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Age-specific contributions to changes in the period and  
cohort life expectancy 

Vladimir Canudas-Romo 

Robert Schoen 

Abstract 

Period life expectancy has increased more slowly than its cohort counterpart. This paper 
explores the differences between life expectancies at a given time (the gap) and the time 
required for period life expectancy to reach the current level of cohort life expectancy 
(the lag). Additionally, to understand the disparity between the two life expectancies we 
identify and compare age-specific contributions to change in life expectancy. Using 
mortality models and historical data for Sweden, we examine the effect of mortality 
changes over time. Our results indicate that the widening of the gap between the two 
life expectancies is primarily a consequence of the dramatic mortality decline at older 
ages that occurred during the twentieth century. These results imply that the divergence 
between the two measures is likely to become even greater in the future as reductions in 
deaths are concentrated at older ages.   
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1. Introduction 

Cohort life tables follow the mortality of a given birth cohort over its life course. Some 
industrialized countries have uninterrupted data spanning several centuries that allow 
such analyses. Period life tables, which require data from only one year, can depict the 
implications of recent rates. Period life expectancies have been used for comparisons 
over time and across populations as a matter of accepted practice. However, Bongaarts 
and Feeney (2002) suggested that the conventional period life expectancy is an 
inaccurate measure for countries with low mortality. Regarding the industrialized 
world, substantial gaps and lags between period and cohort life expectancies have been 
shown by Goldstein and Wachter (2005), which stimulated interest in the subject. As 
defined by these authors, a gap tells how much period life expectancy at a given time is 
less than the life expectancy of the cohort born in that year. The lag (or forward lag) is 
the time required for period life expectancy to reach the current level of cohort life 
expectancy. In nineteenth century Sweden, the two life expectancies had similar values, 
but over time the disparity between them grew as increases in cohort life expectancies 
outstripped increases in period life expectancies.  

Recognizing the mechanisms that relate period and cohort perspectives on the 
average length of life contributes to the analysis of past, current and future trends in 
mortality. In this paper we present some simple relations between the gaps and lags 
arising from the distinct levels of period and cohort life expectancies. We then use 
decomposition techniques to study the age-specific contributions to changes in life 
expectancy that drive aggregate trends.   

In the next section we bring definitions relevant to our study of mortality, followed 
with an examination of changes over time in life expectancies. Then, age-specific 
contributions to period and cohort life expectancies are calculated and compared using 
an age-decomposition of life expectancy. Mortality models are used to simplify the 
relations between gaps and lags in life expectancies and to demonstrate how period and 
cohort life expectancies change under different mortality patterns. Finally, applications 
to the mortality experience of nineteenth and twentieth century Sweden are provided.  

 
 

2. Period and cohort life expectancy 

The most commonly known measures of mortality are the period and cohort life 
expectancy. In the life table context, period life expectancy at age a and time t is 
calculated as the person-years lived above age a divided by the number surviving to age 
a.  For example, the period life expectancy at birth at time t can be expressed as  



Demographic Research: Volume 13, Article 3 

http://www.demographic-research.org 65 

),0(

),(

),0( 0

t

data

te
p

p

p
l

l∫
=

ω

,      (1) 

where ),( tapl  is the period life table survivorship function to age a under the rates at 

time t, and ϖ  is the highest age attained. If the radix of the table is one, i.e. 

1),0( =tpl , then ),( tapl  is the period life table probability of surviving from birth 

to age a.  At time t, this probability is a function of the force of mortality from age 0 to 
age x.  Denoting the force of mortality at age a and time t by ),( taµ , we can write the 

life table probability of surviving from birth to age a as 
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The subindex  p in equations (1) and (2a) denotes that these are period measures. 
In the rest of the text, subscript c will be used to identify cohort measures. For example, 

),( atac −l  is the life table probability of surviving from birth to age a for the cohort 

born at time t-a , i.e. 
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0
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a
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and ),0( atec − is that cohort’s life expectancy.  

Here, it should be noted that at exact age a and time t the period and cohort force 
of mortality are equal therefore ),( taµ  does not have a subscript. However, this is not 

the case with the rest of the period and cohort measures. In contemporary low mortality 
countries there is a large difference between period and cohort life expectancies. For 
example, Goldstein and Wachter (2005) show that in the industrialized world the period 
life expectancy at year t is approximately equal to the cohort life expectancy for persons 

born half a century ago, or ),0()50,0( tete cp ≈+ . 

