

µB
. (45)

When fertility falls, the mean age at childbearing in an IDM rises. The ratio of initial
to ultimate mean ages of childbearing mirrors the ratio of initial to ultimate birth cohort
sizes.

5.4 Momentum following a gradual or irregular decline to zero growth

Birth cohort size adjustmentQ can, more generally, be thought of as the change in relative
cohort size associated with changes in vital rates, after removing the effect of PPM growth
rates. In the context of intrinsically dynamic models, thatQ can be expressed quite simply.
Equation (27) shows that the birth cohort size change from timeA to timeB is always
given byµMA/µMB , the ratio of the product matrix mean ages at childbearing.

http://www.demographic-research.org 69



Schoen: Intrinsically dynamic population models

That relationship, made applicable to any initial population by equation (42), means
that the IDM context can be used to examine the population growth associated with any
arbitrary route to stationarity. The subject has received considerable attention recently
for several reasons. Substantively, Bongaarts and Bulatao (1999) found that momen-
tum effects are likely to account for most of the future growth in the world’s popula-
tion. Analytically, Schoen and Kim (1998), Li and Tuljapurkar (1999; 2000), Goldstein
(2002), Goldstein and Stecklov (2002), and Schoen and Jonsson (2003) have extended
techniques for finding momentum under a variety of paths to zero growth. That work has
demonstrated the dramatic increases in ultimate population size that result from delays in
achieving zero growth. All of those approaches, however, are either approximate, impose
substantial constraints on the length or pattern of decline, or both.

Equation (27) can yield exact solutions for essentially any path to zero growth in
terms of initial mean ageµM0, ultimate stationary mean ageµB , and the product of the
nonstationary PPM growth rates between initial time 0 and the time,B, when the rates
attain their final stationary level. Mathematically, withQ∗ denoting the relative size of
the ultimate birth cohort,

Q∗ =




B∏
j=1

λ1j


 µM0

µB
. (46)

In the intrinsically dynamic population, ultimate birth cohort size is determined by
the product of individual PPM intrinsic growth rates, modified only by the initial and
ultimate product matrix mean ages at childbearing. Momentum follows immediately from
equation (44).

Table 5 compares population momentum values from equations (44) and (46) with
those from population projections under a range of assumptions about the length and
pattern of fertility decline. The initial population is the IDM withλ1 = 1.5, λ2 = −.2,
andλ3 = −.5, which has an NRR of1.90. Under contemporary conditions, the value
of be0 for that population is approximately 2, and that value is used in the calculations.
Two different patterns of decline over time are considered, one linear with respect to the
NRR, and the other linear with respect toλ1. One projection is done assuming a linear
(proportional) decline over age, and the other assuming that the pattern of decline keeps
the subordinate eigenvalues constant.

With a linear decline in NRR over time, equation (46) yields values that are identical
to those from the population projection that assumed an IDM pattern of decline over age.
The projection assuming a linear (proportional) decline over age produced similar figures,
though the gap widened somewhat as the period of delay increased from 0 to 45 years.
In an IDM, λ1 is a linear transformation of the NRR. Thus, in the case of linear declines
in growth, the IDM equations and projection yield values identical to those found in the
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Table 5: Population Momentum Associated With Different Routes to
Stationarity, Calculated By Population Projections and By Equations
(44) and (46)

Linear Decline in NRR Over Time Linear Decline in PPM λ1 Over Time
Years Before
Zero Growth From Projection From Projection

Attained Linear decline IDM decline From IDM Linear decline IDM decline From IDM
over age over age equation (46) over age over age equation (46)

0 1.714 1.679 1.679 1.714 1.679 1.679
15 2.143 2.099 2.099 2.128 2.099 2.099
30 2.678 2.612 2.612 2.645 2.612 2.612
45 3.344 3.247 3.247 3.285 3.247 3.247

Note: Initial population stable at λ1 = 1.5 with NRR= 1.90. IDM subordinate roots are λ2 = −.2 and λ3 = −.5.

In all models, the product of the initial birth rate and the ultimate life expectancy is set at 2.

case of linear NRR declines. Because that NRR/growth relationship does not hold when
fertility changes proportionally over all ages, the linear decline inλ1 projections yield
slightly different results from the linear decline in NRR projections. The rather modest
effect associated with different age patterns of fertility decline can be seen as enhancing
the value of equations (44) and (46), as it suggests that the age pattern required by the
constant subordinate root assumption has only a small effect on momentum. In addition
to validating the analytical results presented, Table 5 shows how delays in attaining zero
growth greatly increase momentum. In the case considered, the population would grow
from 1 to 1.7 if stationary rates were achieved immediately, but would grow to over3.2 if
the decline took place over 45 years.

6. Summary and conclusions

Intrinsically dynamic models, based on an assumption of constant subordinate roots, have
been developed to provide a new approach to analyzing populations with changing rates.
Because of the constraints on the age pattern of fertility associated with that assumption,
attention is focused on the discrete (Leslie) model with 15 year age intervals. Equations
(27) and (30) provide a complete solution for the population produced by any time pattern
of change in the level of fertility (or in period-by-period growth levels).

The IDM provides a new generalization of the stable population model. Any observed
population can be represented as an IDM, and the structure of IDMs greatly simplifies
modeling the transition between any two stable regimes and assessing the momentum
implications of delays in achieving replacement level fertility.
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Appendix

1. In some cases, the series in equation (19) can be summed algebraically. For example, if

λ1,t−τ =
λ0{1 + b sinω[t− τ ]}
{1 + b sinω[t− τ − 1]}

Maple summation finds that( 1
µMt

) is of the form

(
1
µMt

)
= 1 + C1t + C2t sinωt+ C3t cosωt

where C1t =
λ2

(λ0 − λ2)(1 + b sinωt)

C2t =
bλ2(λ2 − λ0 cosω)

(λ2
2 − 2λ0λ2 cosω + λ2

0)(1 + b sinωt)

and C3t =
−bλ0λ2(sinω)

(λ2
2 − 2λ0λ2 cosω + λ2

0)(1 + b sinωt)
.

2. The cubic characteristic equation of the 3 age group Leslie matrix given in equation (22)
has the roots

λ1 =
[2a+ Z + (12b+4a2)

Z ]
6

λ2 =
[4a− Z − (12b+4a2)

Z ]
12

+ (
√

3 i
12

)[Z − (12b+ 4a2)
Z

]

λ3 =
[4a− Z − (12b+4a2)

Z ]
12

− (
√

3 i
12

)[Z − (12b+ 4a2)
Z

] where

Z =
[
36ab+ 108c+ 8a3 + 12[12a3c+ 81c2 + 54abc− 3a2b2 − 12b3]

1
2
] 1

3
.
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