Specific methods to analyze change in life expectancy over time have been 
developed by various demographers. United Nations (1982), Pollard (1982, 1988), 
Arriaga (1984), Pressat (1985) and Andreev (1982; Andreev et al. 2002) focused on 
discrete differences in life expectancy between two periods of time. Keyfitz (1977, 
1985) considered continuous change and derived a formula for the time-derivative of 
life expectancy. Mitra (1978), Demetrius (1979), Goldman and Lord (1986), Vaupel 
(1986), Hokkert (1987), Hill (1993) and Vaupel and Canudas-Romo (2003) further 
developed this approach. 
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Several of these decomposition methods also offer the possibility of calculating 
age-specific contributions to the change in life expectancy. Thus, an interesting 
question to examine is how a change in mortality at a given age and time contributes to 
change in both period and cohort life expectancies. This leads to studying changes in 
life expectancies when the distribution and level of mortality are changing over time. 
To pursue these analyses, we follow some of the procedures developed in Vaupel and 
Canudas-Romo (2003). 

 
 

3. Period and cohort life expectancy age-decomposition  

We need to introduce two measures used in the developments that follow. Let the 
period probability density function describing the distribution of deaths (i.e., lifespans) 
in the life table population at age a and time t+a be denoted 

as ),(),(),( ataataataf pp ++=+ lµ , and its cohort counterpart born a years 

earlier as ),(),(),( taatataf cc l+= µ . Another measure needed in the derivations 

to follow is the rate of progress in reducing death rates, defined as the derivative of the 

logarithm of the force of mortality, 
t
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Vaupel and Canudas-Romo (2003) show that an age-specific contribution to the 
change in life expectancy is equal to the product of three components. These 
components are the rate of mortality improvement at that age, the remaining life 
expectancy at that age, and the mortality density function at that age. For the period life 
expectancy at birth at time t+a, the age-specific contribution of age a denoted as 

),0(, ate ap +&  is then 

 

),(),(),(),0(, atafataeataate ppap +++=+ ρ& . (3)   

 
Adding those contributions over age gives the total change in period life 

expectancy at birth, ),0( atep +& . Paralleling equation (3), it is possible to define an 

age-specific contribution to the change in cohort life expectancy. The ratio of period to 
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which ages mortality changes affect cohort more than period life expectancy. Because 
the rate of mortality improvement ),( ata +ρ , is the same in the period and cohort 

perspective, the ratio simplifies to 
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Using the probability density functions describing the distribution of deaths, 

being ),(),(),( atatataf cc += µl  for the cohort and 

),(),(),( ataataataf pp ++=+ µl  for the period, we obtain 
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As shown in equation (4) this ratio can also be expressed in terms of the ratio of 

the period over the cohort remaining life expectancy times the ratio of period to cohort 
survival function to that age. The expression on the right of equation (4) is a surprising 
result because the comparison does not contain our explicit measure of 
change, ),( ata +ρ .  

To gain an appreciation of how the period and cohort age-contributions differ, the 
following section presents a continuous model where mortality changes over age and 
time at constant rates. 

 
 

4. Changes in period and cohort life expectancy 

4.1 Period and cohort models of mortality 

Model populations provide a useful way to examine age-specific contributions to 
changes in period and cohort life expectancy. The formulation used here is an extension 
of the Gompertz model of mortality where there is an infant mortality component and a 
continuous rate of decline over time. This model is a combination of the model 
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proposed by Siler (1979) and the continuous rate of decline model discussed by Vaupel 
(1986) and Schoen et al. (2004). The force of mortality at age a and time t is defined as  

 

    ]exp[]exp[]exp[),( 23222111 tCAtCaBAtCaBAta −+−+−−=µ , (5) 

 
where there are three constant terms which reflect the value of 

321)0,0( AAA ++=µ ; parameters 1B  and 2B  that are fixed rates of mortality 

decline and increase over age, respectively, which account for infant and senescent 

mortality; and parameters 1C  and 2C  that are constant rates of mortality decrease over 

time. Parameters As and Bs come from the Siler model, while the Cs are used in 
Gompertz models with a continuous rate of decline (Vaupel, 1986 and Schoen et al., 
2004). In the remaining text we refer to equation (5) as the Siler mortality change 
model. 

In the model we begin with fairly high infant mortality (203 per thousand), 

resulting from the values of 0002.0,2.0 21 == AA  and 003.03 =A .  The early 

decline over age proceeds at a pace of 11 =B  with an overall increase with age at a 

rate of 1.02 =B . These values for parameters A and B have been adapted from a 

comparison of the Siler model with the different model life tables elaborated by Coale 
and Demeny (Gage and Dyke, 1986). At time 0, period life expectancy is 38.5. These 
values approach those observed in populations with historical data. For example, in 
Sweden in the year 1800, infant mortality was 227 per thousand and life expectancy 

32.19 years. For the pace of mortality improvement we have chosen 015.01 =C  and 

01.02 =C . These values correspond to a 1.5% decline at younger ages and mortality 

improvement of one percent at older ages. The decline at younger ages in several 
European countries occurred at an even faster rate (Woods et al., 1988 and 1989), and 
the rate of one percent is below the current average mortality decline in the West.  
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4.2 Trends, gaps and lags involving period and cohort life expectancies 

Figure 1 shows the period and cohort life expectancies for the Siler mortality change 
model in equation (5) over 600 years.  

 

Figure 1: Period and cohort life expectancy in a Siler mortality change model 
with rates of decline over time of C1=0.015 and C2=0.01 
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At time zero, the period and cohort life expectancies are 38.5 and 42.4, 

respectively. Over time both measures increase at an initially rapid but steady declining 
rate of increase. The initial fast pace of increase is related to infant mortality 
improvements. That can be seen from a Siler mortality change model with no senescent 

mortality improvement, 02 =C  (not shown here), which produces a similar trend in 

both life expectancies. As infant mortality falls to low levels, its impact declines toward 
zero.  

In Figure 1, after 200 years the Siler mortality change model becomes a Gompertz 
model as changes in infant mortality are almost negligible. The increase in life 

expectancy becomes very close to the slopes determined by parameters 2B  and 2C . 

For period life expectancy, the slope is close to 22 / BC . For the cohort LE, it is about 
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]/[ 222 CBC − , so over time the change in the cohort measure is greater than its 

period counterpart (Schoen and Canudas-Romo, 2004). 
Goldstein and Wachter (2005) studied gaps and lags between the period and cohort 

life expectancies in a model that allowed changes over time to vary at all ages. Here we 
focus on a simpler model that implies nearly linear time trajectories for the period and 
cohort life expectancies. The gap indicates the number of years at a given time between 
period and cohort life expectancy. For example, in our Figure 1 at time 100 the gap is 
about 6 years, while at time 450 it is about 10.1 years. In contrast, the time lag indicates 
the number of years between the time that cohort LE reaches a given level and the 
period LE attains that level. As shown in Diagram 1, from the estimated slopes for the 
period and cohort LE, and the gap values it is possible to obtain good estimates for the 
lags. 

 

Diagram 1: Relationship of the gaps and lags between period and cohort life 
expectancy 
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Diagram 1 shows that the gap between cohort LE and period LE at time t is also 

equal to the difference between the period LE at time t and at time t+h. The slope of the 
period life expectancy is equal to the tangent of the angle created between the LE curve 
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and a horizontal line at the level of the period LE, 
2
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definition of the derivative with respect to time of this linear period life expectancy, 
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lines at time t and t+h, the horizontal lines at the levels of the period and cohort life 
expectancies at time t, and the curve of the period LE. The tangent of the angle can also 
be expressed in terms of the sides of the triangles, as the gap over the lag, 
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In Figure 1 at time 450, the gap is 10.1 and the lag is 101 years, which is exactly the 

result from applying equation (6) with our values of 01.02 =C  and 1.02 =B . A 

similar procedure can be carried out to find the gap at time t+h, using the slope of the 
cohort LE and the previous lag,  

    
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

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

−
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22

2)()(
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C
tlaghtgap .     (7) 

For example, the value of the cohort life expectancy at time 450 corresponds to the 
period life expectancy at time 551, a lag of 101 years. At time 551 the observed gap 
between the cohort and period life expectancy is 11.2 (= 123.1 - 111.9), which also is 
the result provided by equation (7).  

From equations (6) and (7) and for our values of 01.02 =C  and 1.02 =B  the 

lag at time t will be 10 times the gap observed at that time while the gap at time t+h 
will be one-ninth of the lag(t).   

Furthermore, it is possible to relate gaps at different points in time by going 
backwards substituting at each time the relations in equations (7) and (6). For example, 

the gap at time t can be expressed in terms of the previous lag, )( 1htlag − , as shown 

in (7), and this lag can be substituted by the previous gap as shown in equation (6), 
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For our previous example, the gap at time 551 is 11.2 which is 1.11 times the previous 
gap at time 450 of 10.1. These steps can be repeated to relate any two gaps. For 
example, if two gaps are separated by n known lags we have the following relation  
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where nL  is the addition of the n lags that separate the two gaps. This total lag is found 

as the addition of the individual h lags nn hhhL +++= ...21 . Similar calculations 

can be done to relate two lags based on known gaps.  
To further analyze the disparity between the period and cohort life expectancy, the 

next section presents the examination of age-specific contribution to changes in these 
measures.   

 
 

4.3 Age-specific contributions to changes in period and cohort life expectancy 

Figures 2ab show the Lexis surfaces of the age-specific contributions to the change in 
period and cohort life expectancy in a Siler mortality change model.  

The period and cohort patterns in Figure 2ab are very similar. Initially changes at 
early ages have a great impact on overall life expectancy, but that diminishes over time.  
As shown in Figure 1, this is also the time when both life expectancies increase the 
fastest. Once the infant contribution has vanished, the age-specific contributions 
increase over age to a maximum around the ages where most of the deaths are 
concentrated. For example, at year 400 (when the period life expectancy is 96.5) this 
maximum occurs between ages 90 and 130. Finally, at the very high ages there is a 
pronounced decline in impact. The peak of the distribution of age-contributions in life 
expectancy increases over time as the death distribution moves to older ages. During 
this second phase of the model where mainly senescent mortality is taking place, 
increments in life expectancy are slower.    

 
 



Demographic Research: Volume 13, Article 3 

http://www.demographic-research.org 73 

Figure 2: Age-contributions to the change in the period life expectancy (a) and 
in the cohort life expectancy (b) per thousands, Siler mortality 
change model with two rates C1=0.015 and C2=0.01 

(a) 

 

(b) 
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Figure 3 depicts the Lexis surface for the ratio of (i) the age-specific contributions 
to the change in period life expectancy over (ii) the corresponding age-specific 
contributions to the change in cohort life expectancy.  

 

Figure 3: Ratio of age-specific contributions to the change in the period over 
change in the cohort life expectancy, Siler mortality change model 
with rates of decline over time C1=0.015 and C2=0.01 

 

 
Figure 3 shows the steady increase over time in the age at which the ratio is 1. In 

the early years, the ratio is above 1 at most ages. That indicates that most ages make 
greater age-contributions to the period LE as infant mortality plays a larger role. At 
time 600, most of the ratios are below 1, showing that cohorts benefit more over a wide 
range of ages. However, at year 600 period LE is 116.8 and it is at advanced ages where 
most of the improvements in mortality are occurring. This increase in the age at which 
the ratio is one parallels the increase of life expectancies in Figure 1, with an 
accelerated pace at the beginning and a slower pace later.  

To further analyze the age pattern of this ratio, we re-examine equation (4). The 
ratio of age-contributions can be separated into two terms reflecting past and future 
period and cohort experience, i.e.  
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Higher mortality in the past causes fewer cohort survivors to age a, ),( tacl , than in 

the corresponding period, ),( atap +l , implying numbers always above 1 for this 

measure of the past. Contrary to this is the ratio of remaining life expectancy, where 
cohort values are higher than period, indicating a ratio always below 1 for this measure 
of the future.  

Figure 3 shows that at any given time the ratio increases with age. For younger 
ages it is below one, indicating that changes at those ages have more impact on cohort 
than period life expectancy. With mortality declining over time, young cohorts at time t 
will experience death rates at older ages lower than those experienced by older persons 
at time t, while differences in survivorship remain modest. Therefore, in equation (4) 
the ratio of period to cohort LE dominates the ratio of period to cohort survivorship. 
The inverse process occurs at older ages where the values of the ratio are above one. 
The cohorts that reach advanced ages at time t have experienced death rates at earlier 
ages greater than those seen in the period t, while the period to cohort LE ratio is 
modest.  

Until now we have discussed results of changes in mortality occurring over 
periods. However, the relations found here also hold in the case of changes occurring 
over cohorts, as verified by analyses of model populations (not shown). Furthermore, 
similar results are obtained if instead of the senescent mortality term in equation (5) we 
include a logistic model as those studied by Bongaarts (2005).  
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5. Examining period and cohort mortality in Sweden 

To assess age-specific contributions to period and cohort life expectancy in Sweden, we 
use data derived from the Human Mortality Database (2004). To calculate the age-
specific contributions to cohort life expectancy for cohorts that are not extinct we have 
extrapolated future mortality. That was done using a continually declining mortality 
model, similar to that in equation (5), with a constant pace of decline of C=0.01. For 
example, if the last year with available data is 2002, then the age-specific death rates for 
that year, )2002,(aµ are the base values for the model. For age a and year t > 2002 

the force of mortality is   

    ( ) )2002()2002,(, −−= tCeata µµ .     (9)  

Figure 4 presents the period and cohort life expectancies in Sweden 1751-2002 
with extrapolated cohort values for the years 1912 to 2002 using the death rates given 
by equation (9).   

 

Figure 4: Cohort and period life expectancy, with cohorts completed with a 
continuous declining pace in mortality of C=0.01, Sweden 
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During the last years of the twentieth century the fluctuations observed in the 
period measure have largely disappeared. The estimated values of the cohort life 
expectancy, with the selected decline over time, correspond to a gap of around 7 years 
between the two life expectancies for 1911. Before 1900, however, that gap was much 
smaller and more erratic. 

The gap observed between period and cohort life expectancies begins at the middle 
of the nineteenth century in Sweden. This is also the period of great improvement in 
infant mortality which contributes to the increase in both life expectancies, but more 
marked for the cohort measure. From about 1880 on, the pattern in Figure 4 resembles 
that in Figure 1. 

Equations (6)-(8) show the relations between gaps and lags in a simple mortality 
model. These equations can be used for Sweden assuming that life expectancy moves 
linearly with a constant slope. This linear assumption has been shown to be realistic in 
developed countries over the last half of the 20th century (White, 2002). For Sweden, in 
1911, the last year with full information on cohorts, the period and cohort life 
expectancies were 58.0 and 65.2 respectively. The gap between period and cohort life 
expectancies was thus 7.2 years. Calculating the derivative as the average of all 
annualized changes in period life expectancy from 1911 to each year from 1912 through 
1950 we obtain an average slope of 0.30. Applying equation (6), a lag of 24 years is 
found. Comparing the cohort life expectancy of 65.3 in 1911 with 64.9, the period LE 
in year 1935, gives a discrepancy of only 0.4 years.  

Period life expectancy in the industrialized world has followed a linear trend 
during the second half of the twentieth century so equation (6) should give a good 
approximation of the lags implied by the observed gaps (Goldstein and Wachter, 2005). 
For example, in 1950 cohort life expectancy was 79.5 years, with period life expectancy 
8.4 years lower. For the year 1999, period life expectancy is 79.5, reaching the cohort 
value of 49 years earlier. With the slope of period life expectancy calculated as 0.18, 
equation (6) gives a lag of 46.7 years, which is 2.3 years below the actual lag of 49 
years. However, the period life expectancy for 1997, the estimated year, was 79.3, 
giving an error in the lag of only 0.2 years. 

For Sweden between 1900 and 2002, Figure 5 shows the Lexis surface for the ratio 
of the age-specific contributions to period relative to cohort life expectancies, as 
calculated from equation (4). 
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Figure 5: Ratio of the period over the cohort age-contribution, Sweden 1900-
2002. Cohorts completed with a pace of decline over time C=0.01 

 

Results similar to the Siler mortality change model of Figure 3 can be seen in 
Figure 5, specially after 1940. The young ages make greater contributions to cohort LE 
while at older ages the period LE gains more. There is also a clear upward time trend in 
the crossover value of 1. At the beginning of the twentieth century the value of one is 
found at age 20, but that rises to age 60 at the end of the century. There is an 
interruption of the pattern during the Spanish flu pandemic in 1918. The sharp rise in 
mortality during that year impacted the period much more than any cohort, and led to 
greater cohort gains in LE up into high ages. 
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6. Conclusions 

The disparity between period and cohort life expectancy can be measured at a given 
time or over the number of years it takes for period LE to attain the cohort level. For 
our continuously declining mortality model these two measures are linked by a simple 
relationship. For the industrialized world, where countries have experienced linear 
trends in life expectancy in the last half century, a similar though approximate 
relationship exists. While the cohort-period gap is fairly small and grows slowly over 
time, the lag is sizeable and grows much more rapidly.  

To further analyze the dynamics of the two life expectancies we examine the age-
specific contribution of changes in death rates to period and cohort life expectancy. 
Cohort life expectancy gains more from changes at younger ages, while the period 
measure gains more at older ages. The ratio of the contributions to period over cohort 
life expectancy can be seen as the product of two terms accounting for past and future 
changes in mortality. At the age when past mortality experience is balanced by future 
changes the ratio is one. As infant mortality falls to low levels improvements are 
concentrated at older ages, and the balancing age rises.  

The present pattern of mortality change suggests widening cohort-period gaps and 
especially lags, as experience at more and more ages contributes more to cohort LE 
than to period LE. 
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